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ABSTRACT. The generalized viscosity implicit rules of nonexpansive asymptotically mappings in Hilbert
spaces are considered. The strong convergence theorems of the rules are proved under certain as-
sumptions imposed on the sequences of parameters. An application of it in the convex minimization
problem is considered. The results presented in this paper improve and extend some recent corre-

sponding results in the literature.

1. Background

Let H be a real Hilbert space and M be a nonempty closed convex subset of H,7 : M — M
be a nonexpansive mapping with a nonempty fixed point set F(7)
The following iteration method is known as the viscosity approximation method: for arbitrarily
chosen ug € M
tpt1 = anP(un) + (1 = )T un, n >0, (1.1)
where ¥ : M — M is a contraction and {a,} is a sequence in (0,1). Under some certain
conditions, the sequence {u,} converges strongly to a point z € F(7T) which solves the variational
inequality (V1)

(I =)z, u—2z)>0,ue F(T), (1.2)
where / is the identity of . Many authors studied iterative sequence for the implicit midpoint
rule because of it's significant for solving ordinary differential equations; see [?]- [12], John T [9], [7]
and the references therein. Recently, Xu et al [3] proposed the following viscosity implicit midpoint
rule (VIMR) for nonexpansive mappings:

Up + Upt+1

Upyl = Otn’([)(Un) + (1 - O‘n)T( 5

),nZO, (1.3)
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In 2015, Ke and Ma [4] proposed the generalized viscosity implicit rules of nonexpansive mappings

in Hilbert spaces as follows:
Up+1 = apP(un) + (1 — an)T (spun + (1 = sp)Upy1), n > 0, (1.4)

and
Unt1 = QpUp + BaW(un) +¥nT (Sptn + (1 = Sp)tns1), n >0, (1.5)

They proved that the generalized viscosity implicit rules 1.4 and 1.5 converge strongly to a fixed

point of 7 under certain assumptions, which also solved the V [(1.1).

In 2016, motivated by the work of Xu [3], Zhao et al [5] proposed the following implicit midpoint

rule for asymptotically nonexpansive mappings:

Un + Uner

ns1 = ap(un) + (1 - )T (F

),nZO, (1.6)

where 7 is an asymptotically nonexpansive mapping. They proved that the sequence {u,} con-

verges strongly to a fixed point of 7, which, in addition, also solves the V 1(1.1).

In 2017, He et la [14] studied the following iterative

Up+1 = an"/’(“n) + (1 - an)Tn(ﬁnUn + (1 - 5n)un+l)v n>0 (1-7)

in the setting of a Hilbert space and proved that the sequence {u,} converges strongly to u* =

Pe¢ryw(u™) which is also the unique solution of the following V'/
(I —Y)u,v—u) >0,YveF(T) (1.8)

In this paper, we introduce and study the generalized viscosity implicit rules of asymptotically
nonexpansive mappings in Hilbert spaces. More precisely, we consider the following implicit

iterative algorithm:

L e M

(1.9)
Up+1 = Qplp +,6n"/}(un) + Y T" | sntn + (1 - Sn)Un—i-l) VneN

Under suitable conditions, we proved that the sequence {u,} converge strongly to a fixed point of

the asymptotically nonexpansive mapping 7, which also solves the variational inequality
(I =d)u,p—u) >0 peF(T).

As applications, we apply our results to solve convexly constrained minimization problem. This way

results in 1.5 are complemented, extended and generalized.
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2. Preliminaries

In the sequel, we always assume that # is a real Hilbert space and M is a nonempty, closed,

and convex subset of H. The nearest point projection from H onto M, PM, is defined by
2
RMwy:amgﬂHu—4‘,u€H. (2.1)
Namely, Py(u) is the only point in M that minimizes the objective Hu — ZH over z € M. and
Par(u) is characterized as follows:
RMM)€A4mm<u—RMw)z—RM00>§OfwaHzEAA (2.2)
Definition 2.1. . A mapping 7 : M — M is said to be:
a): a-inverse strongly monotone if there exists o > 0 satisfying
(u—v,Tu—"Tv) > allAu— Av|]? Yu,v € M; (2.3)
b): L-Lipschitz continuous if there exists L > 0 satisfying
|Tu—Tv| < L|u-v| Yu,v e M; (2.4)

c): nonexpansive if
| Tu—"Tv| <|lu—v| Yu,veM,; (2.5)

d): asymptotically nonexpansive if there exists a sequence {k,} C [1,00) with Ii_)m kn = 1 such
n—oo
that

NT"u—T"v| < kpllu—v]| Yu,ve M and VneN; (2.6)
e): contraction if there exists the contractive constant o € [0, 1) such that

| Tu—"Tv| <allu—v] Yu,veM, (2.7)

Lemma 2.2. (The demiclosedness principle [10]) . Let H be a Hilbert space, M be a nonempty
closed convex subset of H, and T : M — M be a asymptotically nonexpansive mapping with
Fix(T) # 0. If {un} is a sequence in M such that {u,} weakly converges to u and {(I — T)up}

converges strongly to 0, then u = T (u)
Lemma 2.3. Let H be a Hilbert space. Then for all 8, u, v € H, the following inequality holds
lu—6|> < |v—6|"+2(u—v,u—0)
Lemma 2.4. [17]). Assume that {c,} is a sequence of nonnegative real numbers such that
apr1 < (1= Xp)ay + 0,

for all n € N, where {\,} C (0,1) and {6,} C R are two sequences satisfying the following

conditions:
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(©): i Ap =00
n=1

. On >
ii): lim sup — <0 or Onl <
(0 0m 300 3 = ;' <o
Then Im a,=0

n—oo

Then the sequence {a,} converges to 0.

3. Main Result

We now prove the following new result.

Theorem 3.1. Let M be a nonempty closed convex subset a real Hilbert space H,T : M —
M be asymptotically nonexpansive mappings with the same sequence {k,} C [1,00) such that
limpsookn = 1, Fix(T) # 0 and ¥ : M — M be a contraction mapping with the contractive

constant a € [0, 1). Define a sequence {up} in M as follows:

oM (3.1)
i1 = Gpthn +Botp(un) + VT Sntin + (1= 5p)upi1) ¥n € N
where oy, Bn, Yn, Sn € (0, 1) satisfying the following conditions,
A1l: OL<>g +B8Bh+vn=1
A2: ) o =00
n=0

A3: O_<e§sn§sn+1<1foralln20

A4: |lim vy, =1and Ilim a,= Im B,= lim s, =0
n—oo n—oo n—oo n—o0
lim |[uy —T"un|| =0
n—oo

Then the sequence {u,} strongly converges to a common fixed point q of T, which is also the

unique solution of the following variational inequality
(I =d)u,p—u) >0 peF(T).
We now show that algorithm 3.1 is well posed. Letting

Bn(u) = Qplp +,6n'¢(un) + 7" (SnUn + (1 - S,,)Un)

1Ba(u) = Ba()l = 19 T" (st + (1 = s)ur) = 1T (500 + (1 = s0)v )|
= [[¥T"(1 = sp)u =7 T"(1 = sp)v/|

< Ynkn(1 = sp)llu — v

Since lim s, =0, lim k, =1, Iim v, =1and 0 <€ < s, < 5,41 < 1forall n >0, we may
n—oo n—oo n—oo

assume that y,kp(1 —s,) < 1 —€ for all n > 0. This implies that B, is a contraction for each
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n. Therefore there exists a unique fixed point for B, by Banach contraction principle, which also

implies that (3.1) is well-defined.

We now show that the sequence {u,} is bounded.

Rewriting 3.1, we have

Upy+1 = 6n'¢(un) + apuy + (1 - 6n)Vn (32)
where v, = YT "(Snthn + (1 = Sn)Un+1)
1 _ﬁn
- . 1 1
Remark 3.2. The real sequences that satisfies the above conditions are o, = o Bn = " and
2
Yn = 1- E

Proof. Our prove are in six steps. First we prove that the sequence {u,} defined by 3.1 is bounded.

Step 1: Letting p € Fix(T), we have the following estimates

ltunsr —pll = 11Ba¥(un) + aptn + (1 = Bn)vin — pl|
< Bnllw(un) — (P + Ballv(p) — pll + anllun — pll + (1 = Ba)llva — pl|
< (aBn + ap)llun — pll + Ballw(p) — pll + (1 = Ba)llva — pl| (3:3)

YT "(Sntn + (1 = Sn)Unt1) _

lvo—pll = | L pl
_ YT "sn(un —p) Y T"(1 = 5p)(Uns1 — P) I
1 _517 1 _,Bn
YnKnSn Ynkn(1 — sn)
< — —_ — .
< Py, — pl + P s — (3.4
Putting 3.4 in 3.3, gives the following
lunrr —pll < (aBn + an)llun — pll + Ballw(p) — pll

+  YnknSnlltun — Pl +Ynkn(1 = sp)[|tuns1 — pl|
<

(aBn + otn + Ynknsn)llun — pl| + Ballw(p) — pl|
(aBn + an + YnknSn)
1 —Ynkn(1 — sp)
Bn
1 —Ynkn(1 —sp) I

(1 = Ynkn(1 = sp))lltns1 — pl|

IN

l|unt1 — Pl lun = pl|

+

(p) — pll
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Since vp, sp € (0,1),1 — ypkn(1 —sp) > 0 and Ii_}m kn = 1. From the condition (Al), we
n—oo

have

1- O‘ﬁn — Qp _’Ynkn

s —pll < 1- 2T Ty,
R e e LORE]

femss —pll < 1= 2y,
T e _)Sn)(l 19() ]

Juns =l < max {lun = ol =55 0(0) = ol

Therefore by mathematical induction, we have

1
s = pil < max {lvo ol 75 I(e) ~ pil}
for all n > N. Therefore {u,} is bounded. Consequently,

{¥(un)} and {vn}

are also bounded.

Step 2: We now prove that the sequence {u,+1} converges to {u,} as n — oco. Thatis lim |upy1—
n—oo

unpl| =0
ltnys —unll = [lupy1 — T up+T"uy — Up|
= ||6n'l/}(un) + apup + (1 _5n)vn - (5n +an + 'Yn)Tn + Tnun - Un”
< ||ﬁn"/}(un) - BnTnUn” + ||anUn - o4n7ﬂnun||
H[(L = Bn)va — Y T"+T"up — Un||
< Ballw(un) = T unll + anllun — T up||
+(1 = Bn)llva — 'YnTnH =+ HTnUn — Up| (3.5)
n _ Ynsn n ’Yn(]- _ ) n n
Vo = YT unl| = ||1 e T"un + WT Unt1 — YT " tnl|
n n
5 1—5
< I T~ Tl + S T~ T
n
1-— k
< M — Up|| (3.6)

1-B, [ tUnt1
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Now putting 3.6 in 3.5, we have the following

lunsr — unll < Ball(un) — T unll + anlltn — T up||

1 —sp)kn

1= B[ =2 s — ]+ 77—

< Bollw(un) = T uall + unlltn = T7us|
+9a(1 = sa)kalltns1 = tall] + 1770 —
< Ball(un) = Tunll + (ot + Dl = Tt
Y01 = so)kalltnss =
[ =701 = s)kn | lunsr = wnll < Ballw () = Tl + (et + Dt = T" ]
lumss = vnll < T ) = Tl
A T

1 —9n(1 —sp)kn

Let M > max{||¢(un) — T”u,,||}, then we have

BnM (on+1) n
_ < _
ltnss = vnll < L —vn(1 — sp)kn * 1_'Yn(1_5n)kn||un Tl
BnM (op +1)
Upt1 — Upl| < up—T"u
luna nll < L —9n(1 = sp)(1 +eap) 1_’Yn(1_5n)(1+€an)|| ! d
Since lim a, = lim B, = lim |lup — T"u,|| = 0, we then conclude that lim |Ju,11 —
n—oo n—oo n—oo n—oo
Un” == O
Step 3: Again we then show that ILm ) up — T (up)|| = 0. Estimating as follows we have
n—oo
lun =T unll = lun — tnt1 + tpt1 — T up||
< Nlun = tngrll + uprr = T unll
< Nlun = tng1ll + 1Ba(un) + antn + (1 = Bn)va — T"up
< lun = tngall + Ball(un) — T unll + apllun — T unll + (1 = Bn) v — ¥ T " tn]|
(3.7)
YT " (sptn + (1 — sp)u
v — TPl = | WS ECZ 1)
1-06n
YnSn n n (1 - Sn)’Yn n n
< _ Ao enJin _
< iz _ﬁHIIT tn = T"ugll + == ~ 5, 1T unr — T ugll
1—375 k
w”“wﬂ — Unl| (3.8)

a 1_ﬁn
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Now substituting 3.8 into 3.7, gives the following estimation
lun =T upll < Nt = tngall + Ballb(un) = T"tnll + cnllun — T unl|

+ (-8

(1 = sp)vnk

1_,Bn
<
(1+(1_Sn)7nkn)
<
- 1—0[,7
i (1+(1—s,7)'ynk,7)
lun =T upll < 1—a | Unt1
n

HUn - Un+1|| +

n
lunsr = unll)

Bhn
1 —

) = Tt

Therefore from 3.1 condition A4, with lim ||uy+1 — upl| = 0, we can conclude that
n—oo

lim [[u, —T"up|| =0
n—oo

But we know that from the following fact

Tim (lun = T (un) |

IN

lim |lup = T"up|| + lim |7y — Txnl|
n—oo n—oo

< lim up = T upll + lim kg [T uy — ug
n—oo n—oo

Proving that lim ||[T""1u, — u,|| = 0, we have the following estimation
n—oo

||Tn_1(un) - Un” =

IN

|| Vh—1 — 'Yn—lTn_IUnH

[ — T~ (un) |

Hﬁn—l"»[/(un—l) + ap—1Up—1+ (1 _5n—l)Vn—1
_(,Bn—l +ap-1+ 'Yn—l)TnilunH

|’6”*1¢(Un*1) - anlTn_lun + Qp—1Up—1 — anflTn_lL/n

+(1 - ,Bn—l)Vn—l - ’Yn—lTnilunH

Br-1llW(tn—1) = T"  unll + atn_1lltn-1 — T"  uy|

+(1 - Bn—l)HVn—l - ’Yn—lTn_an”

'Yn—lTn_l(Sn—lun—l + (1 - sn—l)Un) _

Yn—1 kn— 15n—1

1- ﬁn—l

1 _ﬁn—l

Itn =

Up—1l|

’Yn—llrn_1 Un”

(1 (1= 5o YVoka ) ltn — thns1]| + Ball9(n) = Tt + il — T

(3.10)

(3.11)

(3.12)
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combining 3.12 and 3.11 we have the following

1T (un) = unll - < Bo—allw(un—1) = T"  upll + ctn-alltn—1 — T uy|

—1kn—15n—
H1 = )| TP
=

5n71H'¢)(Unfl) - Tn_lunH + OCn71||Un71 - Tn_lun”

et = p-1 ]

IN

+’Yn—1kn—15n—lHUn - Un—l”

Br1ll¥(un—1) = T tgll + atp-1llun—1 = T" gl

IN

+'Yn—1kn—15n—lH|Un - Un—lH

With the assumption of {a,}, {Bn} and ILm llup+1 — upl] = 0, we can conclude that
n—o0
lim |7 Yu, — upl| = 0 (3.13)
n—oo
Therefore from 3.9 and 3.13, we can see from inequality 3.10, that
lim [u, — T (up)|| =0 (3.14)
n—oo

Step 4: In this step, we will show that w,(x,) C Fix(T), where
Wy (up) := {u € H : there exist a subsequence of {u,} converges weakly to u}.
Suppose that u € wy(u,). Then there exists a subsequence {up, } of {u,} such that u,, — x

as i — oo . From 3.14, we have

Un,‘ - TUn,‘ — 0

=T,

lim ‘ — lim ‘
1—00 n—oo
. This implies that {(/ — T)up} converges strongly to 0. By using Lemma 2.2, we have
Tu=u,and so ue Fix(T).
Step 5: In this step, we will show that
lim sup (¢ — ¥(q), g — un) <0, (3.15)

n—oo

where g € F(T) is the unique fixed point of Pr(r) o1, that is, g = Pr((¥(2)). Since
{un} is bounded, there exists a subsequence {uy, } of {u,} such that u, — T as i — oo for

some U € H and

lim sup (g —¥(q), g — un) (g—v(q),q— up,) (3.16)

= lim
n—oo 1—00

From Step 4, we get X € F(7). By using inequality 2.2, we obtain

|imnsggo<q—¢(q),q—un> = /irgow—w(q),q—un)

= (¢—vY(q).g—1) <0
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Step 6: Finally, setting ¢, = B,q + apq + (1 — B,) v, we show that u, — g as n — oo. Again,
take g € F(T) to be the unique fixed point of the contraction Pr(y) o 1. For each n € N,

consider

lltny1 — CIH2

IN

IN

IN

IN

IA

l©n = all* + 2(tnt1 — @n, Unt1 — )

(1 =Bn)*lva — all® + 2(Bn(¥(un) = q) + n(tn — ), tny1 — q)

(L= Bw)llva — all* +2Ba(W(un) — ¥(a)) + Ba(¥(q) — @) + cta(tp — ), tpt1 — q)
(L= Bn)?lIva = all” + 28all¥ () = w( @) ltnsr — gll +2eallun — gl tnsr — gl
+26n(¥(q) — g, Unt1 — a)

(1= Bn)?llva — all* + 2Bctllun = gllllunsr — all + 2eallun — qll[[unss — 4l
+26n(¥(q) — g, Unt1 — q)

(1= Bn)lva — all® + (2B + 20t) || un — gl tps1 — gl

+28,(¥(q) — 4, tns1 — q) (3.17)

For the fact that

5 1Y T (Sntn + (1 — Sp)Uny1) 2
v —qll* = -
(1 _ﬁn)
2522 2
VS Va(1 — sp)kz
< gl — alP + T e — )P
n
v25,(1 — s5,)k2
n(nl(_ﬁ)n2)n<un — ¢, Unt1 — Q)
n
< Yasika >, ¥a(1 = s,)2k7

(1— )2|| up — q|| +(1—m)2n|| 1 — g2

’Ynsn(l Sn)kn _ _
Ta-B2 lun = allllun+1 — 4|

2000 (W) — 9(0), T (22 ) — q) (3.18)

Now substituting 3.18 into 3.17, we have the following estimation

1 — ql? < ¥2s2k2|un — | + Y21 — $0)2k2||tn+1 — qlf?

+'Y/%5n(1 - Sn)kgnun — qlll|tps1 — 9|
+2(Bha + an)HUn —qllllunsr — qll + 2ﬁn<¢(Q) — g, Upt1 — Q)

IA

'Yns k2HUn q||2 +'Y,%(1 - 5n)2kr3||un+1 - C7||2
+[2sn (1 = 50)KZ + 2(Bact + n) [ lun = llun1 — gl
+2Bn(¥(aq) — q, Unt1 — q) (3.19)
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Again using the fact that
2
(lun = all = lmer — all) ™ < llum — al> = 201un — allltns2 — gl
+tnt1 — CIHZ

Setting the left hand to zero, we have the following estimate

A

2llun = qlllltner — ql] < ||Un_Q||2+||Un+l _CI||2
1 1
lup = qllllunss —qll < §||Un_CI||2+§HUn+1_QH2

Putting inequality 3.20 in inequality 3.19, gives the following

1 — qll? < ¥252k2|un — ql* + Y21 — $0)2k2 | tns1 — qf?
¥25,(1 — 5,)k2

s |un = qll* + (Bnce + an)llun — qlI?
2 2
Y¥5sn(1 — sp)k
+-0= 5 2 |Uny1 — q||2 + (Bno + an)|luns1 — Q||2

+2Bn{¥(q) — q, Upy1 — q)

2¢ 2
YiSnks(spn+ 1)+ 2(Bha +
s —qlp < [Trfalont D B2t any, gy
2 242
¥5(1 — 55)k5(2 — sp) + 2(Bhax +
+[ n( n)ka( 2n) (Bn n)]||un+1_q||2

+26,(¥(q) — q, Unt1 — q)

Thus we have

201 _ < \242(n _
(1 B [’yn(l Sn) k5 (2 — sp) + 2(Brax + an)])||un+1 P
2
2. 12
< [fynsnkn(s,7 + 1)2+ 2(Bno + an)]HUn —al?
+ 25n<'¢(‘7) — 4, Up+1 — C]>
2. 12
lner — a2 < Tosnka(on + D+ 2Bn ¥ on) g2
2 [73(1 — 52)2K2(2 — 53) + 2(Bpox + a,,)]

4Bn
2~ [¥3(1 = 50)2K3(2 = 5) + 2(Bnx + )

+

IN

2 —¥2(1 —5,)°k2(2 — 5,) — ¥25,k2 (s, + 1
HUn+1—Q||2 (1_ n( n) n( n) nnn(n ))||Un_q||2

2 [’y,%(l — 5,)2K2(2 — 5p) + 2(Bnax + a,,)]
43,

+
2 [75(1 — 5,)2K2(2 — 5) + 2(Ber + o)

] (W(q) — g, Uups1 — Q)

] (W(q) — g, ups1 — Q)

(3.20)
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Therefore from condition Iim a, = |Iim B, = lim s, =0 in 3.1, we concludes that
n—oo n—oo n—oo

2 - 2v;k;

s “n"n o 2
o)l —al

lunsz —al? < (1

. _ 2 _
Tim g1 — > =0

This complete the proof. O

Theorem 3.3. Let M be a nonempty closed convex subset a real Hilbert space H,T : M —
M be asymptotically nonexpansive mappings with the same sequence {kn,} C [1,00) such that

limp—oo kn =1, Fix(T) # 0 and w be a constant. Define a sequence {u,} in M as follows:

U eM

3.21
Upt1 = Oplpn + Bpw + ¥ T spup + (1 — sn)u,,H) VYneN (3:21)

where o, Bn,Yn, Sn € (0, 1) satisfying conditions A1 — A4 and Y(u,) = w

lim [|[7"up — un]| =0
n—oo

Then the sequence {u,} strongly converges to a common fixed point q of T, which is also the

unique solution of the following variational inequality
(I —Wup—u)>0  peF(T).

Taking s, =0

The following corollaries holds:

Corollary 3.4. Let M be a nonempty closed convex subset a real Hilbert space H,T : M —
M be asymptotically nonexpansive mappings with the same sequence {kn,} C [1,00) such that
limpsoo kn = 1, Fix(T) # 0 and 9 : M — M be a contraction mapping with the contractive

constant a € [0, 1). Define a sequence {up} in M as follows:

L7 eM
(3.22)
Up+1 = Oplp +ﬁn7~p(un) + ’YnTn(Un—H) VneN

where ap, Bn,Yn € (0, 1) satisfying conditions A1 — A4 without ILm sp=0
n—oo
lim [|[7"up — up|| =0
n—oo

Then the sequence {u,} strongly converges to a common fixed point q of T, which is also the

unique solution of the following variational inequality

(I =9)u.p—u) >0 peF(T).
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Corollary 3.5. Let M be a nonempty closed convex subset a real Hilbert space H,T : M —
M be asymptotically nonexpansive mappings with the same sequence {kn} C [1,00) such that

liMp—oo kn =1, Fix(T) # 0 and u € M be a constant. Define a sequence {up} in M as follows:

eM
. (3.23)
Up+1 = aptp+ Bpw + ¥, T"(Ups+1) Vn € N

where ap, By, Yn € (0, 1) satisfying conditions A1 — A4 without Ii_)m spn=20
n—oo
lim |7 up — up|| =0
n—oo

Then the sequence {u,} strongly converges to a common fixed point q of T, which is also the

unique solution of the following variational inequality
(I =d)u,p—u) >0 peF(T).

4. Application to convex minimization problems

In this section, we study the problem of finding a minimizer of a convex function ® defined from a
real Hilbert space M to R.
Consider the optimization problem

min &(x) (4.1)

where ® : M — R is a convex and differentiable function. Assume 4.1 is consistent, and let
Q # () be its set of solutions. The gradient projection algorithm generates a sequence {u,} via the
iterative procedure:

Upt1 = Pym(up — VP (v)) (4.2)
if VO is 6—inverse strongly monotone mapping and 4(0, 26). The following basic results are well

known.

Remark 4.1. It is well known that if ® : M — R be a real-valued differentiable convex function

and u* € M, then the point u* is a minimizer of ® on M if and only if dd(uv*) = 0.

Definition 4.2. A function ® : M — R is said to be strongly convex if there exists a > 0 such that
for every u, v € M and X € (0, 1), the following inequality holds:

PO+ (1 = N)v) < A(u) + (1 = N)P(v) — alju — v (4.3)

Lemma 4.3. Let E be normed linear space and ® : M — R a real-valued differentiable convex
function. Assume that ® is strongly convex. Then the differential map dV : M — M is strongly

monotone, i.e., there exists a positive constant k such that
(dd(u) — dd(v),u—v) > kllu—v|]*Vu,veM. (4.4)

The prove of the following theorem follows from 3.1
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Theorem 4.4. Let M be a nonempty closed convex subset a real Hilbert space H. For the
minimization problem 4.1, assume that ® is (Gateaux) differentiable and the gradient V& is a
f—inverse-strongly monotone mapping for some positive real number 6. Let ¢ : M — M be a

contraction with coefficient o € [0,1). For a given u; € M, let {u,} be a sequence generated by:

{ U eM (45)

Upy1 = Qplp + B (un) + YnPm(1 — 0V P)(spun + (1 — sp)(Upt1)) Yn €N
where o, B, Yn, Sn € (0, 1) satisfying the following conditions
A1l: an+,62n+’yn =1
A2: lim =0

n—oo  Qlp

A3: ian =00
=0

n—=
A4: |lim v, =1and lim a,= Im B,= |lim s, =0
n—oo n—oo n—oo n—oo

Then {u,} converges strongly to a solution (u*) of the minimization problem 4.1, which is also the

unique solution of the variational inequality
(I =9)u.p—u) >0 p € F(T).
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