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ABSTRACT. This paper carries out a mathematical analysis of the global dynamics of a partial differen-
tial equation viral infection cellular model. We study the dynamics of a hepatitis C virus (HCV) model,
under therapy, that considers both absorption phenomenon and diffusion of virions, infected and un-
infected hepatocytes in the liver. Firstly, we prove the boundedness of the potential solutions, global
existence, uniqueness, and positivity of the obtained initial value and boundary problem solution.
Then, the dynamical behaviour of the model is entirely determined by a threshold parameter called
the basic reproduction number denoted Ro. We show that the uninfected spatially homogeneous
equilibrium of the model is globally asymptotically stable if Rg < 1 by using the direct Lyapunov
method. The latter means that the HCV infection is cleared, and the disease dies out. Also, the global
asymptotical properties stability of the infected spatially homogeneous equilibrium of the model are
studied via a skilful construction of a suitable Lyapunov functional. It means that the HCV infection
persists in the host, and the infection becomes chronic. Finally, numerical simulations are performed

to support the obtained theoretical results.

1. INTRODUCTION

The dynamics of viruses, in particular the dynamics of the hepatitis C virus, remains a very
active field of research in the world of sciences. Moreover, the 2020 Nobel Prize in Medicine
was awarded to three researchers, namely the British Michael Hougton and the Americans Harvey
Alter and Charles Rice. They were awarded this Nobel Prize for their very advanced research work
on the hepatitis C virus. According to World Health Organization(WHO) [41], 71 million persons
were living with chronic hepatitis C virus (HCV) infection worldwide and 399 000 persons had
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died from cirrhosis or hepatocellular carcinoma following a survey done in 2015. Aside from the
burden of HCV infection secondary to liver-related sequelae, HCV causes an additional burden
through comorbidities among persons with HCV infection, including depression, diabetes mellitus
and chronic renal disease. In May 2016, the World Health Assembly endorsed the Global Health
Sector Strategy for 2016-2021 on viral hepatitis (HBV and HCV infection), which proposes to
eliminate viral hepatitis as a public health threat by 2030. Elimination is defined as a 90%
reduction in new chronic infections and a 65% reduction in mortality compared with the 2015
baseline. Mathematicians cannot stay aside from this disastrous situation decried by WHO. In
view of the vital importance of the liver and the aforementioned facts, any contribution to a better
understanding of HCV infection process and strategy to eradicate this infection is of great interest.
Mathematical models have been developed to help understand and control the dynamics of HCV
within an infected host such as in [6,7,14,35]. The dynamics of viral infections such as the
Ebola virus disease(EVD), the human immunodeficiency virus (HIV) infection, the hepatitis B virus
(HBV) infection, the hepatitis C virus (HCV) infection and, new corona virus infection have been
modeled mathematically in a host. One of the earliest temporal models was the within-host basic
viral infection model proposed in [31] to study HIV infection, and later adopted to HBV [8, 32].
Particularly, numerous mathematical models describing the temporal dynamics of HCV have been
initially proposed by Neumann and al [30] using the classical viral infection cellular model, and
later have been extended in [6,10,14,35]. Motivated by what has been done in [8,30,32], Chong
and al. [7] formulated the basic HCV temporal intra-host model with therapy as a system of three

differential equations :

( dgi” — X — dH(t) — (1 — mBH(EV(D),

] C“d(tt) = (1=mBH(t)V(t) — al(t), -y
dv(t)

|, = (L= e)ki(t) = uV (1),

where the equations relate the dynamics relationship between, H as the uninfected target cells
(hepatocytes), | as the infected cells and V as the viral load (amount of viruses present in the
liver). In the system (1.1) the key assumption is that hepatocytes and viruses are well mixed, and
neglects the mobility of hepatocytes C viruses, the infected and uninfected target cells. To study
the influences of spatial structures of virus dynamics, Wang and Wang in [39] assuming that the
motion of virus follows Fickian diffusion, that is to say, the population flux of virus is proportional
to the concentration gradient and the proportionality constant is taken to be negative [13]. More-
over, in model (1.1), the rate of infection is assumed to be bilinear in the virus V and uninfected
hepatocytes T. It is shown in [29] that this bilinear rate of infection could be unrealistic. However,
the actual incidence rate is probably not linear over the entire range of T and V. Thus is reason-

able to assume that the infection rate is given by a more general one, known as the Hattaf-Yousfi
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BHV
ap+ai H+arV+asHV

are constants. The function a0+a1HfoZV+a3HV satisfies the hypotheses (H1), (H2) and (Hs) of

general incidence rate presented in [16,19-21]. The Hattaf-Yousfi type of functional response was

functional response [18] of the form where ag > 0, a1 > 0, ao > 0, a3 > 0

introduced by Hattaf and al. [18]. This functional response generalizes many functional responses
and it was used in [34] to describe the dynamics of labour market. Thus, when o = 1, the Hattaf-
Yousfi functional response is reduced to the specific functional response used by Hattaf and al
n [17]. Furthermore, if a3 = a1 and g = 1, the Hattaf-Yousfi functional response is reduced
to Crowley-Martin functional response [9] and was used in [43]. When a3 = 0 et ap = 1 the
Hattaf-Yousfi functional response is simplified to Beddington-DeAngelis functional response [5,711],
and was used in [25,26,38,42]. When a7 > 0, ap = a3 = 0 and ap = 1, the Hattaf-Yousfi
functional response is reduced to Holling type Il functional response [28]. And when a1 = a3 =0,
ap > 0 and ag = 1 it expresses a saturation response [36]. Moreover, when a; = a, = az = 0,
and ag = 1 the Hattaf-Yousfi functional response is reduced to the mass action principle(or Holling
type | functional response). Also ordinary differential system (1.1) don’t take into consideration the
cure of infected hepatocytes. In this work, motivated by the breaches observed in the analysis and
the formulation of system (1.1), we construct and analyze a partial differential equation (PDE)-
cellular model system for HCV infection, which derives from system (1.1) by incorporating the space,
Hattaf-Yousfi incidence rate, absorption effect and spontaneous cure. It is worth mentioning that
in [7] the authors used mass-action kinetics for viral infection, neglected the cure rate, ignored the
absorption effect and the diffusion of free virions, susceptible cells and infected cells. Thus the
obtained model is an extension of the one in the first part of the work done by Chong et al. [7].
The work is organized as follows. In section 2, we model the phenomenon described through
a reaction-diffusion equations which leads to a initial value and boundary problem. Section 3
is devoted to the study of the existence and uniqueness of the global solution of our initial and
boundary value problem, and of the properties of this solution, namely positivity and bounded-
ness. Section 4 deals with the stability and the analysis of spatially homogeneous equilibria and

numerical simulations in section 5. We conclude our work and provide a discussion in section 6.

2. FormULATION OF THE PDE-CELLULAR MODEL

Let Q C R® be a bounded connected domain representing the liver. Let t > 0 be a given time
and x = (x1, x2, x3) € Q. Denote respectively by H(x, t), /(x, t) and V(x, t) the concentrations of
healthy hepatocytes, HCV infected hepatocytes, and free HCV virions at time t and location x. The
dynamics of HCV infection intra-host is the result of the dynamics of each compartment H, |, and

V, and the various interactions between them. We now describe the evolution of each compartment.

2.1. Fluctuation of healthy hepatocytes. Let v be an elementary volume in €2. The variation of

the quantity of healthy hepatocytes in v is described under the following assumptions. Healthy
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hepatocytes are produced at constant rate A from the bone narrow and die at rate dH. Virions infect

BHV
aptoarH+oaoV+asHV!

infection and a;, j = 0, 1, 2, 3 are positive constants. This generalized incidence function replaces

the healthy hepatocytes at the rate where (3 is the rate of transmission of the
the mass-action function which has been shown to cause unrealistic conditions for successful chronic
HCV infection. pl is the cure rate of infected hepatocytes either by noncytolytic mechanism or
immunity or treatment. In addition, the therapeutic effect of treatment in this model involved the
reduction of new infections, which is described in a fraction as (1 — 7n). The spatial motion of
healthy hepatocytes follows the Fickian diffusion law. Thus, the variation of healthy hepatocytes
is expressed by the following equation:

OH (1 —m)BH(x, t)V(x, t)
Br ~ DBHLG D+ A= dHOG 8 = o B F aaVix, 1) + asH(x, DV (X,

ot + pol(x, 1),

where D; represents the Healthy hepatocytes diffusion coefficient and
02 02 02

A=t 32t32

Oxi 0Ox5  0Ox3

is the usual Laplacian operator in three-dimensional space.

2.2. Fluctuation of HCV infected cells. The HCV infected cells die at rate a per day so that é
is the life-expectancy of HCV infected hepatocytes. Healthy hepatocytes become infected at the

rate ao+a1HEZ\2/V+a3HV' The spatial motion of HCV infected cells follows the Fickian diffusion law.
Thus, the variation of infected hepatocytes is expressed by the following equation

ol 1-— H(x, t)V(x, t

— = DoAlI(x, t) + (L = mBH(x HV(x. ) —(a+p)I(x,t),

ot

where D, represents the HCV infected cells diffusion coefficient.

ag+arH(x, t) + axV(x, t) + asH(x, t)V(x, t)

2.3. Fluctuation of free HCV virions. The infected hepatocytes produce virus at rate k/, and virus

is cleared at the rate V. Also, the population of virions decreases due to the infection at the rate

u(1-n)BHV
aotog H+oaoV+as HV

the Fickian diffusion law. In addition, the therapeutic effect of treatment in this model involved

due to absorption effect, where u € {0, 1}. The spatial motion of virions follows

blocking virions production (referred to as drug effectiveness) which, is described in fraction (1 —¢).
Thus, the variation of free virions is expressed by the following equation:

ov (1 —=mBH(x, t)V(x, t)

gt — DBV OF (=)l (x 1) =V X, B) U S V%, B) + asH(x, DV (. ©)'

where D3 represents the free HCV virions diffusion coefficient.

2.4. The initial boundary value problem associated to PDE-cellular model. In this section, we use
the previous equations describing variables variations to set up a complete PDE system modelling

biological dynamics for HCV infection. Let T > 0 be a fixed time and define

QT =Qx (O,T).
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Therefore, in 27 the full system of PDE governing the HCV infection becomes :

’ ?TI: = DIAHG ) + A = dH = o + a(lbjrnczf\l/ﬂ«/k ozsHV el
] % = DAl 1) + o + oc(j-/_—i—no)f\//_/\j— asHV (a+o)l. (21)
‘ ‘2—\; = DaBV + (1= e)kl —pV/ — — aul(;+z)fVHXa3Hv.
We use the Neumann homogeneous boundary conditions:
%‘;’l:;g:g\:’:O on 002 x [0, T, (2.2)

where % denotes the outward normal derivative on 0S2. The initial conditions are the following :
H(x,0) = Hp, 1(x,0)=1o, V(x,0) =W, x€Q. (2.3)

The boundary conditions in (2.2) imply that the Healthy hepatocytes, the HCV infected cells and free
HCV virions do not move across the boundary 052. For an epidemiological significance, we assume
that the initial conditions are positive and Hélder continuous, and satisfy %’;’;’ = g—g = %—\7/;’ =0on
0%2. We then obtain the following initial boundary value problem, denoted IBVP associated to the
previous PDE-cellular model:

[ OH (1-n)BHV

— =DiAH+X—dH — | in

or DAt 0+ aH + ooV L agHY TR AT

ol (1—n)BHV .

§_D2N+ao+a1H+a2V+a3HV (a+p)l in Qr,
40V u(l —mn)BHV

— = DsAV + (1 —€)kl — pV — in Qr, (2.4)

ot oo+ oaH+ arV +azsHV
oH ol ov
%_%_%—O on 90 x [0, 7],

| H(x,0) = Hp, I(x,0) =lo, V(x,0) =Wy, x€Q,

on which our study will focus on.

3. QUALITATIVE AND QUANTITATIVE ANALYSIS AND SOME PROPERTIES OF THE SOLUTIONS FOR IBVP (2.4)

In this section, we provide a thorough study of the dynamics of IBVP (2.4) which yields various
outcomes. Precisely, we prove existence, uniqueness, positivity and boundedness of solutions for
IBVP (2.4). This is done by combining variational method and semigroups techniques to some

useful functional analysis arguments.
3.1. Local existence and uniqueness of solutions for the IBVP (2.4). Set
F(H,1,V) = (Fi(H,1,V), Fa(H, 1,V), Fs(H,1,V))" (3.1)

where
(1-n)BHV

/
a0t ouH +aoV +ashy Pl

Fi(H, 1,V) =X —dH —
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(1 —mn)BHV
ag+ a1H+ apV + azHV

(1 —n)BHV
ag+arH + aV + azHV'

Fo(H, 1,V) =

—(a+p)l,

and
F3(H,I,V)=(1—-¢e)kl —uV —u

We have the following result which guarantees that the right-hand side, without diffusion, of the

PDE-model system (2.4) is Lipschitz.

Proposition 3.1. Let T € R* and (H,1,V) € (C%(Q x [0,T]))3, where C&(2 x [0,T]) is the
space of bounded and continuous functions on 2 x [0, T]. We suppose that F in (3.1) is defined
on L2(Q2x (0, T)). Then Fy, F> and F3 are uniformly Lipschitz continuous on L?(Q2 x (0, T)) with

respect to H, | and V.

Proof. Let T € R* and (H1, /1, V1), (Ha, I2, V5) € (C&(2 x [0, T]))3. First, by direct computation,

we have :
|FL(Hy, 11, VA) — Fi(Hz, 12, Va)|l2 < Ki||H1 — Hall2 + K311 — lall2 + K3 Vi — Val|2,

with
1 Vin 1 Hn
Kl—d+(1—77)5(+) K3 =np, K3—(1—77)5(+)
oo Qo aq Qo

with Hy, and Vi, given below.
Then

[F2(Ha, 11, Vi) — Fa(Hoa, 12, Vo) |2 < Ki||H1 — Hall + K3l — I2]l2 + K3 Vi — Va2,

with
1 % 1 H
Ki=(1-n)B (+m), K5 =(a+p) and K3 =(1-n)B (+m)
(6 7)) oo
Finally
IFs(Hy, 11, VA) — Fa(Ha, I, Va)ll2 < K3 Hy — Hall2 + K3l — 212 + K3V — Va2,
with

K3—u(1—77)6(1+vn;), K3 =k(1—¢€), and K3—u+u(1—77)5(1_|_/;’;’

This completes the proof of Proposition 3.1.

Now, consider the following IBVP

~

8:H — DiAH = f(t,H,I,V) in  Qx(0,T)
8l —DoAl =g(t, H,1,V) in  Qx(0,T)
1 8V —DsAV =h(t,H,[,V) in  Qx(0,T)
=0, 9-=0,%=0 on 8Qx[0,T]
| H=Ho, I =10,V =V on Qx{t=0}

In what follows, we will need the following definition and results.

(3.8)
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Definition 3.1. (Sectorial operator, [22]) Let A be a linear operator in a Banach space X and
suppose A is closed and densely defined. If there exist real numbers a, w € (0,7), M > 1 such
that

p(A) D ={X€C : w<arg(ho—a) <m N #0} (3.9)

and

IR (A)]| < for all Mo € ¥, (3.10)

M
Ao — al
then we say that A is sectorial.

Remark 3.1. The Neumann realization of the Laplacian A = —A, with domain
Oow
_ 2 . _
D(A) = {w € H*(Q) : an O}

is a sectorial operator in L2(Q). But since C5°(2) C D(A), it is densely defined in L2(Q). For
B > 0 large enough, we define the fractional powers of the Helmholtz operator, HO = A+,
with domain D(H®) equipped with graph norm || [|pz0y = || - ll2 + [H®.||2.

We have the following general results.
Lemma 3.2. [1]Let1 < p < oco. Then D(H®) C C§°(2) with continuous injection for B > 25
Lemma 3.3. [22] D(HP) C C(2) with continuous injection for 3 > 1.

Theorem 3.4. [22]If A is sectorial, then —A is the infinitesimal generator of an analytic semigroup,
G(t).
If Ry, > a, a € R whenever \g € o, then for any t > 0,

C
Ie() < Ce™ . IAG(D)] < —e

and
d
—G(t) = —AG(t t .
26(t)=-AG(t), t>0

Corollary 3.5. Let G be the analytic semigroup generated by —A. The following properties hold
for the semigroup G and the fractional powers of the Helmholtz operator HP:

1) G(t) : L?(Q) — D(H®) for all t > 0,

2) 1G(t)wllye < Caat Plwla forall t >0, w € L2,

3) G(t)H%w = HOG(t)w for all t > 0, w € D(H®).

Remark 3.2. The following basic hypotheses are assumed to hold :
(H1): D; >0, Dy >0 and D3 > 0,
(H2): Ho >0, lo > 0 and V4 > 0 are continuous on 2, Ho, lo, Vo € C$(Q),
(H3): f, g and h are continuously differentiable functions from ﬁi into R with 7(t,0,s,z) >0,
g(t,r,0,z) >0and h(t,r,s,0) >0forall t, r,s, z>0.
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ForxeQ, t>0 H, I,Ve (C%(Q))3, define F,G and Q on Ry X (C%(Q))3 by :
[F(t. H, 1, V)](x) = f(t, H(x), [(x), V(x)), [G(t, H, [, V)](x) = g(t, H(x), [(x), V(x)),
[Q(t, H. 1, V)](x) = h(t, H(x), I(x), V(x)).
In addition, we let G;, G2 and Gz be the analytical semigroup generated by A; = D; x A,
Az = Doy x A and A3 = D3 x A respectively.

In the sequel, we will need the following results.

Lemma 3.6. [22] If H, | and V are continuous from [0, T] to L?(Q), then the integrals :
h(t) = [y Gi(t — T)F(, H(T), I(1), V(T))dT, I(t) = [5 Go(t — T)G(T, H(T), I(7), V(T))dT,
I3(t) = [y G3(t — T)Q(T, H(T), (1), V(T))dT,
exist and 11(t), l2(t) and I5(t) are continues on [0, T[ with 11(t) € D(A1), la(t) € D(Az),
I3(t) € D(A3) and I1(t) — 0% in L% as t — 0%, Ia(t) = 0T in L? as t — OF and I3(t) — 0% in

L2 ast— 0T,

Lemma 3.7. Ifthe IBVP (3.8) has a classical solution, then H, | and V satisfy the following equalities

H(t) = Gl(t)Ho+/tG1(t—7')]:(T,H(T),/(T),V(T))dT, (3.11)
0

I(t) = Gz(t)/o+/Oth(t—T)Q(T,H(T),/(T),V(T))dT, (3.12)

V(t) = G3(f)\/o+IOtGg(t—T)Q(T,H(T),/(T),V(T))dT. (3.13)

Proof. Consider the L?—valued functions 6,(1) = G;(t — T)w;(7), j = 1,2, 3with w1 = H, wo = |
and w3 = V. Then §; is differentiable since G; is analytic and w; is differentiable. Then by

Theorem 3.4, we have

B~ et —]Hm) + it —n)H (),
= —D;x A(Gl(t — ’T))H(’T) + G1(t — ‘T)[Dl X AH(T) + F(T, H(T), I(T), \/(’7’))],

= —D; x A(G1(t —7))H(T) 4+ D1 x G1(t — ) x AH(T) + G1(t — 7)F (7, H(T), I(T), V(T)),
According to corollary 3.5 with 8 = 0, we have
D1 x G1(t — T)AH(T) = D1 x AG1(t — T)H(T).

Therefore

do;

—- = ~DixAGi(t = T)H(T) + D1 x AGL(t = T)H(T) + Gi(t = T)F (7 H(7), I(7), V(T)),

= Gi(t—T)F(T, H(T), I(T),V(T)). (3.14)
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In the similar way, we also have :

% = %[Gg(t—T)]/(T)—l—Gz(t—T)/,(’T),
= =Dy x AGo(t — 7)) I(T) + D2 x Go(t — ) x Al(T) + Go(t — T)G(7, H(T), I(T), V(T)),
= Go(t—T7)G(7, H(T), I(T),V(T)). (3.15)
% - d%[@(t—»r)]\/(ﬂ+G3(t—7)\/(7),

= —DXxAG3(t—T)V(T)+ D x G3(t — T)AV(T) + G3(t — 7)Q(T, H(T), I(T),V(T)),
= G3(t—1)Q(T, H(T), I(T),V(T)). (3.16)

Integrating equations (3.14), (3.15) and (3.16) with respect to time, we obtain equations (3.11),
(3.12) and (3.13) respectively. ]

Remark 3.3. Since in this work, n = 3, we take p = 2 so that 8 > % and therefore the domain
D(H®) is continuously embedded in C5°(X2) by Lemma 3.2. Now, let H, | and V be continuous
functions from [0, T] to D(H®) < C3() satisfying (3.11), (3.12) and (3.13) respectively. We can
then claim that H, | and V verify system (3.8). The continuity of H, | and V implies continuity of
t— F(t, H(t), I(t), V(t)), t = G(t, H(t),I(t),V(t)) and t — O(t, H(t), I(t), V(1)).

One can then conclude that, the linear Cauchy problem

Ory1 — D1Ayr = F(t, H(t), I(¢), V (1)),
Ory2 — Dalyn = G(t, H(t), I(t), V (1)),
Orys — DAys = Q(t, H(t), I(1), ( ),
¥1(0) = Ho, y2(0) = lo, y3(0) =

has a unique solution, with y;, y» and y3 given by (3.11), (3.12) and (3.13) respectively.

Following [2], [4], [3] [22], [24], we have the following main result for the local existence of (2.4),

based on L2-theory.

Proposition 3.8. If hypotheses (H1), (H2) and (H3) are satisfied, then the initial value and boundary
problem (3.8) admits a unique solution (H, 1, V) € (C%(]0, T], D(HP)))3, with H(0) = Hy € C(Q),
1(0) = Iy € C&(2) and V(0) = \p € C%(Q).

The proof of this proposition is given in "Appendix A "
3.2. Boundedness of the solutions for IBVP (2.4).

Proposition 3.9. Let (H,/,V) € (C° (2 x [0, 7)) nCZ (Q x [0,T)))°
be the solution of (2.4) with bounded initial conditions i.e. 0 < Ho(x) < Hm, 0 < lo(x) < Hp,
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0 < W(x) < Vi for all x € Q, and satisfying the boundary condition 6871—71;) =0, 9% — 0,

6\/0

on —
V(x,t) € Qx[0,T], H(x,t) < Hm, 1(x,t) < Hp and V(x, t) <V,
with

Hp = max {A, max{H(x, 0) + /(x, 0)}} and Vj; = max {(1_€)ka max\/o(x)]» .
52 Xx€EQ M X€EQ

Proof. Consider the function S defined for all (x,t) € Q x [0, T] by
S(x,t) = H(x, t)+ I(x, t).

Adding the first two equations in (2.4), yields

85((9);, t) . DlAH(X, t) _ DzA/(X, t) = — dH(X, t) - OL/(X, t).
It follows that
65((;;' f_ max{D1, D2}A (H(x,t) + I(x,t)) < X—min{d,a}(H(x, t) +I(x, 1)),
we have

93060 _ §1AS(x,t) <A —625(x, t), x€Q, telo,T]

(3.17)

250 — 0, x€0Q, te[0,T]

S(x,0) = max Sp(x),
xX€Q

where So(x) = {H(x,0) + I(x,0)}, 61 = max{D1, D>} et 6o = min{d, a}. By using the standard

parabolic comparison of the scalar parabolic equations [33], one has
S(x, t) < 5(t),

where S5(t) = % (1- e*‘sﬂ) + max Sg(x)e %1 is the solution of the problem
&Y

(3.18)

5(0) = max Sp(x),
X€EQ

which dominates system (3.17). The general solution of (3.18) is on the form S(t) = k(t)e~%t. By
Lagrange’s method, we have k(t) = %e‘sﬁ + ¢, ¢ € R. Hence

S(t) = (g;e‘bt + c) e %2t

Initial condition yields ¢ = max Sp(x) — %
NSY
Therefore

= A
S(t) = 5% (1—e™%t) + rpeas%(SO(x)e";Zt.
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Then, it follows that :

S(x, t)

AN
> o
N

IN
_

e~%t) 4 max So(x)e%*
X€EQ

A
< max { ma_xSo(x)} (1—e™%t) + max{ maxSo(x)} o2t
62 Xx€ 62 X€EQ
A
< max { ma_xSo(x)} .
02" xe
Thus,
A
S(x, t) < max {—, max{H(x,0) + /(x, O)}}.
62 X€S
Therefore

S(x,t) < Hp = max {(3)\ ma§_>2<{H(x, 0) + I(x, O)}} NV(x, t) € Q2 x [0, Tmax),
2 xe€

where T is the maximal time of existence of the solution of system (2.4), this implies that S is
bounded.
Hence H and / are bounded since S is bounded. This prove that H and | are bounded.

Now, to show that V is bounded, from the third equation of IBVP (2.4), we have

avg;’t) — D3AV(x, t) < (1 —e)kl(x,t) —uV(x, t), x€Q, te0,T]
M:O, x€0Q, tel0,T]
on

V(x,0) = max Vp(x).
X€Q

It follows from the previous system, inequality

VOt _ DAV(x, t) < (1 — €)kHpm — pV(x, t)

V() _ (3.19)
~on

V(x,0) = max Vp(x),
XEQ
By using the standard parabolic comparison of the scalar parabolic equations [33], one has
V(x, t) <V(t),

where V(t) = %(1 — e M) + max, g Vo(x)e Mt is the solution of the problem

P = (1= e)kHm — uV (1),

(3.20)
V(0) = maxVp(x),
xeQ
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which dominates system (3.19). Indeed, the general solution of (3.20) is on the form V(t) =
c(t)e#t. By the Lagrange's method, we have c(t) = %(e‘” —1)+ ¢ 0 €R

thus,

(eMt — 1)+ co]e_‘“.

Initial condition yields max Vy(x) = V(0) = ¢p. It follows from that
XEQ

— 1—¢€e)kH
V(t) = w(l — e M) + max VWp(x)e ML,
X€EQ
Therefore
Vix,t) < V(t)
1—¢e)kH 1—¢e)kH
< max {( ) iy ma_x\/o(x)}(l — e M) 4 max {w ma_x\/o(x)}e_‘“
K x€Q x€Q
(1—¢e)kHpm
< max{-——— maxW(x)t.
o { 2 x€Q b )}
Since

V(x, t) <V(t) < max{(l_‘;)kH”’

, mag\/()(x)}, V(x, t) € Q% [0, Tomax):
xeQ

where Tpax is the maximal time of existence of the solution of system (2.4), this implies that V is
bounded.

Thus H(x,t),/(x,t) and V(x, t) are bounded on Q x [0, Tmax). Therefore, it follows from the
standard theory of semi-linear parabolic system in [23] that Tpax = +o00. This completes the proof

of proposition 3.9. O

3.3. Global existence, uniqueness and positivity for the IBVP (2.4). We recast the IBVP (2.4) as

follows:

%—V: — DAw + g(w)w = f(w) in Qx[0,T),
aW1 B 8W2 B aW3 B
5y =0 3 =0 5>=0 on 92x[0.7), (3.21)

w(x,0) = wp(x) in Q,
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where w = (wi,wo,w3)! = (HI.V), D = diag(D1, D2 D3), q(w) =
. T .
diag (q1(w), ga(w), g3(w)), f(w) = (fl(w), Hh(w), f3(w ) , with
(1-n)Bws
= d p—
q1(w) +ao+a1W1+oc2W3+a3W1W3’ @(w) = (a+p),
u(l —mn)Bw
- 2 =
CI3(W) u+ao+a1W1+OL2W3+OL3W1W3Y 1(W) T Wz,
1_
Blw) = U= mw v Aw) = (1 - )kw,.

ag + agwy + aows + aswiwa '

Note that Dy, Dy, D3 > 0. Denote H = L?(Q2) and E = H*(Q2) and define as in [12] the Hilbert
space

du

W(, T E E" = {u € L2((0,T),E): o

c LQ((O,T),E’)},

endowed with the norm

> 5 ou|l2
Ity = lelEago.m.8) * || 3 oo e
and the following hypothesis for initial conditions:
Wo1 € LOO(Q), Wo2, Wo3 € H and wy; > 0 for / € {1, 2,3} (322)

Here, we apply Theorem 2.7 of [12]. So, one approaches the solution by a sequence of solutions of

linear equations. For n =0, w9 denotes the solution of

%"‘f—ﬁAWO:O in Qx(0,7),

wO(0) = wo in Q, (3.23)
% 0. on 00

This equation admits a strong solution and w® > 0.

By induction, w” = ((wy', wy', wy{')) denotes the solution of

%" — DAW" + q(w" M )w" = F(w"}) in Qx(0,T),

w™(0) = wo in Q, (3.24)
G =0 on Q.

Since (3.24) is a linear equation, g;(w"~1) and f;(w"~1) can replace ag and f(t) of Corollary 2.10
in [12]. Suppose that there exists a unique nonnegative solution W,.”*l. Assuming by induction that
Wf >0 for 0 <j < n—1 and that by Proposition 3.9 WIJ is bounded for 0 < j < n—1, one has

u(l— w1
0= n—l( 77)53_11 Tt < u(l—mB
Qo+ oaiwy; T Foaowy T+ ozw) Tw;

(3.25)
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which implies that

p<aa(w" ) <p+u(l—n)B. (3.26)
Since W,’ are bounded , we have

d<aqw') <d+(1-n)p.

In addition, g> is a constant.
It then follows that g1 (w"™1), go(w"™1), gs(w"™1) € L°®(Q2 x (0, T)). We also have f(w"~1) >0
and f(w""1) € L2((0,T),E"). Then, by Corollary 2.10 of [12], there exists a unique solution
w” € W(0, T, E,E') with w" > 0. Since A(wW) = X + pwa, H(w) = g B . <
(1—n)Bws and f3(w) = (1 — €)kwy, then (W) = X+ pws L, H(w"'™1) < (1 —n)Bwy ! and
f(w" 1) = (1 — e)kwl ! remain bounded in L2(]0, T[, E). We deduce that wJ and wj remain
bounded in C°([0, T],H) and L2((0,T), E).

Now, we deduce that the sequence (w/"),>g (one can extract a subsequence (w")n>0) converges
weakly to w; in L2((0,T), E) and weakly star in L>((0, T),H) to w;. Applying Proposition 2.11
n [12], it holds that for all n,

t
Wi(t) = Gi(t)woi + / Gi(t — 5)g7(s)ds, (3.27)
0
where G;(t) is the semigroup generated by the unbounded operator A; = —D;Ay, and
97(s) = —qi(w" " (s)w/ (s) + fi(w"1(s)). (3.28)

Then, g" € L2((0,T),E). Since the sequence (w/),>0 is bounded in C°([0, T], H), the se-
quence (g")n>o is bounded in C°([0, T],H). Now, consider the operator G; from C°((0,T), H)
into CO((0, T), ) defined by

t
Gi(F) = / Gi(t — 5)F(s)ds. (3.29)
0
Let us prove that G; is a compact operator. Considering the triple (L2(2), HY(), a) with
ow 6v
a(w,v) = Z / o5 o5 (3.30)

where Q is regular and bounded. As in [1 2], the unbounded variational operator Ay associated to
a is a positive symmetric operator with compact resolvent Ry (Az). It admits a sequence (\g)x of

positive eigenvalues with . lim Ax = 400 and a Hilbert basis (ex)x of H consisting of eigenvectors
—+00

of Ay If (G(t))¢>0 is the semigroup generated by —Ay, then for all wy € H,

+oo

G(t)wp = Z e‘“k(wo, ex)Ex. (3.31)
k=0

This proves that the operator is compact for all t > 0 since

lim e ™ =0.
k—+o00
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We have the same formula for G;(t), and it suffices to replace Ax by D;\k. Setting

N
Gu(Dw =) e ™ (w, ex)ex, (3.32)
k=0

one sees that Gy/(t) is an operator with finite rank which converges to G(t). The following Theorem

is relevant in the sequel.

Theorem 3.10. [72] Let t — G(t) be an application from [0, +00) into L(H).
One assumes that there exists a sequence of operators (Gn(t))n>o0 on H verifying the following
properties:

1) for all N and all t > 0, Gn(t) has finite rank independent of t,

2) t+— Gp(t) is continuous from [0, +00) into L(H) for all N,

3) for N — 400, Gyn(t) converges to G(t) in L1(]0, T[, L(H)) for all T > 0.

Then the operator G is compact from CO([0, T],H) to C°([0, T],H) for all T > 0.

We are now in the position to prove the global existence, uniqueness and positivity of the solution
to the IBVP (2.4).

Theorem 3.11. If the initial condition satisfies (3.22), then the IBVP (3.21) admits a unique non-
negative solution w € (W(0, T, E, E"))3.

The proof of Theorem 3.11 is contained in "appendix B ".

Remark 3.4. It is worth noting that positivity of the solution may be proved by applying the maximum
principle. Moreover, from the above results and the boundedness of the solution, one has observed

that the solution of IBVP (2.4) enters the region:
C={(H1,V)eBPxRY: 0<H(x,t) < Hm 0<I(x,t) < Hm, 0 < V(x,t) < Vin},
where

Hm, = max {% max{H(x,0) + /(x, O)}} et V,, = max

2 x€eQ2 1%

, max V/(x, 0)}.
x€Q2
Hence the region ¥, of biological interest, is positively-invariant under the flow induced by IBVP

(2.4).

4. STABILITY ANALYSIS OF THE SPATIALLY HOMOGENEOUS EQUILIBRIA

4.1. HCV-spatial homogeneous uninfected equilibrium Ey. The spatial homogeneous uninfected
equilibrium of the PDE-model system (2.4) arises when there is no virus within a host i.e., V=0.
Easy calculations shows that the HCV-spatial homogeneous uninfected equilibrium for PDE-model
system (2.4) is given by

Eo = (A, 0,0)
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where

Q>

4.2. Basic reproduction number Rg. In order to define the Basic reproduction number Rq for
system (2.4), we first observe that system (2.4) has a spatially homogeneous uninfected equilibrium
Ep. It should be noted that one of the main tools in epidemic models is the basic reproduction
number Ry which is an important threshold parameter to discuss the dynamic behaviour of the
epidemic model. It quantifies the infection risk. It measures the expected average number of
new infected hepatocytes generated by a single virion in a completely healthy hepatocyte. It
should be also noted that, while a huge number of works deals with the threshold dynamics for
ODE-models, very few studies are devoted to PDE-models. This is eventually due to the fact
that the concept of basic reproduction number has just recently been extended to PDE-models
such as reaction-diffusion and reaction-convection-diffusion epidemic models with mixed boundary

conditions [37,40]. The definition of Rg in this work follows the approach developed in [40].

In order to find the basic reproduction number R for the system (2.4), we obtain the following

linear system at Eq for the infected classes:

(0] (L—mpBA, , .
ot = D2A/—(O€+,0)/+ Oéo+Oé1/\V n QT,
ov u(l—m)BA,, .
S = DsbV + (1 =€)kl — v mv in Qr, (4.1)
ol oV
\%—%—0 on 8Q><[O,T]

Substituting /(x, t) = e*ha(x) and V(x, t) = e*Mah3(x) in (4.1), we obtain the following cooper-

ative eigenvalue problem:

X200 = Daba() — (@ 9)a() + S0 in 2
T M) = D) + (1 - ko) — o) — o Do) i 0 (42

Oa(x)  OYs(x)
on o =0 on 09.

C
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As in [40], let T: C(Q, R?) — C(£2, R?) be the solution semigroup of the following reaction-diffusion

system:

ol

Bt = DQA/ — (OC +,0)/ in QT,

% u(l —n)BA

—L = D3AV + (1 — )kl — pV — V in QF, (4.3)

ot ag + ai\
I(x,0) = Pa2(x), V(x,0) =9s3(x), in Qr
ol oV
i % = % =0 on 8Q

Thus, with initial infection W(x) = (12, ¥3) the distribution of those infections members becomes

T(t)W(x) as time evolves. Therefore, the distribution of total new infections is

then, we define

/OO F(x)T(t)V(x)dt,
0

L($)(x) = /Ooo FOO)T ()W (x)dt = F(x) /OOO T(£)W(x)dt.

L is a positive and continuous operator which maps the initial infection distribution to the distri-

bution of the total infective members produced during the infection period. Applying the idea of

next generation operators [40], we define the spectral radius of L as the basic reproduction number

Ro = p(L).
The matrices F and V defined as
0 (1—m)BA
ap+ai/ a+,0 0
F(x) V(x) =
0 0 1 k (1-mBA
_( - 8) H +u apg+og A\
Then
(1—m)(1—€)kBA (a+p)(1—m)BA
apgtai\ aptai\

(a +p) [u(co + 1) + u(1 — n)BA] 0 0

By [40] (theorem 3.4), one has

_ (1 —n)(1—e)kBA
Ro= (o + p) [u(og + 01 N) + u(1 — m)BA] (4.4)
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4.3. Existence and uniqueness of HCV-spatial homogeneous infected equilibrium E*. In this
section, we address the existence and uniqueness of infected spatial homogeneous equilibrium
(2.4). The latter denoted as E* = (H*, I*,V*) with H* # 0, I # 0 et V* # 0 satisfying the

following algebraic system :

A—dH* — (1 —n)L(H*, I*, V)V* +pl* = 0,

(1 =m)L(H*, I",V)V* —(a+p)I" = 0, (4.5)
(1—e)kl* —uV* —u(l —n)L(H*, I",V*)V*= 0,
where
BH
L(H, I = .
(H.1.V) ag+ atH+ axV + azHV
Adding the first and second equation of (4.5), we have
A—dH" —al*=0
which yields
A — dH*
= (4.6)
a
As far as, using the second and third equation of (4.5), one has
—u(a+p)I*+ (1 —e)kl* —uVvV* =0,
Le.,
W
hence
1—¢e)k— A —dH*
7 o'
according to (4.6). The substitution of (4.7) in (4.5) yields :
A—dH* (1—¢)k — A—dH*\ (1—¢e)k —
a i ol 7
Thus, we have
« A—dH* (1—-e)k—u(la+p)A—dH"\
(1 =m(Q—ek—ua+p)t(H F— ; ) B CR
since /* # 0. Furthermore, /* > 0, gives % > 0. Thus H* < %. Hence there is not a biological

equilibrium when H* > %.

Let us consider the function ¥ defined on [O, %] by :

A—dx y(A—dx)
P

Yo = @-miL(x o

) — (a+ p)u,

where

¥y=(1—¢e)k —u(a+p).
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We have
$(0) = —(a+ ) < 0
and
w(?,) _ (1—n)7L(3,0,0)—(a+p)u,
= =Mk - ula+ o) o (et

_ A=m@@—e)kBA  u(l—mn)(e+ p)BA
N ag + ai/\ B oo + ai —(atom

1
= aogan =M= ekOA - plat p)(ao +aah) — u(l —m)(a+ pIBAL,
1
B m[“ —n)(1 — €)kBA — (a + p) [u(oo + ) + u(1 — n)BA] ]
_ (a+p) [u(ao + 1) 4+ u(l —n)BA] Ry 1)
B ag + a1 0 '
It follows that
1/1(%) = (@+p) [M(aooj‘ C_T_lg)/—\i_ u(1 = n)BA (Ro—1)>0 ifand only if Ry > 1.
0 1
Moreover, letting y = A—dx and z = M we have
%o’
/ d A—d A—d
W) = @-mrg [t (2S5OSR ]
I oL doL ~ydoL
— (- (5 -0 - ]

Ox a0x0y uadxoz

W(GL daL( a) 'deL(_ua)),

Ox  adx vd

OL doLox ~ydOoLox
= @y (g o T

d

o Ox

Il
—~
=
|
3
~

oL
= 3(1- n)’Y&,

vV
— 3(1—1n)y Pao +Fa S>0 if >0
(ap + (o1 + azV)x + anV)

Therefore, if Rg > 1 there exists a unique spatially homogeneous infected equilibrium E* =
(H*, I*,V*) with H* € (0,2%), I* > 0 and V* > 0.

The previous investigations can be summarized in the following theorem :

Theorem 4.1. 1) If Rg < 1, then the PDE-system (2.4) admits a unique spatially homogeneous
uninfected equilibrium Ey = (% 0, O).

2)IfRo > 1 andy > 0, then the PDE system (2.4) admits a unique spatially homogeneous infected
equilibrium E* = (H*, I*, V*) with H* € (0, %) I*>0 and V* > 0.
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Remark 4.1. Due to the spatial dependence of the state variables, spatially-inhomogeneous steady
states can exist.
Indeed, any spatially-inhomogeneous equilibrium point £ = (H, /,V) of the model (2.4) subject

to the homogeneous Neumann boundary condition must solve the following system.

[ (1-n)BHV
DiAH + ) — dH — | =
1 + ag+atH+ oV + azHV T 0.
(1 -m)BHV
DoAl _ | =
A T H oV Taahy @A =0,
; u(1 — n)BHV

D3AV 1—¢e)kl —uVv — =
3 +( £) H ag+oa1H+ aV + asHV

OH _ ol _ oV _
on on om

~

Investigation of the local stability of such spatially-inhomogeneous equilibria will be the concern

of a forthcoming paper via an in-depth analysis of the above system.

4.4. Local stability of HCV-uninfected equilibrium. The objective of this section is to discuss the
local stability of the spatially homogeneous uninfected equilibrium for the PDE system (2.4). We

address local stability by analysing the characteristic equation.

Theorem 4.2. The spatially homogeneous uninfected equilibrium Eqg of PDE-model system (2.4) is
locally asymptotically stable if Ry < 1 and it is unstable if Ry > 1.

Proof. Let {u/, ¢} be an eigenpair of the Laplace operator —A on Q with the homogeneous Neu-
mann boundary condition where 0 = 1 < pp < uz < ---. Let £, be the eigenspace corresponding
to py in CY(Q) and {p;;,j = 1,2, -, dimE,,} be an orthogonal basis of E,,. Let X = (C}(Q))3
and X;; = {pjc, / c € R3}.

Consider the following direct sum

dimEy,

X:éx, with X, = P X,
j=1

=1

where X, is the eigenspace corresponding to u,. Linearizing (2.4) at the spatially homogeneous

uninfected equilibrium Ep we obtain the following linearized system :

[ Owy (1—=nm)BA

Br ~ Pvwmdwitpwe = A
ows (1—n)BA

122 = DoAws — LY 4.
ot 2Aws — (o + p)wa + oo + aih w3, (4.9)
ows _ (1—n)BA

| 5r = Dsbws+ (1 - )kws [u+ S ]W3,
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where W = (wy, wo, w3)™ = (H,1,V)T.

From the previous system (4.9), we obtain
W; = LW = DAW + K(Eg)W

where
—dwy + pws — 7&;&)‘?//\\ w3
KEIW =| —(a+pw+ 500w, | (4.10)

(1—¢e)kws — (u + U(O}O_ﬁf//\\) w3

For each / > 1, X is invariant under the operator £, and X is an eigenvalue of £ if and only if it is
an eigenvalue of the matrix —u;D + K(Ep) for some / > 1, in which case, there is an eigenvector
in X;. So, one has

— (D1 +d +X) p —{-nh
det (—wuD + K(Eo) — M d) = 0 — (D2 + (e +p) + X) L-mpn
0 (1-e)k — (D5 + o+ ulsmen) -5

The characteristic equation of —u;D + K(Ep) is

— (D1 +d+ 5\) [[M(DQ +(ax+p)+ 5\] [(M(D3 + u+ um) + 5\] — (1 7;2(_’1_ ;177/\)/(5/\

T ah ]:Q (4.11)

from (4.11), we get
Xo=—wD; —d<0,

and another characteristic eigenvalues are the roots of the following equation :

. (L—mBA\ _ (1 =&)L —mkBA _
A —l—B)\—i—(p,/Dg—i-oH—p)(/J,/D3+u+ua0+a1/\ a0 - oA =0, (4.12)
where
_ (1 —m)BA
B—[(M/D3+/L+ua0+al/\ +wDa + (a+p) |-
Let
B (L—mBA) (1 —¢)(1—n)kBA
C—(MID2+O‘+p)(“”D3+M+uao+a1/\ ag + ar\ .
One has,
B (1-m)BA (1 —m)BA
C = wbhDs (MID3+M+UO£0+O£1/\ +(a+p)ubs +(a+p) M+uao+a1/\
()1 - mkBA
ag + ai

(1 —mn)BA

D
a0+a1/\)+(a+p)u/ 3

= wbh> (M/D3 +u+u

m[(a +p) [w(ao + aa) + u(1 = m)BA — (1 —€)(1 - n)kﬁ/\],
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(1 —n)BA

= wDbD> M/D3+M+Um + (a+ p)uDs3
+ +arA) + u(1 —7)BA
n (a+p) [u(ao + 1) + u(1 —n)B ](1—720).
Oéo+0(1/\

Since B > 0, if Rp < 1 then C is also positive. Hence by virtue of the Routh-Hurwitz criterion,
equation (4.12) does not admit solution with positive real part. Thus none characteristic eigenvalue
have positive real part. Therefore if Rg < 1, the spatially homogeneous uninfected equilibrium
Eo = (% 0, O) of (2.4) is locally asymptotically stable.

Otherwise if Rg > 1, then for / = 1, (in this case @1 = 0) one has,

_ (a4 p) [pu(ao + asA) + u(l = n)BA]

¢ (07 +Oll/\

(1 *’Ro) < 0.

Hence there is a complex root of equation (4.12) with positive real part in the spectrum of K
according to Routh-Hurwitz criterion. Therefore the uninfected equilibrium Eq = (% 0, 0) of (2.4)

is unstable. This completes the proof of Theorem 4.2. O

4.5. Global stability of HCV-Uninfected equilibrium. The objective of this section is to discuss the
global stability of the spatially homogeneous uninfected equilibrium for the PDE system (2.4). We
address global stability by using the construction of Lyapunov functional method. This Lyapunov
functional is obtained from those of differential equations by applying the method presented in [15].

For this purpose, we start by letting
_ (1 e)k(1 —m)BA

To

pag(o =+ p)
Then, it is easy to see that
(1 €)(1 — mkBA _ L=k —n)BA
(a+p) [u(ao + o) +u(l =m)BA] = pao(a+p)
ie.,
Ro < 719.

We state the following result on global stability at Eq as follows :

Theorem 4.3. The spatially homogeneous uninfected equilibrium Eq of PDE-model system (2.4) is
globally asymptotically stable in the positively-invariant region > if 1o < 1.

Proof. Let us consider the following function
(1—¢)k
a+p
Then, the differentiation of G; with respect to t gives

dGy (1—e)k —u(a+p)
dt — \u(a+p)(ao+ arH+ sV + azHV)

Gi(t) = I(t) + V(¢).

(1—mBH—1| pV.
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Since H < % = A in the positively-invariant region X, one has

dG1  _ [[(1 — &)k — u(a+ p)](1 = m)BA

- 1]u\/,

dr pag (o =+ p)
(1—¢)(1 —n)kBA
= [ pao(a + p) _1]W'
< (10— DuV.

Now, we define the Lyapunov function as follows

Ll_/ GldX.
Q

The computation of the time derivative of L; along the positive solutions of the PDE-model system

(2.4) yields

dLq d
& = al /Q Gax|.
dGy
= —d
/Q at
< [ [(To— 1)p,V]dx.
Q
It is clear that the condition 79 < 1 gives % <0 forall H, I, V > 0. We note that the solutions

of system (2.4) are limited by T, the greatest invariant subset of E:{(H, 1,V) € Z|% = O}.
We realize that % =0 ifand only if V=0 and | = 0. Each element of T satisfies V = 0 and
consequently 1=0. By Lyapunov-LaSalle invariance principle [27], Ep is globally asymptotically
stable if 79 < 1. So, we obtain a sufficient condition Rg < 79 which ensures that the HCV spatially
homogeneous equilibrium Eg of PDE-model system (2.4) is globally asymptotically stable if 7o < 1.
This completes the proof of theorem 4.3. O

4.6. Local stability of HCV spatially homogeneous infected equilibrium. Let us study the local
stability of the unique infected spatially homogeneous equilibrium E* of our PDE-model system.
Consider the Laplace operator —A and let 0 = pg < up < uz < - - - be its eigenvalues on €2 with
the homogeneous Neumann boundary condition, and E,,, be the eigenspace corresponding to
in C1(Q). Let also X = (CYQ))3 {wj,j =1,2,---,dimE,,} be an orthogonal basis of £, and
X, = {pyc / c € B3},

Then,
dimEy,

XZéX/ with X, = @ XU'
j=1

I=1
Now, let set w; = H, wo = /, ws = V. Further we use the vector notation W = (wy, wa, w3)T =

(H, I, V)T. Then the linearization of the PDE system at E* is of the form

W; = LW = DAW + K(E*)W,


https://doi.org/10.28924/ada/ma.3.1

Eur. J. Math. Anal.

where
—(d+A)wys + pws — Bws
K(EHW = Aw — (o + p)we + Bws , (4.13)
—uAw; + (1 — e)kws — (4 + uB) ws
with
_ (1 —n)(oo + axV*)BV*
(O’_o + o H* + opV* + OC3H*V*)2
and

_ (1 —=n) (oo + a1 H*)BH*
(Olo + a1 H* + anV* + CX3H*V*)2'

For each / > 1, X, is invariant under the operator £, and X is an eigenvalue £ if and only if it is

an eigenvalue of the matrix —u/b—l- IC(E*) for some | > 1, in which case, there is an eigenvector

in X;. Therefore we get:

7(/.1,/D1+d+A)*5\ 1% —-B
det(—u/5+lC(E*)—5\/d) = A —(wDs+a+p)— X B
—uA (1—-¢)k —(wDs+p+uB) — X

The characteristic equation of —u;D + K(E*) is on the form
N +ar+ar+a=0 (4.14)

where

82:(/.L/Dl+d+A+M/D2+Oé+,O+/J./D3+,LL+UB)>0,
a1 = (wD1+d+A)(wD2+a+p+pDs+u+uB)+(uDa+oa+p) (D3 +p+uB)—(1—€)kB,
ao = (uD1 +d+ A) (D2 +a+p)(uDs +p+uB) — (D1 +d+ A)(1 — €)kB.

If a1 > 0 and aja» > ap from the above investigations, it then follows from Routh-Hurwitz criterion

that all roots of (4.14) have negative real parts and therefore we have the following result.

Theorem 4.4. If a3 > 0 and aja» > ap, then the spatially homogeneous infected equilibrium
E* = (H*, I*,V*) of the PDE-model system (2.4) is locally asymptotically stable when it exists.

4.7. Global stability of HCV-spatially homogeneous infected equilibrium. The objective of this
section is to discuss the global stability of the spatially homogeneous infected equilibrium E* for
the PDE system (2.4). We address global stability by using the method of construction of Lyapunov
functionals. These Lyapunov functional is obtained from those for differential equations by applying
the method of Hattaf and Yousfi presented in [15]. We address this study with certain assumptions
namely : v = 0 (i.e., there is no absorption effect), g = 1 et a3 = ajas. Thus we have the

following results.

Theorem 4.5. The spatially homogeneous infected equilibrium E* of PDE-model system (2.4) is
globally asymptotically stable when it exists.
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Proof. We first define the function

H %
a+p)l /
Go(H,I,V) = H—-H"— / El—n)ﬁf‘r)v* dr+1—-1"=1* In(/—*)

(1+a7)(14+axV*)
a+p \ . [V (atp)
+ m(ao+a2v ) (VV — /* (A—mBrH" ar | .
(1+C(1H*)(1+OL2T)

Then, the computation of the derivative of G, with respect to t yields :

dGy (a+p)u
(ot )/*(1+a1H)(1+a2V*) [A—dH— (1-n)BHV N /]
(1—mn)BHV* (14+a1H)(1+ V)
o (1—-nm)BHV a+p V*
[(1+a1H)(1+a ) (a+p)/] — 7(1_8)/(7[(1—5)/(/—“”.
Since
(1 —=n)BH*V* .
= /
At H) A tagvs) @+l
A =dH" +al”,
and
CR N CE I
(1—¢)k Ve
we have
dG2 _ * * v
o = [dH + al dH —al — (a+p)!I* V*]
(1 + o H)(1 + V™) [ . . (1 —n)BHV ]
_ / dH I" —dH —
(a+p) (1 —mn)BHV* to (1+o1H)(1+ anV) +
" B (14 H*)(1+o¢ V*)(a+p)!l*
/ (1+oa1H)(1+ anV) (1 ek '

%4
= [dH* + (a+p)I* —pl" —dH —al — (o + p)/*V*]

H* 1+ oa1H . H' 1+aH 14+a1H " V 1+ oaV* "
_[Wl—kalH* Wl—i—alH*a _1—|-O£1H* _Wl—i-ag\/(a—{_p)/

H* 1+ o1 H

Wl—FOllH*p:l

+(at o) [1_ H/*V(1+a1H*)(1+a2V*)] (ot (1_/\/*)

HIV*(1 + a1 H)(1 + aaV) *V
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H H* 1 H 1 H
S PR + a; n + o
H* H1l+aH* 14 aiH*

CHMV(A+aH)(1+aVe) |V 1+ ag\/*]

|1 LA
+(ato) [ H VA1 + o )1+ aaV) |V 1+ asV
v /v*)_ /*(p /)_H*1+a1H . H 14+ aiH

Flo—- 2 2 L S et Y L et L
+latp) ( VTRV a T T HITaARY T HItaR "

d(H — H*)? .
A r e @O

Vv Vv 1+Oé2\/* 1+Ot2\/
_W+W 1+052V + 1+OL2V*]

H* 1+o1H  HIFV(A+oaH) (14 aoV*) [ VF 1+ayV
H1l+a1H* HIWVQ+aH)(1+aV) [*V 1+a2V*]

+ (a+p)l* [4—

—al* (’0 + /) _ i*ﬂa/* _ Fjﬂp/ + (OL +p)/*i*ﬂ_
a I* H 14+ ai1H* H 14+ aiH* H 14+ aiH*
Therefore
dGo L d(H — H*)? B as(a+p)I*(V —V*)? o (p+l)
dt H(14+aiH*)  V*(1+oaV*)(1+anV) a I

H* 1 H HI*V (1 H*)(1 Vv | V* 1 4
+(Ol+,0)/* [4_ +ax ( + i )( + ao ) o + oo ]

H1l+aH  HIV(14+aH)(1+aV) FV  1+aV* |
We have :

. H* 14+ aiH HIFV(Q4+aH)(1+aV*) V" 14+aV
(a+ o) [4 T Hl1toaH HIV(A+aH)(A+aV) FV 1+a2\/] =
since the left side of the latter inequality is the difference between the geometric mean and the
arithmetic mean. That is % < 0. Otherwise % =0ifandonlyif H=H* I =1"etV =V*.
Thus Gz is a Lyapunov functional of the differential equation associated to the PDE-model system
(2.4). Therefore using Lyapunov-LaSalle invariance principle [27] combined to the method presented

in [15], the functional defined by
Lo() = [ Ga(t)ax
Q
is a Lyapunov functional of the PDE-model system (2.4) at the spatially homogeneous infected

equilibrium E*. Therefore E* is globally asymptotically stable. This completes the proof of Theo-
rem 4.5. U

5. NUMERICAL SIMULATIONS

In this section, we present the numerical simulations to illustrate our theoretical results. To
simplify, we consider IBVP (2.4) with Q = (1) under Neumann boundary condition
oH ol oV
e 0, e 0, e 0t>0, x (5.1

and, following initial conditions

H(x,0) =5, I(x,0)=5, V(x,0)=5, (5.2)
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and

H(x,0) =15, I(x,0)=5, V(x,0)=5.

(5.3)

Now we choose the numerical values of the parameters for the PDE-cellular model system (2.4)
as follows: A=50; d =5; p=0,01; a=0,05 Dy =D, =D3=0,1; n=0,00004; a3 =0, 03;
€=0050a,=002 k=2, 01=0,1;, u=20 00=16=0,24 et u =1 By calculation we
have Ro = 0.943361. In this case, PDE-cellular model system (2.4) has a spatially homogeneous
equilibrium Eq = (10, 0,0). Hence by Theorem 4.3 Ey is globally asymptotically stable. Numerical

simulation illustrates our result (see FIGURE 1). Otherwise we choose the numerical values of

es , H(x.H)

Healthy hepatocyt
Infected hepatocytes, 168

; .
" %, W

(b)

Froe HCV virions, V(X

FiGure 1. Simulations of IBVP (2.4) under Neumann boundary conditions (5.1) and
initial condition (5.2)

:A=050,d=5; p=0,01;
a = 0,05 Dy =Dy =D3=0,1, n =0,00004;, ¢ =05 ap =1, a1 = 0,1; ap = 0,02

a3 =0,03; k=2, u=2;6=0,24 et u = 1. By calculation we have Rg = 6.25009. In this case

(5;500; 235).
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Hence by Theorem 4.5 E* is globally asymptotically stable. Numerical simulation illustrates our
result (see FIGURE 2).

kX
L3
I
"
g
5
?
2
B
o
g
£
>
£
(]
)
I

400

Free HCV virions, V()
o

s 200
Tay .

Ficure 2. Simulations of IBVP (2.4) under Neumann boundary conditions (5.1) and
initial condition (5.3)

6. CoNcCLUSION

In this work, we addressed the dynamics of a reaction diffusion HCV intra-host infection model
with the Hattaf-Yousfi incidence rate, which is a generalized non-linear incidence rate. The object of
this work was to make a mathematical analysis of a cellular model of HCV infection which assumes
that virions diffuse into the liver, which uses the Hattaf-Yousfi functional response generalizing
most of the functional responses that exist. Our model also takes into account the absorption effect

which is much neglected in the literature. We first showed that the initial value and boundary

problem (2.4) admits a unique global solution in time. And secondly, we have shown that this

unique solution is positive and uniformly bounded. Then, we determined the expression of basic
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reproduction number R which is the parameter from which we studied the dynamics of our model
at equilibria whose existence and uniqueness of these have been previously proven. More precisely,
we have shown that, if Rg < 1, the unique uninfected equilibrium point is locally and globally
asymptotically stable. This means that, under this condition,infection disappears. Otherwise, the
uninfected equilibrium point is unstable; and in this case the infection persists in the host. It has
also been shown under the hypothesis Ry > 1, that the infected equilibrium point is locally and
globally asymptotically stable. This edifying work ended with numerical simulations, carried out
on the Mathematica software, which confirmed our theoretical results. In order to get as close as
possible to complex reality of biological phenomena, we envisage in the future, the mathematical
analysis of models taking into account cell proliferation, the delays and more generalization of the

incident rate function.

APPENDIX A. PROOF OF PROPOSITION 3.8

The proof is established by using Banach’s Fixed Point Theorem.
Choose 3 such that % < B < 1, then the injection Z : D(HP) — C% is continuous by Lemma 3.3.
For rp, > 0 and T > 0, the following closed ball is considered :

Br,(Ho. lo. Vo) = {(H.1,V) € (CE((0, T], D(HP)))* : |H — Hollg. Il = lollg. IV = Vollg < ro}.
(A1)

By Proposition 3.1, we have the local Lipschitz properties:
| F(t, Hy, 11, Vi) = F(t, Ho b, Vo)l < KillHL — Hallpgeey + Kalll — Lllpaey + K3IVE — Vall o),
1G(t, H, 11, Vi) = G(t, Ha, I, Vo)llo < KEllH1 — Hallpgeey + K3l — ballpgesy + K3 IVA — Vall ey,
1Q(t, Hy, 1, Vi) — Q(t, Ha, 2, Vo)l < K3lIHy — Hallpasy + K31l — Ll paesy + K311V — Vallpeey,
(A.2)
for t € [0,T], (H1,11,V1), (H2, I2,V) € By(Ho, lo, Vo) and Lipschitz-constants Kj’f >0, i) =

1,2,3. In addition (y1,y2,y3) € By (Ho, lo, ), define P : [0, T] — L2(R), Q : [0,T] — L2(Q)
and R : [0, T] — L?(Q) as follows

Py(t) = Gi(t)Ho + /0 Gy(t — T)F(t, ya (1), ya(7), ya(T))dT,

Qys(t)

Ga(D)lo + [0 Galt — T)G(t. ya(T), ya(T), ya(T))dT,

Rys(t) = Ga(t)Vh+ ]O Gs(t — T)Q(t, 1 (1), ya(7), ys(T))dIT.

Finally, set My = sup ||F(t,¥1(0),¥2(0),y3(0))|l2, M2 = sup ||G(t,y1(0),y2(0), y3(0))]
t€[0,7] t€[0,7]

Ms = sup [Q(t, ¥1(0),y2(0), y3(0))|l2 and choose T so that:
t€[0,T]

2,

3n
1G1(h)Ho = Hallg. [1G2(h)lo = lollg. |Ga(m)Ve = Vallg < 52, 0<h<T, (A3
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.
. . . . Iz
Cho (M + 1oK] +r0K§+roK§)/ sPds< ™ =123, (A4)
0

where C[’%Q is the constant in property 2) of Corollary 3.5 for operator A (A is zero for i = 1, 2).
Note that such T exists since G1(h), Go(h) and G3(h) converge to /d as h tends to 0T by definition

of an analytic semigroup and

1-p8

Then the proof will continue according to the following two points :

.
1
/ sPds=——nP 50 h—0" for B<1.
0

(a): it is shown that (P,Q,R) maps B, (Ho, lo, Vo) into itself,
(b): it is shown that (PQ,R) is a strict contraction on By, (Ho, lo, Vo), allowing the use of

Banach’s Fixed Point Theorem to get the existence of a unique fixed point in By, (Ho, o, V).

Let (H,1,V) € By, (Ho, lo, Vo). Then, using (A.3) and property 2) of Corollary 3.5, we have :

IPH(E) — Hollpguey = HGl(t)Ho—Ho+/otG1(t—7')}"(’r, H(’T),/(T),V(T))dTHD(Hﬁ),
< IIGl(t)Ho*Hollomﬂ)+/OtHG1(f*T)~7'"(TY H(T), 1(7), V(1) peaey AT,
< ?f)—F/()tCé’z(t—s)_B“]:(T, H(T),/(T),\/(T))H2d7',
< 20 [ ol - 92 Fr T 1. V) = F o 1. W)
+F (7, Ho. o, \/O)H2d’r,
< 34r0—|-/0tCé’2(t—s)_B(H.7:(T, H(T), 1(7), V(7)) — F(7, HO,/O,\/O)”2

+Hf(7, Ho. Io, \/o)HQ)dT,

30

IPH(®) = Hollogey < =

IN

t
+I Céz(t—s)_ﬁ(/'(%l’o+K%I’0+K%I’o+/\/]1)d7’,
0

3 t
% + Cé,z (K%ro + Kiro+ Kirg + M) / (t —s)Pdr,
0

IN

3/’0
— 40
2 +0

ro for 0<t<T,

IN

IA

and similarly
HQI(t) - /OHD(’Hﬁ) <rpand < ||R\/(t) - VOHD(Hﬁ) <.
Showing that (P, Q, R) maps By, (Ho, lo, Vo) into itself. Furthermore, from property 1) in Corol-

lary 3.5 and Lemma 3.6 we compute:

IPH(t + h) = PH(t)l[ pwe)
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HGl(t + h)Ho — Gy(t)Ho + /Hh Gi(t+h—7)F(, H(T), I(7),V(T))dT
0
- [ Gt =z . V@
_ HGl(t)Gl(h)Ho — Gi(t)Ho —|—/OtGl(h)G1(t—T)]-'(T, H(T), I1(T), V(T))dT
t+h
+/ G1(h)G1(t — T)F (7, H(T), I(T), V(T))dT

_ /Of Gi(t — T)F(T, H(T), I(T), V(T))dTH

D(HB)'

HGl(t)(Gl(h) — Id)Hy + /O (G1(h) = 1d)Gr(t = T)F (1, H(T), I(T), V(T))dT

t+h
_|_/t Gl(t—l—h—’r)f('r, H(T)v/(T)'V(T))dTHD(HB)'

The strong continuity of the semigroup and Lemma 3.6 yields
|PH(t +h) — PH(t)llpeusy — 0 as h— ot

Therefore P is continuous from [0,T] into D(#HP).

A similar Calculation shows that Q and R have the same properties and item (a) is proved.
Presently let us show that (P, Q, R) is a strict contraction on B (Ho, /o, Vo).

Let (y1,Y2,¥3), (21,22, 23) € By (Ho. lo, Vo). Then

1PyL(t) — P22 ()l pasey

-/ Gi(t =) (F(ra(r).ya(m),3a(r) - Fr a(r), 22(r), 25(r)) ) | |

< [[[oitt =D (FEA@. 0500 Fr. 1), 2. 2570 ) |

D(HP)
t
< /o Cho(t— T)_BH]:(T, yi(7), y2(7), y3(7)) = F(T, 21(T), 22(T), Z3(T))H2d7—'
t
< /O Cholt— T)*ﬁ(KllHyl — 2zl paey + K2lly2 = 22l peaesy + K3 llys — Z3||D(Hﬁ>)dT'

< C,é,g(Kll sup Iy — zillpeusy + K3 sup_ly2 — 22l paes)
T€[0,t] T€[0,t]

t
+ K s s~ zloge) [ (t-) P
T€[0,t] 0

That is :

1Pya(t) — P2a(t) | pase)
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My
< Goo(Kie K+ k3w TE)( sup b = 2ilogey + s [l = Zlloge)
T€|0,t

T sup Ilys — zsllopeey / (t - 1) Bdr,
T€[0,t]

< (3w = zillogey + sup vz = zlloge) + sup s = zloge)
T€[0
Cho K+ K+ K4 M Fd
XCpo| A1+ Ko+ 3+K Os s,

< ( sup [ly1 — z1ll pzeey + Sl[JP 2 = 2ol peasy + SI[JP ||Y3—Zs||D(Hﬁ))

T€[O,t]

.
er)CéQ (oK1 + roK3 + roK3 + M) /o s Pds,

1 o

< ( sup i = ailope) + w0 vz = 2zllogwy + sup s = 2lloge) o %
Teo.t relo. Te.t oo 4

1
< Z( sup ||yl—21||D(Hﬁ)+ sup. ||J/2—22||D () +_Sup. ||J/3—23||D(Hﬁ))
T€[0,t] T€E0,t Tel0,t

for every t € [0, T]. Hence

1
sup [|Py1(t) — Pzi(t)llpasy < Z( sup. ||y1*21\|o(yﬂ)+ sup \|Y2*22||D(Hﬁ)+ sup ||Y3*Z3||D(Hﬁ))
te[0,7] T€[0,t T€[0,t T€[0,t
Similarly
1
sup [|Qyi(t) — Qz1(t)llpeuey < Z( SUD HJ/1_21||D(7-Lﬁ)+ SUD ||Y2_Z2||D(H5)+ SUD ||Y3_Z3HD(”H5))
te[0,T] T€(o, T€(0, T€|[0,
and
1
sup ||RJ/1(t) Rzi(t)llpaey < Z( sup [Iy1 — z1llpeuey + sup. H)/2_22||D(H5)+ sup. ||Y3—Z3||D(HB))
tel0,T T€[0,1] T€lo, T€[o,
Thus
S[UD (P, Q. R)(y1(t), y2(t), ¥3(1)) — (P, Q. R)(21(t), 22(t), z3(t))l| p (383
te[0,T
< Sl[JD] (HP)/:L — Pzi|[paey + |Qyv2 — Q22| pey + [|Ryz — RZ3HD(H5)),
T€([0,t
< sup [[Py1— Pzallpgsy + sup [|Qy2 — Qzallpsy + sup [[Ryz — Rzsllpeus).
T€[0,t] T€[0,t] T€[0,t]
3
< Z( SL[JD 1 — z1ll ey + SL[JP lv2 = 22/l paey + SL[JD lys — z3llp HB))
T€[0

< 3 sup 0A(). %2(8). y5(8)) = (21(8). 228). 25(D) oy
t€[0,T]

Hence (P, Q, R) is a strict contraction on By ,(Ho, lo, Vo) and this proves Part b). According to
Banach’s Fixed Point Theorem, (P,Q,R) has a unique fixed point in B, (Ho, lo, Vo). This is the
solution of (2.4) on [0,T] with initial value (H(0),/(0),V(0)) = (Ho, lo, Vo) in (D(HP))3. This

completes the proof of Proposition 3.8.
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APPENDIX B. PROOF OF THEOREM 3.11

We first prove the existence and positivity of the solution. From Theorem 3.10, there exist a

sequence (w/") and a function w; such that
w" — w; in Co([0, T], H),

with w; > 0 and w;(0) = wp;.
We check that

g(w™h = gi(w) and g;(w™ Hw™ — gi(w)w; in CO([0, T], H).

We also have
fi(w™ ) = fi(w) in CO([0, T], %) (| L>((0.T), E").

But, w/" is solution of

m

(%0 ) + (Ao + (alwm e ) = (wm ), e @)

We take ¢ € D((0, 7)), such that ¢v; € L2((0,T), E),
-
(q,—(wm_l)w,-’”,dw,-) dt:/ <f,‘(Wm_1),d)V,'>dt.
0

/OT <a;/£m,¢v,->dt+/oT <A,-W,-'",d>v,->dt+[OT
(B.2)

The second term in the left side and the right side of the equality (B.2) converges due to the weak

convergence in L2((0,T), E'). The third term in the left-hand side of (B.2) also converges, due to

the convergence in C([0, T], H). We deduce that ag/gm converges weakly in L2((0,T), E').

But we have
w™ — w; in CO([0, T], H).

Then

ow™  Ow;

ot ot

in D'((0,T),H)

Therefore, we obtain
owm  ow; R y
T — 5t weakly in L=((0,T), E"),

and

/()T<%V;i,¢v/>dt+/()T <A,'W,-,q§v,'>dt+/o

This being true for all ¢, one has

T

(q/(w)wi,¢v,)Hdt_/()T<ﬁ(w),¢v/>dt. (B.3)

<% v,'> + <A,'W,', v,-> + (q,(vv)w,-, v,-)H = <f,-(W), v,->, Yv; € E.
That is to say,
d
(Wi vidu + a(w;, vi) + (CI/(W)W/, V/)H = <f/(W)y v,->, Vv € E, (B.4)
M~ i) — A — q(ww; i L2((0,T), EY) (85)
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According to (3.27) and (3.28) we have

W = Glowe+ [ 6t = ) (—a (W™D W + f(wmY))(s)ds,

| 34 |

(B.6)

and in addition, as q;(w™ 1)w/™ and f;(w™ 1) converge in C°([0, T],H) and the operator G

defined by the relation (3.29), is compact, using the limit in (B.6) one has,

W) = Gi(ower+ | Gt — $)(—ar(w)w + F(w))(s)ds.

It remains to prove uniqueness.
Let v be another solution of IBVP (3.21). Then

vi e W(0, T, E,E"Y = v, € C°([0, T],H) and v; > 0.

Consequently we obtain
ai(v)vi + fi(v) € L>((0,T), E").
Thus, by Proposition 2.11 of [12], one has
W) = Glomo+ [ Gt~ -l + H)()s.
0
Subtracting, we have
w(®) = w(®) = [ Gl =9)( = (@wpmw — a(vu) + (f(w) - 1) (5)ds,
0
with
a(w)wi —qi(v)vi = qi(w)w; — qi(w)vi + qi(w)vi — gi(v)vj,
= q(w)(wi —vi) + (gi(w) — qgi(v))v;.

Since w; is positive, one has

Y < 2wl
oo + 1wk + cowj +agwew; || — KT
where
IWilloo = Wl Lo (0,7),20)-
If we define

3
Wlloo =Y IWjllcos
j=1

there is My > 0 such that

lag(W)lloo < Mal[Wjlloo-

(B.7)

(B.8)
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So, for r = 1,2, 3, the numerator of g,(w) — g,(v) is the sum of terms of the form (wy — vx)v; or

(wj — vj)wg, and we can find M, > 0 such that

|ar(w) = a,(v) <M2(Z|WJ — (s |H)

Also we can find M3 > 0 such that
3

(W) = ()]5y(5) < Ms (3 1wy(5) = (5l )
j=1
Summing up |w;(s) — vj(s)|3 and noting that ||G;(t — s)|| < N;e%T with N;, §; > 0, we can find
M > 0 such that

3
> Iwi(s) = vi(s)la < Mllw = V] co.
j=1

Replacing in (B.8), we obtain
3 t
S 1wi(s) = ()l < MP|w — v||oo/0 sds = M S w = vl
Jj=1

By induction, we have

3 Mn
> 1wi(s) = () < —F T [w = V],
J=1 '
with
n

M
lim —T"[|w = v]|oo =
im — T w = v = 0.

Therefore w = v. This ends the proof of Theorem 3.11.
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