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ABSTRACT. We propose a three-step iteration scheme of hybrid mixed-type for three total asymptoti-
cally nonexpansive self mappings and three total asymptotically nonexpansive nonself mappings. In
addition, we establish some weak convergence theorems of the scheme to the common fixed point of
the mappings in uniformly convex Banach spaces. Our results extend and generalize numerous results

currently in literature.

1. INTRODUCTION

Let K be a nonempty subset of a real Banach space E. Let T : K — K be a nonlinear mapping,
we denote the set of all fixed points of T by F(T). The set of common fixed points of six mappings
51,52, 53, T1, To and T3 will be denoted by F = ﬂ?:l(l-_(T,-) NF(S))).

Definition 1.1. A mapping T : K — K is said to asymptotically nonexpansive [6] if there exists

a sequence {kn} in [1,00) with lim,_ k, = 1 such that

IT"() = T"W)l < knllx = yll.¥x,y €N (1.1)
. In 1972, the class of asymptotically nonexpansive mapping was introduced by Goebel and Kirk [6].
They proved that if K is a nonempty closed convex subset of a uniformly convex Banach space and
Tis an asymptotically nonexpansive mapping of K, then T has a fixed point.
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Definition 1.2. A mapping T is said to be total asymptotically nonexpansive [1] if
IT"() =TI < lIx = Il + pad(llx = 1) + va, ¥,y € K, ¥n €N, (1.2)

where {un}and {v,} are nonnegative real sequences such that u, — 0 and v, — 0 as n — oo

and ¢ is a strictly increasing continuous function ¢ : [0, c0) — [0, c0) with ¢(0) = 0.

From the above definitions, we see that the class of total asymptotically nonexpansive mappings
includes the class of asymptotically nonexpansive mapping as a special case; see [4] for more
details. Each asymptotically nonexpansive mapping is total asymptotically nonexpansive mapping
with v, =0, up =k, —1 foralln>1,¢(t)=t,t>0.

Definition 1.3. A subset K of a Banach space E is said to be a retract of E if there exists a
continuous mapping P : E — K (called retraction) such that P(x) = x for all x € K. If in
addition P is nonexpansive, then P is said to be nonexpansive retraction of E. If P . E — K is
a retraction, then P2 = P. A retract of a Hausdorff space must be a closed subset. Every closed

convex subset of a uniformly convex Banach space is a retract.
In 2012, Yolacan and Kiziltune [18] defined the following:

Definition 1.4. Let K be a nonempty and closed convex subset of a Banach space E. A nonself
mapping T : K — E is said to be total asymptotically nonexpansive mapping if there exist
sequences k,gl) and k,(,2) in [0, 00) with k,gl) — 0 and k,(,2) — 0 as n — oo and a strictly increasing
function ¢ : [0, 00) — [0, 00) with ¢$(0) = 0 such that

IT(PT)"1(x) = T(PT)" X (W)|l < lIx = yll + klyd(llx = vI) + K52, ¥x,y € K.n €N (1.3)
Chidume et al. [3] studied the following iterative scheme in 2004:

x1 = x€eK
Xpp1 = P(oaT(PT)" 'xa+ (1 — ap)xa), n > 1, (1.4)
where {a,} is a sequence in (0,1), K is a nonempty closed convex subset of of a real uniformly
convex Banach space E, P is a nonexpansive retraction of £ onto K, and proved some strong and
weak convergence theorems for asymptotically nonexpansive nonself mappings in the intermediate

sense in the framework of uniformly convex Banach spaces.

ln 2006, Wang [17] generalised the iteration process (1.4) as follows:
x1 = X€eK,
Xne1 = P(1—an)xp+a,Ti(PT1)" ty,),
Yo = P((1=Bn)xn+BnT2(PT2)" 'xa). n > 1, (15)
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where T1, To : K — E are two asymptotically nonexpansive nonself mappings, {a,} and {B8,} are
real sequences in [0, 1), and proved some weak and strong convergence theorems for asymptotically
nonexpansive nonself mappings.

ln 2012, Guo et al [8] generalised the iteration process (1.5) as follows:

x1 = Xx€K,
Xnp1 = P(1=0an)Sixp+ anT1(PT1)" yn),
Yo = P((1=Bn)S5xn+BaT2(PT2)" xa), n > 1, (1.6)

where T, To : K — E are two asymptotically nonexpansive nonself mappings, S1,S> : K — E
are two asymptotically nonexpansive self mappings and {a,}, {8} are real sequences in [0, 1),
and proved some strong and weak convergence theorems for mixed-type asymptotically nonexpan-

sive mappings.

Hybrid Mixed-Type Iteration Scheme

Let E be a real uniformly convex Banach space, K a nonempty closed convex subset of £ and
P : E — K a nonexpansive retraction of £ onto K. Let S1,55,53 : K — K be three total
asymptotically nonexpansive self mappings and 71, 7o, T3 : K — E be three total asymptoti-
cally nonexpansive nonself mappings. Then, the hybrid iteration scheme for the above mentioned

mappings is as follows:

x1 =X € K;
Xnr1 = P((1 = an)SPxp + anT1(PT1)" " Lyn);
Yo = P((1 = Bn)S8xn + BnT2(PT2)" " 25);

| 20 = P((1 = 70) S35 + Y0 T3(PT3)" 1 xn),

where {a,}, {B,}, and {v,} are real sequences in [0, 1).
The aim of this paper is to study this new hybrid mixed-type iteration scheme (1.7), prove demi-
closedness principle for total asymptotically nonexpansive nonself map and establish some conver-

gence theorems for mixed-type mappings in the setting of uniformly convex Banach spaces.

2. PRELIMINARY

For the sake of convenience, we restate the following concepts and results:
Let E be a Banach space with its dimension greater than or equal to 2. The modulus of convexity
of E is a function 6g(¢) : (0,2] — (0, 2] defined by

. 1
0e(e) =inf{l — 5+ )l = lIxl =1yl = 1.e = [Ix = v}
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A Banach space E is uniformly convex if and if dg(¢) > 0, for all € € (0, 2].
We recall the following:

Definition 2.1. (see [19]: Let o = {x € E : ||x|| = 1} and let E* be the dual of E. The space E

Ix+tyl=lixIl
o0 t

has Gateaux differentiable norm if lim,_, exists Vx,y € p.

Definition 2.2. (see [19]: The space E has Frechet differentiable norm [15] if for each x € o, the
limit of the norm above exists and is attained uniformly for all y € g, and in this case, it is also

well known that

(h, S} + 31 < Sllx+ A2 < ¢h, J00) + 2 xI + b1, 21)

N -

Vx,y € E, where J is the Frechet derivative of the functional %H |2 at x € E, {-) is the pairing

between E and E* and b is an increasing function defined on [0, o0) such that lim¢_ oo @ =0.

Definition 2.3. : The space E has Opial condition [10] if for any sequence {x,} in E, x, converges

to x weakly, then it follows that limsup,_ . |[X» — x|| < limsup,_o |Xn — ¥|| for all y € E with

X # .

Examples of Banach spaces satisfying Opial conditions are Hilbert spaces and all spaces /P(1 <

p < 00). On the other hand, LP[0, 7] with 1 < p # 2 fails to satify Opial condition.

Definition 2.4. : A mapping T : K — K is said to be demiclosed at 0, if for any sequence {x,}
in K, the condition that x, converges weakly to x € K and T x, converges strongly to 0 implies
Tx=0.

Definition 2.5. : A Banach space has the Kadec-Klec property [14] if for every sequence x, in

E, x, — x weakly and ||x,|| — ||x]|, then it follows that ||x, — x|| — O.

Next, we state the following useful lemmas which will be needed in order to prove our main

results.

Lemma 2.1. (see [10]): Let {a,}72. {Bn}oey and {vn}52, be sequences of nonnegative numbers
satisfying the inequality:
opt1 < (1+Bn)an+vnVn> 1. (2.2)

IFY 521 Bn < oo and Y 02 yn < oo, then

(1) limpseo 0ty exists
(2) In particular, if {o,}72, has a subsequence which converges strongly to 0, then

iMoo ap = 0.
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Lemma 2.2. (see [14]): Let E be a uniformly convex Banach space and 0 < p < t, < g < 1 for
each n > 1. Suppose that {x,} and {y,} are sequences in E such that

limsup ||xp]] < rlimsup|lyall < rand lim |[tpx, + (1 — t))yall =1, (2.3)
n—00 n—o00

n—oo

hold for some r > 0. Then lim,_ || Xn — ya|| = O.

Lemma 2.3. (see [14]): Let E be a real reflexive Banach space such that its dual E* has the
Kadec-Klec property. Let {x,} be a bounded sequence in E and p, q € w,(xn) ( where wy(xn)
denotes the set of all weak subsequential limits of {x,}). Suppose lim,_ ||tx, + (1 — t)p — q||
exists for all t € [0,1]. Then, p = q.

Lemma 2.4. (see [14]): Let K be a nonempty convex subset of a uniformly convex Banach space E.
Then, there exists a strictly incraesing continous convex function ¢ : [0, oo) — [0, 00) with ¢(0) =0

such that for each Lipshitizian mapping T : C — C with the Lipschiz constant L,
_ 1
167X = (1 = )Ty = T(tx = (1 = Ol < L™ (Ix =yl = ZIITx = Tyll) (2.4)
for all x,y € K and for all t € [0.1].

Lemma 2.5. (see[Z]) Let E be a uniformly convex Banach space, K a nonempty bounded close convex
subset of E. Then, there exists a strictly increasing continous convex function ¢ : [0, c0) — [0, o)
with ¢(0) = 0 such that for any Lipschitizian mapping T : K — E with Lipschitz constant L > 1

n

and elements {xp}/_; in K and any nonnegative numbers {t;}/_; with Zle tj = 1, the following

inequality holds:

n n
ITQ_tix) =D 6Tl < Lo~ {maxigksn(llg — xcll = LM T — Txil)}
j=1 j=1

Lemma 2.6. (see [Z1]) If the sequence {x,}72, converges weakly to x, then there exists a sequence
of convex combination y; = Zzg)l Ag)xkﬂ, Af(j) >0 and Zz(i)l AV = 1, such that ||y; — x| — 0.

as n — oQ.

3. MaIN ResuLTts

Lemma 3.1. ( Demiclosedness Principle for Nonself Total Asymptotically Nonexpansive
Maps ) Let K be a nonempty closed convex and bounded subset of a uniformly convex Banach space
E and T : K — E be L-Lipschitz continuous and total asymptotically nonexpansive mapping with
the function ¢ : [0, c0) — [0, 00) (such that ¢(0) = 0) and nonnegative sequences {k,gl)}, {k,g2)}
such that k,gl), k,(,2) — 0 as n— oco. Then, | — T is demiclosed at 0.

Proof. Let {x,} converge weakly to w € K and {x, — T x,} converge strongly to 0. We prove that
(I = T)w = 0. Clearly, {x»} is bounded. So, there exists p > 0 such that {x,} C C = K N B,(0),

where E(O) is a closed ball in E with centre 0 and radius p. Thus, C is nonempty, closed ,



Eur. J. Math. Anal. 1 (2021)

bounded and convex subset in K.
Claim: T(PT)" 'w — w as n — oo. In fact, since {x,} converges weakly to w, by Lemma

6(see [21]), we have for all n > 1, there exists a convex combination

m(n) m(n)
- Z t,-(n)x,-+,7, t,-(”) > 0 and Z t,-(”) =1 such that |y, —w| — 0 as n — oo. (3.1)
i=1 i=1

Also, since {x, — T x,} converges to 0, then for any € > 0 and a positive integer m > 1, there exists
N1 = N(€) > 0 such that

€ Vn> M. (3.2)

=T < '
1= Tl < g n >

Hence, ¥n > Ni, using Definition 1.4 and the fact that P is nonexpansive , we have the following
estimates:

For arbitrary but fixed j > 1, we have

%0 = T(PT)I x|l < ([ = T)xall + (T = T(PT))xall

HI(T(PT) = T(PT)?)xall

HI(T(PT)? = T(PT)*)xall

+e  [(TPTY 2 = T(PTY ™ ))x|

(1= T)xall + (I = T)xall + wESUI (T = Txall)
+E) + (10 = Txall + P = Thxall) + €5)
+(I0 = Txall + 520 = Txal)) +€5)

e (0= T)xall + 1Y Do = Txall) +€57Y)

IN

m—1 m—1 )
= U =T)xall + >0 =T)xall + Y_ (I = T)xall)

j=1 j=1
m-1
+y &Y
j=1
< mllxp = Txnll + muad(([(1 = T)xall) + mép, (3.3)

where u, = maxq<jem 1 {pd’} and &, = maxg<jem 1 {9},
From (3.2) and (3.3), we get

l[xn — T(PTY " 1x,|| < €. (3.4)
Now, since T : K — E is L-Lipschitizian and total asymptotically nonexpansive ,sois T : C —

E. Therefore, Vj > 1, T(PTY™! : C — E is Lipschitizian mapping with the Lipschitz constant
wj > 1
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ER

In addition,

IT(PTY v =yl =

m(n)

=2 il
i=1

IN

m(n)

m(n) m(n)

i=1 =1

m(n)

IT(PTY y = >t T(PTY x|

=1

+ 2 5V ITPTY M xin = Xl

i=1

Using (3.4), we get

m(n)

St T (PTY Xin — Xisall < €0 > N.

=1

ITPTY Yy — Y tOT(PTY xiin+ Y tT(PTY xi,

(3.6)

Furthermore, by Lemma 2.5, there exists a strictly increasing continous function ¢ : [0, 00) —
[0, 00) with ¢(0) = O such that for all n > N, we have

m(n)
IT(PTY tyn = Y T (PTY x|
=1

IA

IN

IN

IN

IN

m(n) m(n)

ITCRTY R 6%40) = 3 " T(PTY il

i=1 =1

i~ H{maxi<jk<n(([Xien — Xitl

— T (PTY 0 = T(PTY i)}
o~ H{maxicjk<n([IXi4n — T(PT) ' xi4n
+T(PT)? X — T(PT) it
+T(PT) Y xetn — Xkl

— T (PT) i = T(PTY xciall)}
i~ {maxi<jk<n(1Xien — T(PT) " x|
HIT(PT) X = TOPT) il
+IT(PT) Y Xusn — Xitkl|

— T (PT) 0 = T(PTY xcill)}
wid {maxi<jk<n(e + e+ (1 - ;)
XIT(PT) ™ xisn = T(PT) ™ Xerall)}
¢ {maxigikzn(e + €+ (1 —

X |IXig-n — Xk4nll}

¢~ {maxigjk<n(e + €+ (1 - Huy

X(Ixienll + Xl
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Thus,

m(n)
IT(PTY yn = 3t T(PTY Dxpnll < pjd e+ € +2r(1 — i uy), (37)
i=1
since Xj1p and Xk, are both in C.
Also, (3.5), (3.6) and (3.7) imply that

IT(PTY o — yull < s~ (e + €+ 2r(1 — M) (3.8)
Taking limsup,_,o, on both sides of (3.8) and noting that € > 0 is arbitrary, we have that

lim sup IT(PTY  yn — yull < i~ (2r(1 = p; )uy). (3.9)
On the other hand, for any j > 1, it follows from (3.1) that

IT(PTY 'w—wl| < |T(PTY tw—T(PTY yull + IT(PTY yn — yull + llyn — wl|

A

< willyn = wll +ITPTY yn = yall + llyn — wll. (3.10)

Taking limsup,_,o, on both sides of the above inequality and using (3.1) and (3.9), we have
IT(PTY 'w — wl < pjd™ " (2r(1 — ;M)

Again, taking limsup;_,., on both sides of the above inequality, we have

limsup | T(PTY " 'w —w| < ¢~1(0) =0,

J—00
which implies that | T(PT Y 'w — w|| — 0 as j — oo, and hence proving our claim. By continuity
of TP, we have that

lim TP(T(PTY 'w) =TPw=Tw = w.
J—oo

This completes the proof. O

Lemma 3.2. Let E be a uniformly convex Banach space and K a nonempty closed convex subset
of E. Let 51,55,53 : K — K be three total asymptotically nonexpansive self mapping with
sequences {k,(,l)}, {k,g2)}, {k,(,3)} € [1, 00),

{W,Sl)}, {w@n, {W,S3)} €[1,00) and T1, T2, T3 : K — E are three total asymptotically nonex-
pansive nonself mappings with sequences {ugl)}, {;LSF)}, {u$73)} €1, ), {u,gl)}, {1/,(72)},

{1/,(73)} € [1,00). Let {x, be the sequence defined by (1.7), where {a,} and {B,} are real
sequences € [0,1). Suppose F = (F(T;) N F(S;)) # 0. If the following conditions hold:

LY 00 kS <00, Y kP <o, 00 k) <00, 00 ) <00, 300wl < o0,

Z?1M573)<00 X1 (1)<00 Y <o ) < oo,
it. There exists a constant M > 0 such thatV(t) = ¢(t) < Mt,t <O0.

Then, lim, [|Xn — q| and limpso d(x, — F)both exist for all g € F.
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Proof. Set h, = max(k{™, k$2, k&, u$P, u?, 1), M = max(My, Mo, M3, My, Ms, Mg) and 6, =

max(l/,(,l),

1/,(,2), v

(3),w,(71),w,(72),wf73)). Then, Y 2, hy < occand ) 2,0, <oco. Foranyqe F, it

follows from (3.1) that

1zn = 4l

Nl

IN

INIA

IN

P((1 — Bn) S5 + BnT3(PT3)"x,) — P(q)l|

(1 — B)S5xn + BaTs(PTH  xa — dll

(1 = Bn)S5xn + Bnd — g — Bna + BnT3(PT3)" x|

11 = Ba) S5 — (1 = B)a + Ba(T3(PT3)"1xy — q)|

11 = B) (S5xn — @) + Ba(T3(PT3)"1x, — 9 (3.11)
(1= B)lIS5x0 — all + Ball T (PT3)"2x, — gl

(1= Bu)lllxn — all + kDU (lx0 — qll) + wiT + Bulllxn — all + & éllx, — all)
+ui)

(1= B)lIxn — all + (1 = Ba) W (1% — all) + (1 = Bn)bn + Ballxa — 4l

+Bnhn® (I — qll) + Brbn

(1= Bn)(1 + haMs) X — qll +Ba(1 + haMe) X — qll + s

(1= Ba)(L+ haM) X0 — qll + Ba(L + haM)llx, — qll + 65

(1 + haM) X0 — gl + 6. (3.12)

Also, form (1.7), we get

lyn — qll

IA

IN

IN

IN

[P((1 — Bn)S8xn + BaT2(PT2)" " 2,) — P(q)]

11 = Bn) S8xn + B T2(PT2)" x, — gl

(1 = Bn)SExn + Bnq — g — Bnd + BnT2(PT2)" Lz,

(1 — Bn) 8% — (1 = Ba)a + Ba(T2(PT2)" 12, — q)| (3.13)
11 = Bn)(S8x0 — @) + Ba(T2(PT2)" " zy — q)|

(1= Bn)IS5x — all + Ball T2(PT2)" 2, — |

(1= Ba)lllxn — all + K7W (lx0 — all) + wi?) + Bulllzn — all + P é(llxn — all)
+u)

(1= Bn)llxn — all + (1 = Ba)haW(llxa — qll) + (1 = Bn)Bn + Ballxa — gl
+Bnhnd(1|zn — qll) + Bnba

(1 =Bn)(1+ haM3)|Ixn — qll + Bn(1 + haMa)l|z, — qll + 6,

(1= Ba)(1 + haM)|Ixn — qll + Ba(L + haM)||zo — ql| + 6. (3.14)
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Putting (3.12) into (3.14), we have

lyn—all < (1 =Bn)(1+ haM)llxa — qll + Bn(L + haM)[(1 + hnM) X0 — ql| + 04] + 6n
= (1+haM)[(1 = Bn)lIxa = all + Ba((1 + haM)Ixs — ql| + 6,)] + 65
= (14 haM)(1 = Bn +Bn +BahaM))|Ixa — qll +604)] + 65
< (I + haM)[1+ hyM))|Ixa — qll + 6)] + 6

= (14 haM)?||x, — qll + (2 + haM)6,,. (3.15)

Again, using (1.7), we have

IXn41 —all =

IN

IN

IN

IN

<

IP((1 — @) SPxa + anTi(PTL)" 1yy) — P(q)

1(1 = 0p)STxs + anT1(PT1)" Ly — g

(1 = ) S{xn + G — @ — anq + anT1(PT1)" Ly, ||

(1 = 0tn)SPxn — (1 — an)q + on(TL(PT1)" tyn — q)|

(1 — an)(S5x0 — @) + an(T2(PTL)" Lyn — )| (3.16)
(1 - an) ISP — qll + el TL(PTL)" ty, — g

(1 = an)llxn — all + kSOW (30 — gll) + wi] + nlllyn — ll

+uD oy — all) + v

(1= )l — all + (1 = an) W (lIx0 — qll) + (1 = )8 + nllyn — ql
+anhnd(llyn — qll) + cnb

(1= an)(X + haM1)lIxn = qll + an(1 + haM2)|lyn — qll + 6n

(1= an)(1+ hM)[x0 — qll + (1 + haM)|lyn — qll + 6. (3.17)

Putting (3.15) into (3.17), we obtain

Ixn+1 —all <

<

(1= an)(L+ haM) Xy = qll + an(1+ haM)[(1 + hyM)?[|x, — gl
+(2 4+ hyM)6,] + 6,]

(1+ haM)Ixn = qll = cta(1 4 haM)|Ixa — qll + (L + haM)?||x, — gl
+an(1+ haM)(2 + haM)6, + 6,

[1+ (34 3h,M + h2M?)hyM]|Ixn — ql| + [1 + (1 + haM)(2 4 h,M]8,

(1+0n)lIxn — qll + pn. (3.18)

where 6, = 1+ (3+3h,M+ h2M?)h,M and p, = [1+ (1+h,M)(2+ h,M]6,. Since Y °° . 6, < oo

n=1

and ) 77, pp < o0, it follows from lemma 2.1 that limp_o [[Xn — || exists.
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Now taking the infimum over all g € F in (3.18), we get
d(Xp+1, F) < (14 6,)d(xn, F) + pn, Vn € N. (3.19)

Again, since Y 720, < oo and Y 7, p, < oo, it follows from lemma 2.1 and (3.19) that

limp— 00 d(Xn, F) exists. This completes the proof. O

Lemma 3.3. Let E be a uniformly convex Banach space and K a nonempty closed convex subset
of E. Let 51,55,53 : K — K be three total asymptotically nonexpansive self mapping with
sequences {ki'}, {ki”'}, (ki) € [1,00), {ws"}, (@, {w;?} € [1, 00)

and T1, T2, T3 : K — E are three total asymptotically nonexpansive nonself mappings with se-
quences {u$P}, {uP}, ()} € [1,00), (WS}, (v}, (v} € [1, 00). Let {xn} be the sequence
defined by (1.7), where {ap} and {3} are real sequences € [0, 1). Suppose F = (F(T;)NF(S;)) #
(). If the following conditions hold:

Y2 kY <00, Y kP <00, Y kP < oo, 00wl <00, 02w < oo,
Z‘Z‘)lu(f) <00, ) 1’/1(11) <00,y 2 1Vr(72) <00,y 1’//(73) < 0,
W x=Ti(PT1)" Tyl < IISTx=Ta(PT1)" |, [Ix=T2(PT2)" ty|l < |IS8x=T2(PT2)" 1y |l,
Ix = T3(PT3)"tyll < [1S5x = T3(PT3)" "yl
iii. There exists a constant My, My > 0 such that W(t) < Mit, ¢(t) < Mat, t > 0.

Then, limuso [[Xn — Sixall = 0 and limpe ||Xn — Tixnl| =0, for i = 1,2,, 3.

Proof Set hy, = max(k{Y, k8, k$& 1l 182 1), M = max(My, Mo, Ms, Ma, Ms, Mg) and 6,, =
max(Vp (1) (2), u,(73),w,(71),w,(72),wf73)). Then, > 22, h, <ooand ) 72,6, < oco. for any given g € F,
limnoo [|Xn — q|| exists by lemma 3.2. Now, assume that lim, [|x, — q|| = c. it follows from (3.15),
(3.16) and the fact that ) 2, h, < oo and ) ;2 6, < oo that

im [[(1 = ) (Sx0 — @) + anTa(PTL)™ Ly — )l = . (3.20)
Also, we have
1S0x0 — all < % — all + kKSPW(Ix, — all) + w
< lxn — gl + kKM — gll) + Wi
< (14 kPM)x - gl + Wi
< (14 haM)||Ixn — qll + 65
= limsup [|STx, — qll < limsup[(1+ h,M)||x, — q|| + 6,] = c. (3.21)
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Furthermore,

I T1(PT1)yn — ql|

IN

IN

<

Iyo = all + w8 dlyn — all) + 5

Iyn — all + w$P My, — ql) + o5
(1 + u M)y — gl + 8V

(L + haM)llyn — qll + 65

Taking limsup on both sides of (3.15), we obtain

limsup ||y, — ql| < c and so limsup || T1(PT1)yn — gl < limsup[(1+ h,M)|ly,— ql| +65] < c. Thus,

limsup [|T1(PT1)yn — qll <limsup[(1+ hyM)|ly, — gl +6,] = c.

Using lemma 2.2, we get

lim Hsfxn - Tl(PTl)n_l)/nH =0.
n—00

By condition (ii), it follows that

1% = TL(PT1)"  yall < 115750 — To(PT1)" yall,

and so from (3.23), we have

lim |lx, — Tl(PTl)n_IYnH =0.
n—00

Also, we have

152%0 — gl

= limsup [|S5x, — q||
Furthermore,

I T2(PT2)z, — 4|

IN AN IN A

IN

ININ A

IN

Ixo = all + kS2W (130 — qll) + wi?
Ixo — qll + k5 M|xa — qll) + w
(1+ kM) 30 — gl + w

(1+ haM)lxn — qll + 6,

limsup[(1 + haM)|[xn — gl + 64] = c.

1z, — all + 6P e(llz0 — qll) + v§?
1zo — all + wP M|z, — qll) + v
(14 P M)z — gl + v

(1+ haM)|zo — ql| + 6,

(3.22)

(3.23)

(3.24)

(3.25)
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Taking limsup on both sides of (3.12), we obtain limsup,_,« |[|zn — q|| < ¢ and so
limsup || T2(PT1)zy — gl < limsup[(1 + haM)l|z, — Il + 6n] < c. (3.26)
(3.13), (3.25), (3.26) and lemma 2.2 imply
Tim (|8, — Ta(PT2)" "z, = 0. (3.27)
(3.27) and condition (ii) yields
Jim [, — To(PT2)" 2|l = 0. (3.28)

From (3.11), using the same argument as was used in obtaining (3.27) above, we get

lim S5, — T3(PT3)" x| = 0. (3.29)
n—oo

Now, we prove that

lim ||x, — Tl(PTl)nilan = lim [[x, — T2(PT2)n71Xn|| lim [|x, — T3(PT3)”71X,7|| =0.
n—oo n—00 n—»00

Indeed, since [x, — T3(PT3)" 1xp|| < [|S5xn — T3(PT3)" 1x,
(3.29) that

, (by condition (ii)), it follows from

lim_{|x, — T3(PT3)" " x,| = 0. (3.30)

n

Since, P(5"x,) = S"x, and P : E — K is a nonexpansive retraction of £ onto K, we get
lz0 = SPxall = [P((1 = 70)SPx0 + ¥ T3(PT)" Lxa) — Sixal
< (= ¥0) S50 + Y T3(PT3)" x5 — S5xa
= [ =7(S5x — ¥ T3(PT3)" 'x0) |
= Yl (S5x0 = VaT3(PT3)" " x0)l,

which by (3.29) gives
Jim {|zn = S3x[| = 0. (3.31)

Observe that

lzn —xall = |lzn — S5xn + S5xn — T3(PT3)" " tx, + T3(PT3)" 1x, — x,||

IN

120 — S5xall + [1S5x0 — Ta(PT3)" x|
HT3(PT3)" 'x0 — xall. (3.32)
Thus, it follows from (3.29), (3.30),(3.31) and (3.32) that

lim ||z, — xa|| = 0. (3.33)
n—oo
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Again, observe that
1S5x0 — To(PT2)" Pxall < [1S9x0 — T2(PT2) "zl + I To(PT2)" 2y — To(PT2)"  xy||
158x0 — T2(PT2)" " zall + (|20 — xall + k(|20 — xall) + 05

IN

IN

1S5x0 = To(PT2)"* 2ol + 120 = Xall + Mhn(l| 25 = Xall) + 65
= [1S3x0 = Ta(PT2)" " zl| + (1 + Mhy) |20 — Xnl| + 6n. (3:34)
From (3.27),(3.33), (3.34) and the fact that }_72; 6, < oo, we get
Jim [ S9x0 — To(PT2)"  xal = 0. (3.35)
Since ||x, — T2(PT2)" " 1x,|| < [1S5xn — T2(PT2)""1x,]| (by condition (ii), it follows from (3.35) that
imx — T2(PT2)" " 1x,|| = 0. (3.36)

Also, since P(S"x,) = S"x, and P : E — K is a nonexpansive retraction of £ onto K, we get

IP((1 = Bn)S8xn + BnT2(PT2)"" 27) — S5xall
< (1 = Bn)S5xn + BaT2(PT2)" ' 2y — S5xql|

= || = Bn(S8xa — B T2(PT2)" " 2y)||

= Ball(S5xn — BaT2(PT2)" ' 23).

1Y — Saxal

which by (3.27) gives
1im |y, — S5x ]| = 0. (337)

Moreover, since

Ilvn = xall = llyn— ngn + ngn - T2('DT2)n_1Zn + T2(PT2)n_1Xn — Zy|

N

lyn = S3xall + 11S5x0 = T2(PT2)" 2yl + [ T2(PT2)" " 2p — xall,

it follows from (3.27), (3.28) and (3.37) that

lim [lyn — Xal| = 0. (3.38)
— 00

n

Observe that
1S7x0 — T1(PT1)" " "ol < 11STx0 — T1(PT1)" ynll + 1T (PT1)" yn — Ta(PT1)™ ' xall

1575 — To(PTL)™ yall + (v — Xall + kSPW(lyn = xall) + w8V

IN

IN

1S5xn — TQ(PTQ)n_IZnH + 1|Yn = Xnll + Mbp(l|zn — xall) + 65
Hsfxn - Tl(PTl)nil)/n” + (1 + Mhn)”)’n - Xn” + 6. (3.39)

From (3.23), (3.38), (3.39) and the fact that } 77,6, < oo

Tim |19 — Ta(PT1)™ x| = 0. (3.40)
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Now, since ||x, —T1(PT1)" txp|| < [|SPx,— T1(PT1)" 1x,|| (by condition (ii), it follows from (3.40)
that

lim fIxy = Ta(PT1)" " xa]| = 0. (3.41)
n—oo
From
Ixarr = SPxall = IPI(L = cn)Sixn + nTL(PTL)" " yi] = Sixal
< (X = an)SPxn + anTo(PTL)"™ Ly, — STx,||

= || = an(Sixy — TL(PT)" Lya))|
anl|STxy — T1(PT1)" ya]ll

and (3.23), we obtain
Tim {1~ S{xall = 0. (3.42)
From
[Xn41 — Tl('DTl)n_IYnH < IXng1 — STxall + [1STx0 — TI(PTI)H_lJ/nHv

(3.23) and (3.42), we get

i Jxn1 — Ta(PT2) Lyl = 0. (3.43)

n—
Also, from (3.23), (3.24) and the inequality

157%0 = xall < 1570 — Ta(PT1)" " yull + [ITL(PT2)" ™y — xall,
we have
nli_)moo |STxn — Xall = 0. (3.44)
Again, from (3.41), (3.44) and the inequality
1570 = T2(PT2)" " xall < [157%0 = xall + [0 = T2(PT2)" sl

we have

Tim 159 — To(PT2)" x| = 0. (3.45)
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Since

X011 — T2(PT2)" yall < lixog1r — STxall + 1S7x0 — T2(PT2)" x4l

HIT2(PT2)" txy — To(PT2) "yl

< HXn+1 - anH + ”5an - TZ(PT2)H_1Xn|| + (HXn - Yn||
+k$D o130 — yvall) + V)
< et — STl + 15750 — Ta(PT2)" "2l + |10 — Vil

+Mhg|lxn = yall) + 6n
= [Ixo+1 — STXall + [|S7X0 — TZ(PTQ)nﬁlan
+(1 + Mhn)”xn - yn”) + an
it follows from (3.38), (3.42), (3.45) and the fact that )} 7~ 6, < oo that
Jim a1 — To(PT2)" y,| = 0. (3.46)
Now, from (3.30), (3.41) and the inequality

15750 = Ta(PT3)" " xall < 1157%0 — Xall + X0 — Ta(PT3)" " xall,

we obtain
im |57, — T3(PT3)" x| = 0. (3.47)

Since

IXn+1 = T3(PT3)" yal Ixn+1 = STXall + 1157%0 — Ta(PT3)" " xa

IN

HIT3(PT3)" tx, — T3(PT3)" Ly,

< s — Sl + 15750 — To(PT3)" xull + (1130 — vl
+k5 (10 = vall) + v5)
< xnrt = STl + 15750 — Ta(PT3)""2xall + 1% — Vol

+Mhy|lxn = yall) + 65
= ||Xn+1 - SanH + ||S’11Xn - T3(PT3)”71X,,||

+(1+ Mho)lxn = yall) +6n
it follows from (3.38), (3.42), (3.47) and the fact that }_°7 6, < oo that

im ixo1 — T3(PT3)" 'yl = 0. (3.48)
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Again, since (PTi)(PT1)"2y,_1,x, € K for i = 1,2,3 and Tz, T», T3 are three total asymptoti-

cally nonexpansive nonself mappings, we have

ITi(PT)" ynr = Toxall = ITi(PTH(PT) ™ 2yn_1 — Ti(Pxy)|
< PTH(PT)"2yn_1 — P(xn)
+kO(PT(PT) 2yt — POo)) + v
< (PTH(PT)"2yn_1 — P(xa)

+Mhn||(PTi)(PT )" 2yp—1 — P(xp)| + 65
= (L4+ M) |(PTH(PT)" 2yn-1 = P(xa)|l + 61
= (L4 Mh)ITi(PT)" Va1 — Xall + 6. (3.49)
For 1 =1.2.3,, it follows from (3.43), (3.46) and (3.48) that
Jim_ ITi(PTi)" Yy, 1 — Tix,|| = 0. (3.50)
Observe that
1Xn+1 = Yall < Xar1 = To(PTL)" yall + T2 (PT1)" Yy = Xall + X0 = vl
so that, by (3.24), (3.38) and (3.43), we get
Tim [[xns1 — yall = 0. (3.51)
Next,observe, for i =1, 2, 3, that
X2 = Tixall - < lxo = Ti(PT)" Sxall + 1T PT)" ™ X0 — T PT)" v

HIT(PT) " yn-1 = Tixal

< o = TiPT) ™ ol + [0 — vo1l + &80 l1x0 — yo-1ll)
+U1+ ITH(PT) ™ Lyt — Tixal

< 0 = TiPT)™ Sl + [1x0 — Yot || + k5 MlIxo — yo-1]
o)+ ITHPTL) ot — Tixal

= o = Ti(PT)" Sxall + (1 + kS M)|[x0 — Y|l + 5]
HITHPT)"  ynoy — Tixall

< o = TiPT)™ xull + max(supns1(1 + ks M)][1x0 = yn—1]

+max[supn21]1/,(,i)] + I TH(PT)" typ1 — Tixal|

Thus, it follows from (3.30), (3.36), (3.41), (3.50) and (3.51) that limy—eo ||Xn — Tixp|l = 0, for
i=1,,2,3.
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Finally, we prove that lim,_ [[X, — S/'x,|| =0, for i =1,,2, 3.

Infact, by condition (ii), we have for i = 1, 2, 3, that

Ibin = ST < llxa = Ti(PT)" ™ xall + 1S7x0 = Ti(PT)" 2

Thus, it follows from (3.29), (3.30), (3.36), (3.40), (3.41) and (3.45) that
lim |Ix, — S/'xpl| =0, fori=1,2,3. (3.52)
n—oo

This completes the proof of Lemma 3.3. O

Lemma 3.4. Under the assumption of Lemma 3.2, for all py, po € N} (F(S;) N F(T;)), the limit
liMmp—oo ||Xn + (1 — t)p1 — p2|| exists for all t € [0, 1], where {x,} is the sequence defined by (1.7).

Proof. By lemma 3.2, limp—00 [|Xn — q|| exists for all ¢ € F and therefor {x,} is bounded. Let
an(t) = lIxa + (1 — t)p1 — p2| exists for all t € [0,1]. Then, lim,oc a0y = [[p1 — p2|l and
imp—o0 a1y = lIXa — p2l| exist by Lemma 3.2. It remains therefor to prove Lemma 3.4 for t € (0, 1).

For all x € K, we define the mapping

Rn(x) = P[(1 = v2)S5 +YT3(PT3)" 'x,];
Wi(x) = P[(1 = 8r) S5 + BT2(PT2)" ! xal; (3.53)
Vo(x) = P[(1 — ap)SP + aT1(PT1)" tx,], n > 1.

Then, it follows that x,4+1 = Vi,xp, Vop = p, Vp € F. Now, from (3.12), (3.15) and (3.18) of Lemma

3.2, we see that

|Rnx) = RnW)Il < (1 + hp)M||x — y|| + 65
HWn(x) - Wn(Y)H < (1 + I’n)/\/IHX - )/” +6n6n; (3.54)
Vo) = VaW)I < (1 + en) Mlx — yl| + 85 = fallx — || + gn,

where r, = 2h,+h2M? 6, = 2+h,M, e, = 3h,M~+3h2M?+h3M3 and g, = (1+h,M)(2+h,M)6,
with ) 2 e, <o00,) 72 9gn <ooand f,=1+e, Since Y 2 en < oo, it follows that f, — 1 as

n — oo. Set

Sn,m = Vn+m—1Vn+m—2 -V, meN,;

bn,m = ||Sn,m(txn + (1 - t)pl) - 5n.m(txm + (1 - t)p2||.

(3.55)
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From (3.54) and (3.55), we have

1Sn,m(x) = SnmW)l

||Vn+mflvn+mf2 cee Vn(X) —Virm-1Voagm—o- - Vn(Y)H

< form=1lVatm—2Vatm—3 - Va(X) = Vg m—2Votm—3 -+ Vo (¥l
+t9n+m-1

< (Fem=1) (Fogm—2) Vot m—3Vatm—a - - - Va(x)
—Voim-3Varm-a - VoWl + Gnrm-1 + gnim—2
ntm—1 n+m—1

<

([T Dlx=vl+ 3 s

n+m—1
= Ballx—yll+ Y g (3.56)
i=n

for all x, y € K, where B, =[] £, S, mXn = xp and Sy mp = p for all p € F. Thus,

i=n

antm(t) = |[[txa+ (1 —t)p1 — p2l|
= [|Snm(txy + (1 —t)p1 — p2|
< bom + ISam(txa + (1 = t)p1 — p2l|. (3.57)

By using Theorem 2.3 in [5], we have

bom < Y7HI(xa = ull = [IX01 = Snmull)
= P (10 = ull = X041 = u+ 0= Spmul))
< d’_l(H(Xn — ull = (Ixn41 — ull + [1Sn,mu — ull)), (3.58)
so that the sequence {b, n} converges uniformly to O, i.e, by, — 0 as n — oo. Since lim,—, B, =1
and lim,_—o0 by m = 0, it follows from (3.57) that lim sup,_,oc an(t) < liminfp_oo bp.m < liminfp o0 an(t).

This shows that lim,_ an(t) exists, i.e, limp_oo [[tXxn + (1 — t)p1 — po|| exists for all t € [0, 1].
This completes the proof Lemma 3.4. O

Lemma 3.5. Under the assumption of Lemma 3.2, if E has Frechet differentiable norm,then for
all p1, dpo € F = N2 (F(T;) N F(S))), the limpooo((Xn, J(p1 — p2)) exists, where {x,} is the
sequence defined by (1.7). If wy(x,) denotes the set of all weak subsequential limits of {x,}, then

(g1 — g2, J(p1 — p2) =0 for all p1, p2 € F and for all g1, g> € wyw(xy).
Proof. Suppose that x = p; — p> with p; # p> and h = t(x, — p1) in(2.1). Then, we have
1 1
t({(xn, J(p1 — p2)) + EHPI —pl® < §||t><n + (1= t)p1 — p2lf?

1
< t({xn, Jpr = p2)) + 51 — pall? + b(t]x, — p1l|)
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Since sup,>1 [, — p|| < Q for some Q > 0, we have

. 1 1 .
t lim sup({xp, J(p1 — p2)) + §||P1 —pl? < 5 lim sup|ltx, + (1 = t)p1 — p2|?
n—oo

n—oo
) ) 1
<t lim inf({(xn, J(p1 — p2)) + =lp1 — pol|
n—00 2
+b(tQ)
That is, tlim,_oo sup({xn, J(p1 — p2)) < tliminf,oo((Xn, J(p1 — p2)) + b(tQ). If t — 0, then

liMmp—oo(Xn — p1, J(P1 — p2)) exists for all p1, po € F and for all g2, ¢ € wy,(xy); in particular,
({(g1 — g2, J(p1 — p2)) = 0 for all g2, g2 € wy(xy). This completes the proof Lemma 3.5. O

Theorem 3.6. Under the assumption of Lemma 3.2, if E has Frechet differentiable norm, then the
sequence {x,} defined by (1.7) converges weakly to a common fixed point in F = M3_; F(T;)NF(S)).

Proof. By Lemma 3.5, ({q1 — g2, J(p1 — p2)) = 0 for all g2, g2 € wWy(xs). Therefore, ||g* —p x| =
(g — p*, J(g* — p*)) = 0. This implies that p* = g*. Consequently, {x,} converges to a common
fixed point of F =N2_, F(T;) N F(S;). This completes the proof Theorem 3.6. O

Theorem 3.7. Under the assumption of Lemma 3.2, if the dual space E* of E has the Kadec Klec
(KK) property and the mappings | — S; and | — T; for i = 1,2,3, where | denotes the identity
mapping, are demiclosed at zero, then the sequence {x,} defined by (1.7) converges weakly to a
common fixed point in F = M2_, (F(T;) N F(S))).

Proof. By Lemma 3.2 {x,} is bounded and since E is reflexive, there exists a subsequence {x,,} of
{xn} which converges weakly to some g* € K. By Lemma 3.3, we have lim_oc || Xn, — SiXpn, || =0
and limp_o0 [[Xn, — TiXn, || = 0 for i = 1,2, 3. Since by hypothesis, the mappings / — S; and | = T;
for i = 1,2,3, where / denotes the identity mapping, are demiclosed at zero, S;g* = ¢* and
T,q* = ¢* for i = 1,2,3.; which means ¢* € F = N3, (F(T;) N F(S;)). Now, we show that {x,}
converges weakly to g*. Suppose {x} is another subsequence of {x,} which converges weakly to
p* € K. By the same method as above, we have p* € F and ¢* € wy(x,). By Lemma 3.4, the limit
limp—oo ||tXn + (1 — t)g* — p*|| exists for all t € [0, 1] and so g* = p*. Thus, the sequence {x,}
converges weakly to ¢* € F. This completes the proof. u

Theorem 3.8. Under the assumption of Lemma 3.2, if E satisfies Opial’s condition and the mappings
I—=S;jand | —T; for i = 1,2,3, where | denotes the identity mapping, are demiclosed at zero, then
the sequence {x,} defined by (1.7) converges weakly to a common fixed point in F = N>_, (F(T;)N
F(Si)).

Proof. Let g~ € F. From Lemma 3.2, the squence {||x, — p x ||} is convergent and hence bounded.
Since, E is uniformly convex , every bounded subset of E is weakly compact. Thus, the exists

a subsequence {xp,} of {x,} which converges weakly to some ¢* € K. By Lemma 3.3, we have
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limp—so0 [[Xn, — SiXn || = 0 and limp—eo [[Xn, — TiXn, || = 0 for i = 1,2, 3. Since by hypothesis, the
mappings | — S; and | — T, for i = 1,2, 3, where / denotes the identity mapping, are demiclosed
at zero, S;g* = q* and T;q* = g* for i = 1,2,3.; which means ¢* € F = n>_,(F(T;) N F(S))).
Finally, we show that {x,} converges weakly to g*. Suppose on the contrary that {x, } is another
subsequence of {x,} which converges weakly to p* € K and ¢* # p* By Lemma 3.2, lim,_ || Xn —

q*|| and limp_o0 |[Xn — p*|| exist. By virtue of Opial's condition on E, we obtain
im fIxp =gl = lim [Ixo, — q"||
n—oo n—o0
< lim [l — Pl
n—oo
= lim [[xp —p7|
n—oo
JE— H _ *
= im [, — 2l
< im [lxp, — 7|
n—oo
= lim ||x, — q"|,
n—o0
(3.59)

which is a contradiction, so g* = p* Therefore, the sequence {x,} defined by (1.7) converges weakly

to g* € F. This completes the proof. O

Corollary 3.9. Let E be a uniformly convex Banach space and K a nonempty closed convex subset
of E. Let 51,52, 53 : K — K be three generalize asymptotically nonexpansive self mapping with
sequences {k,gl)}, {k,(,2)}, {k,(73)} €1, ),
{W,Sl)},{W(z)}",{W,(73)} € [1,00) and T1,T2, T3 : K — E are three generalize asymptotically
nonexpansive nonself mappings with sequences {u,,, )} {u,(z)} {u,(3)} € [1, 00), {u,gl)}, {u,(,z)},
{1/,(73)} € [1,00). Let{x,) be the sequence defined by (1.7), where {a,} and {B,} are real sequences
€[0,1).. Suppose F =3 (F(T;) N F(S;)) # 0. If the following conditions hold:

LY 2 ki <00, I kP <00, Y k) <00, 0wl < 00, 0wl < o0, T, ul) <

00, Yy v < o0, 00 ) <00, 2, i) < o0,
it. There exists a constant M > 0 such that V(t) = ¢(t) < Mt, t <O0.

Then, lim, [|Xn — q| and limpeo d(x, — F) both exist for all g € F.

Corollary 3.10. Let E be a uniformly convex Banach space and K a nonempty closed convex subset
of E. Let 51, 55,53 : K — K be three generalize asymptotically nonexpansive self mapping with
sequences {k,(7 } {k,(72)}, {k,(73)} €1, ),

{W,(,l)},{w(2)}",{vv,(,3)} € [1,00) and T1,T», T3 : K — E are three generalize asymptotically
nonexpansive nonself mappings with sequences {/1,5,1)}, {ug)}, {u@} € [1,00), {1/,(,1)}, {1/,(,2)},
{1/,(,3)} € [1,00). Let {x,) be the sequence defined by (1.7), where {a,} and {B,} are real
sequences € [0,1). Suppose F = N>_,(F(T;) N F(S;)) # 0. If the following conditions hold:
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L2y kY < 00, iy k) < 00, i k) < oo, e 1#21) <00,) 1#22) <00,) 2t 1“1(73)
00,3 pt1 (1)<00 D n=1 (2)<OO Yo < oo,
W x=Ti(PT1)" Tyl < ISfx=Ta(PT1)" |, [Ix=T2(PT2)" |l < |IS8x=T2(PT2)" "y |l,
Ix = T3(PT3)"tyll < [1S5x = T3(PT3)" ||
iii. There exists a constant My, M > 0 such that V(t) < Mit, ¢(t) < Mot, t > 0.

Then, limps [[Xn — Sixall = 0 and limp ||X, — Tixn|| =0, for i = 1,2, , 3.
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