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ABSTRACT. In this paper, we introduced the notion of woven K — g—fusion frames in Hilbert
C*—modules. We present necessary and sufficient conditions for these woven and also construct

them by linear bounded operator. Finally we study perturbation of weaving K — g—fusion frames.

1. INTRODUCTION

Basis is one of the most important concepts in Vector Spaces study. However, Frames generalise
orthonormal bases and were introduced by Duffin and Schaefer [3] in 1952 to analyse some deep
problems in nonharmonic Fourier series by abstracting the fundamental notion of Gabor [5] for signal
processing. In 2000, Frank-larson [4] introduced the concept of frames in Hilbet C*—modules
as a generalization of frames in Hilbert spaces. The basic idea was to consider modules over
C*—algebras of linear spaces and to allow the inner product to take values in the C*—algebras [6].
Many generalizations of the concept of frame have been defined in Hilbert C*-modules [7,9,11-16].

Throughout this paper, H is considered to be a countably generated Hilbert C*—module. Let
{H,}jey are the collection of Hilbert C*—module and {W;},cy is a collection of closed orthogonally
complemented submodules of H, where J be finite or countable index set. End’j(H, H,) is a set
of all adjointable operator from H to H,. In particular End’(H) denote the set of all adjointable

operators on H. Py, denote the orthogonal projection onto the closed submodule orthogonally
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complemented W; of H. Define the module
P({H}jex) = H{fi}jes € Hi |1 )_ (£ )]l < oo}
Jel
with A-valued inner product (f, g) = }_;-;(f;, g;), where f = {fj};e; and g = {g;}es, clearly
I?({H;}ey) is a Hilbert A—module.

Definition 1.1. [8] Let A be a unital C*-algebra and H be a left .A-module, such that the linear
structures of A and H are compatible. H is a pre-Hilbert .A-module if H is equipped with an
A-valued inner product (.,.) : Hx H — A, such that is sesquilinear, positive definite and respects
the module action. In the other words,

() (f.f)>0forall f € Hand (f,f) =0 if and only if f = 0.

(it) (af + g, h) = a(f, h) + (g, h) for all a€ A and f, g, h € H.

(iit) (f,g) = (g,f)* forall f,g € H.
For f € H, we define ||f|| = ||{f, f>||%. If H is complete with ||.||, it is called a Hilbert A-module
or a Hilbert C*-module over A. For every a in a C*-algebra A, we have |a| = (a*a)% and the
A-valued norm on H is defined by |f| = (f, f}é for f € H.

Lemma 1.2. [70] Let {W,}c, be a sequence of orthogonally complemented closed submodules of
H and T € End(H) invertible, if T*TW; C W, for each j € J, then {TW;}c, is a sequence of

orthogonally complemented closed submodules and Py, T* = Ry, T* Pryy,.

Lemma 1.3. [2] Let H and K two Hilbert A-modules and T € End’(H, K). Then the following

statements are equivalent:
(l) T is surjective.
(ii) T* is bounded below with respect to norm, i.e., there is m > 0 such that || T*x|| > m||x||
for all x € K.
(iit) T* is bounded below with respect to the inner product, i.e., there is m" > 0 such that
(T*x, T*x) > m'(x, x) for all x € K.
Lemma 1.4. [1] Let U and H two Hilbert A-modules and T € End’y(U, H). Then:

(1) /T is injective and T has closed range, then the adjointable map T*T is invertible and
1T < T T < IITI>

(il) If T is surjective, then the adjointable map TT* is invertible and
ITTH) 7 < TT < |TJ”

Definition 1.5. [10] Let {W;},c; be a sequence of closed orthogonally complemented submodules

of H, {vi}ies be a familly of positive weights in A, i.e., each v; is a positive invertible element from
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the center of the C*—algebra A and A; € End(H, H;) forall i € |. We say that A = {W;, A\;, vi}ie/
is a g—fusion frame for H if and only if there exists two constants 0 < A < B < oo such that
Alx, x) <Y VNP x, NiPyx) < B(x,x),  Vx€H. (1.1)
i€l
The constants A and B are called the lower and upper bounds of g—fusion frame, respectively. If
A = B then Ais called tight g-fusion frame and if A = B = 1 then we say A is a Parseval g—fusion
frame. If A satisfies the inequality
> VANPwx, NPyx) < B(x,x),  Vx € H.
i€l

then it is called a g—fusion bessel sequence with bound B in H.

Definition 1.6. [10]
let A = {W;,\j,vj}jey be a g—fusion bessel sequence for H. Then the operator Tp :
I?({H;}e1) — H defined by
Tal{fiYjer) =Y _viPuN G Y{fi}jes € P({H}jer).
Jel
Is called synthesis operator. We say the adjoint Ua of the synthesis operator the analysis operator
and it is defined by Up : H — I>({H,},ey) such that

Un(F) ={viNiPw,(F)}jes,  VFEH.
The operator Sp : H — H defined by
SAF = TAUAF =Y VZRw, NPy, (F),  VFEH.
Jjel
Is called g—fusion frame operator. It can be easily verify that
(SAf. F) =) VNP, (F). NP, (F)),  VfEH. (1.2)
Jjel

Furthermore, if A is a g—fusion frame with bounds A and B, then
A(f, ) < (Spf, F) < B(f, f), Vf e H.

It easy to see that the operator Sy is bounded, self-adjoint, positive, now we proof the inversibility
of Sp. Let f € H we have
IUACE = AP, () el = 11D VAP, (F), APy (DI,
Jjel
Since A is g—fusion frame then
VA Oz < [1UAF.
Then
VAIIFI] < |IUAFI.
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Frome lemma 1.3, T is surjective and by lemma 1.4, TAUpn = Sp is invertible. We now, Aly <
Sa < Bl and this gives B~y < Syt < ALy,

2. WoveN K — g—FUSION FRAMES IN HILBERT C*—MODULES

Throughout this paper, [m] = {1,2, ..., m} for each m > 1, {W;};cy ic[m) is a collection of closed
orthogonally complemented submodules of H, {vj;}cy ic[m is a family of weights, K € End(H)
and {Ajj}jey.ieim) € End(H, Hj;) where Hj; are Hilbert .A—modules.

Definition 2.1. A family of g—fusion frames {W;;, A, vjj}jey ie[m) for H is said to be K — g—fusion
woven if there exist universal positive constants 0 < A < B such that for each partition {0;};c(m]

of J, the family {W;, \jj, v,j}jegi'je[m] is a K — g—fusion frame for H with bounds A and B.
In next theorem, we provide a necessary and sufficient condition for weaving K — g—fusion frames.

Theorem 2.2. Assume that {W;,\;, vj}jcy and {V},6;, u;}jcy are two K — g—fusion frames for
H where \; € Endy(H, H;) and 8; € End(H, H;) for any j € J, the following assertions are
equivalent.

(1) {W,, N}, vj}jey and {V}, 6;, uj}jcy are K — g—fusion woven.

(2) there exists o > 0 such that for each o C J there exists a bounded linear operator
Yo - s ({Hj}tjes) = H,

Yolxtier =) viPwNxi+ Y Py,
JEOT Jeo°€
such that aKK* < Y9y}, where

B ({Hj}ies) = {{x}jes = {fitjeo U{gi}jeoe - 1 € Hingi € Hi ) (x5, )l < oo}
Jjel
Proof. (1) = (2): Suppose that A is an universal lower frame bound for {W;, A}, v;};e; and
{V;, 6;, 1} jer. Choose oo = A and 5 = T, for every o C J, where T, is the synthesis operator of
{W,, N, vitieo U{V}, 6), uj}jeoe. Then, for any {x;};ey € IS ({H,}jcy) we have
'LPU{XJ}J'EJ = TU{XJ'}J'GJ

= 2PN+ ) R,
JET JEOT©

and also, for each f € H,
AK K ) <(TZF, Tof) = (Yo f,P5f).

Thus, aKK* < Ys1%.
(2) = (1): Leto C Jand f € H, so it is easy to check that

Yol = {ViNiPw,T}jeo U {10, Py f }jeoe-
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Therefore,
a(K*f, K*f) = (aKK*f, f)
< (Yoo f, f)
= (Yo, Yo f)
=Y VNP, NP FY + Y OR,f R, f).
JET JEO€©
This gives that a is an universal lower frame bound of {W;, A}, vj};cy and {V}, 6;, 1} jer. O

In next results, we construct a K — g—fusion woven by using a bounded linear operator.

Theorem 2.3. Let {W;, \jj, vij}jer,ic[m) be a K — g—fusion woven for H with common frame bounds
A, B and assume that U € End’(H) has closed range so that R(K*) C R(U) and KU = UK.
Then {UWj, NijPw, U*, Vij}jey,icim) is also K — g—fusion woven for R(U).

Proof. By the open mapping theorem, UW;; is closed for any j € J and i € [m]. Using Lemme(ref
k-g-fusion ), we can write for each f € R(U),

A(K*f, K*f) = A((UT)*U*K*f, (UT)*U*K*f)
< AlUTIP(K*U*f, K*U*f)

< ||U+||2 Z Z V,5'</\ijPW,ju*f, /\ijPW,jU*f>
icim] jel

= UMIP Y Y VNG P, Ut Puw, f. N P, U Puw, ).
ie[m] JEI

The upper bound is obvious. ]

Theorem 2.4. Let K have closed range, {W,-J-, Nij, VU}jEJ,iG[m] be a K — g—fusion woven for H with
the universal bounds A, B and U € End}(H) has closed range so that R(U*) C R(K). Then
{UV\/,-J-,/\UPW U*, vij}jes.icim) is @ K — g—fusion woven for H if and only if there exists a § > 0
such that for every f € H,

(U, U*F) > §(K*F, K*F).

Proof. Let f € H and {UWj;, \j;Pw, U, vij}jer,icm) is @ K — g—fusion woven for H with lower
bound C, we get

CIK*FK*F) < Y Y VNP, Ut Puw, f, NP, U Puw, f)
i€[m] JEJ

= > Y VE(NPw, U F, NPy, U*F)
ie[m] JEJ

< B(U*f, U*f).
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Therefore, (U*f, U*f) > %<K*f, K*f). For the opposite implication, we can write for all f € H,
(UF, UF) = (KT K*U*F, (KT K*U*F) < ||KT||2(K*U*F, K*U*f).
Hence, we have
AS|IKT|72(K*f, K*F) < AKT||72(U*F, U*f)
< A(K*U*f, K*U*f)
<Y Y VENGPw,UTF NPy, UTF)
i€[m] jeJ

Z > VNP, U Pow, f. NP, U Puw, )
m] Jjel

< B||U|| (f,f).

So, {UWj;, N\jjPw,U*, vij}jeriem) is @ K — g—fusion woven for H with frame bounds Ab||KT||~2
and B||U||?. O

Theorem 2.5. Let {Wj;, \jj, vij}jeric[m be a K — g—fusion woven for H with common frame
bounds A and B. Suppose that 0 < C < |Wj(i)|2 < D < oo forany i € [m] and j € J, then
{wj;, M/J.(i)/\,j, Vii}jes.ielm) is a K — g—fusion woven for H with frame bounds AC and BD.

Proof. For any partition {0;};cm of J and f € H, we get

AC(K*f, K*f) = min WA K <SS 2w NP, WAy Py, )
i€[m]jeo;

< max |w"2B(f, f)
i€[m]

— BD{f, f).
O

Theorem 2.6. Let I C J be arbitrary and {W;, Nij, Vij}jeric[m be a K — g—fusion woven for H.

Then {W;, Nij, Vij}jer.iem) is @ K — g—fusion woven.
Proof. Assume that o; C J, so o; NI C T and A is the lower bound of {Wj;, Ajj, vjj}jco,nr1ic[m), then
for every f € H we have

AK*FK* ) < Y Y VNP, T, NP, f)
i€[m]jeo;Nl

<> > VENGPw, T NP, ).

ie[m]jeco;

This implies the statement. O

Next theorem is shows that even if one subspace is deleted, it dose not still remain a K—g—fusion

woven.
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Theorem 2.7. Let K has closed range, 1 C J and {Wj;, \ij, Vij}jcy icm) be a K — g—fusion woven
for H with the bounds A, B. If

C=7) 2 vilhPw,l* < AlK*?,

ie[m] Jel

then {Wi;, \jj, vij}jer—1icm is a K — g—fusion woven for R(K).

Proof. The upper bound is obvious. Suppose that gjjc[,y CJ — T and f € R(K), so we get

> D VNP, F NPT =YY VNP, T N Py, ) Z > VNP, f. NP, )

i€[m]je€o; i€[m]jeo;Ul m] J€EI
> AK LK F) = > > VaIAGPw, IIP(F, F)
ie[m] jel

> (A~ CIIKTIP)(K*f, K*f).
O

Theorem 2.8. Let {W,j,/\,j, Vij}jeJ,ie[m] be a K — g—fusion woven for H with bounds A, B. For
each i € [m]j € J and a index set 1;;, suppose that {ﬁj(k)}keﬂu € Nj(Wij)) is a Parseval frame for
Hi; such that for every finite subset K;; C I;;, the set {f/f}kGHrKu is a frame with the lower bound

Cj. Let W = span{\\}; f( )}keﬂ,j,KU for any i € [m] and j € I, then {Wij, Nij, vij}jcy.icm is @
K — g—fusion woven for H with the bounds (min;c(y; jey Cij)A and B.

Proof. Obviously, B is the upper bound of {W;;, A, Vij}jer.ielm)- Assume that f € Hand {0} e[y €
J, so

> Y BNy f NPy =Y Y By (NP, FENER, ARy, )

i€[m]Jj€o; i€[m]j€o; kel

(k) £(K)
ZZV,J Z (NP, f ) N P )

i€ m]JEO’, kEHU‘—K,‘J

> Y Y VECH{NPw, f NP, f)

i€e[m]j€ao;

> (_min_Cy) Z Z Vi N P £ N P, )
Elmlel e e,

> ( [m]m CHAKF, K*F).
i€

O

Theorem 2.9. Let {W;;, \jj, vij}jey is a K— g—fusion frame for H for each i € [m]. Suppose that for
a partition collection of disjoint finite sets {0;};c[m of J and for any € > 0 there exists a partition
{oi}ticim) of the set J — Ujcm0; such that {Wi;, Nij, vij}je(o,us,).icim) has a lower K — g—fusion

frame bound less than €. Then {Wj;, \jj, vj;}jey,ic|m) is not a woven.
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Proof. We can write J = Ujend;, where J; are disjoint index sets. Assume that 61; = @ for all
i € [m] and € = 1. Then, there exists a partition o;1c[n of J such that {Wj;, Ajj, Vij}je(0,05,,).ic[m]

has a lower bound (also, optimal lower bound) less than 1. Thus, there is a f; € H such that

> Y VENPw, AL NP, ) < (K*R, K*R).

i€[m] je(o1Udi1)
Since
> > VAN P, L NP, ) <
i€[m] JEJ
so, there is a k1 € N such that
Z Z V’J</\’JPW/jf1’/\ijPWfJf1> < <K*f1, K*ﬂ),
ie[m]jeKy
where, K; = Uj>,,+1J;. Continuing this way, for € = % and a partition {0, }ic[m of J1U... Ulk, 1
such that

6,7/ = 6(,771)/ U (O’(nfl),‘ N (J]_ U...u Jkn—l))

for all i € [m], there exists a partition {opi}icim of J — (J1 U ... U Jx,—1) such that
{Wij, Nij, Vig}je(ous,y).ic[m has a lower bound less than 1. Therefore, there is a f, € H and

ks, € N such that k, > k,—1 and
> > VNP, fa NP, Ta) < (K*fn, K*fi),
ic[m] j€Kn
where, K, = Uj>k,+1J;. Choose a partition {a;}c[y) of J, where a; = Ujen{0;i} = 6(pt1)i U (i N
— (J1U ... UJp)). Assume that {Wi;, Aij, Vij}jca,icim) is @ K — g—fusion frame for H with the
optimal lower bound A. Then, by the Archimedean Property, there exits a r € N such that r > %.
Now, there exists a f, € H such that

ST NP NP = DS VRN Py fe AP, )

i€[m]jea; i€[m] JE€8(r11yi

+ ) > v (N P Tr Nij P, Tr)

i€lm] jea;nI—(J1U...UJ,)

<Y > VAP, fr AP, )

i€[m] je(o,iUd;;)

+> Y VENRw, f NP, )

i€[m] JEUk>ry1dk
1 * * 1 * *
< A(K*f., K*f)

and this is a contradiction with the lower bound of A. O
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Corollary 2.10. Let {Wj;, \jj, Vij}jer.ic[m be a K — g—fusion woven for H. Then there exists a
collection of disjoint finite subsets {0;};cm of J and A > 0 such that for each partition {0} c(m]
of the set J — Ujc[m 0, some the family {Wi;, Nij, Vij}jc(o,u6,).ic[m) is @ K — g—fusion frame for H

with the lower frame bound A.

Theorem 2.11. Let {Wj;, A\jj, vjj}jer be a K — g—fusion frame for H with bounds A; and B; for each
i € [m]. Suppose that there exists N > 0 such that for all i, k € [m] withi# k,1C J and f € H,
Z«VUAUPWU — ij/\ijij)f, (V,'J'/\,'J‘PW VkJ/\kJPWk )f) < len{ Z /\,JPW f /\UPW f>

Jel Jel

Z V%(/\ijij f, /\ijij f>}
Jjel

Then the family {W;, \ij, vij}jey icim] is woven with universal bounds

A
(m—1)(N+1)+1

A,‘ Gnd B = Zie[m] B,

and B,

where A=) _

i€[m]

Proof. Let {0;}ic[m) be a partition of J and f € H. Therefore,

> ALK K Y S VNP, f NP, f)

i€[m] i€[m] JEJ

Z Z Z VU /\’J PWU f, /\’jPW,j f)

i€[m] ke[m] jEok

Z (Z /\IJPW f, /\ PW f> Z Z{Vlgj</\ijijf’/\k.jPijf>

i€[m] ‘jeEo; k€[m], k#£i jETK

+ ((viiNi Povy = vii N P ) o (Vi Ni P, — ij/\ijWk,)f>})

<> (Z (Nij P, £, NP, f)

i€[m] ‘jeo;

+ > Z(/\/+1)vk2j</\kJ-Pijf,/\kJ-PWka>)
ke[m], ki jEo

={(m-1)(N+1)+1} Z (Zvu NP, f. N Py, f))
J€Oo;
Thus, we get

A
CEN DT

(K*f, K*f) Z (Z (N Pw, f. N Py, f)) < B(f, f).

m JEOT;

O

In next theorem we study a Paley-Wiener type perturbation for weaving K — g—fusion frames.
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Theorem 2.12. Let {W;, Aj, w;}jcy and {V}, 0}, v} ey be two K — g—fusion frames for H with frame
bounds A1, B1 and Ay, By, respectively. Suppose that there exist non-negative scalers p and
0 < X\ < % such that (3 — \)A1 > w and for each f € H,

> (WP, = vi6i Py F, (WA P, — iR F) < XD (wil\i Py £, wil\j Py ) + p(K*F, K*F).
Jel Jel
Then, {W;, \j, w;}jer and {V}, 6}, vj}jcy are K — g—fusion woven for H with universal frame bounds

— )\)Al — U and Bl + BQ,

Proof. The upper frame bound is clear. For the lower frame bound, assume that o C J and we get,

by the arithmetic-quadratic mean, for any f € H

> WP, NP, ) + Y V0P FL R, F)

JEO JEOC
=Y Wi\ P, APy, f)
JEOT
+ Z<WJ/\JPWJf — (WJ/\JPWJ — VJ@JP\/J)f, WJ/\JPV\/Jf — (WJ/\JPV\/J — VJQJPVJ)IC>
JEOC©
> WA Pw, T, NP, ) + ZW (NP, f. NiPw, )
Jj€EO JEUC
=Y _{(WiNPw, — 8Py, (wil\iPy, — vifiPy,)F)
JEOC
**ZW (NP, £\ P, F) + ZW (NP, . NPy f)
JEJ JEJ
=Y _{(WiNPw, — vi8 Py, (wil\iPy, — vifiPy)F)
JEOC
1
23 > WP, NP ) = ) (Wil P, — vifiPy)F, (Wil P, — v Py )F)
JEJ j€oc
1 * *
> 5 ) wWHNPwE NP F) = XY Wi P AR ) — (K f K*f)
JeJ JEJ

> (( AL~ )<K*f, K*F).

This completes the proof. O
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