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ABsTRACT. Throughout this article, we investigate the growth and fixed points of solutions of complex
higher order linear differential equations in which the coefficients are analytic functions of [p, g]—order
in the unit disc. This work improves some results of Belaidi [3-5], which is a generalization of recent

results from Chen et al. [9].

1. INTRODUCTION AND MAIN RESULTS
Consider for k > 2 the following complex linear differential equations
FO+ A () FE D 4+ AL () F 4+ A (2) F =0, (1.1)

Ac(2) FR + Ay (2) FED 4 A (2) £+ A (2) F =0, (1.2)
where A; 20 (i = 0,1, ..., k) are analytic functions in the unit disc D = {z € C: |z| < 1}. It is
well-known that the solutions of (1.1) are analytic in D too and that there are exactly k linearly
independent solutions of (1.1), see [13]. Bernal [6] was the first to use the concept of iterated
order to study the growth of fast growing solutions of equation (1.1) . After that, the iterated order
of solutions of higher order equations was investigated by Cao in [8], he extended the results of
Chen and Yang [10], Belaidi [2] on C. In addition, Cao [8] obtained some results concerning the
fixed points of homogeneous linear differential equations (1.1) and (1.2) . In[15,16], Juneja and his
co-authors have investigated some properties of entire functions of [p, g]-order, and obtained some
results of their growth. In [20], by using the concept of [p, g]-order Liu, Tu and Shi have considered
the equation (1.1) with entire coefficients and obtained different results concerning the growth of its
solutions in the complex plane. In [3], the [p, g]—order was introduced in the unit disc D, and many
results on [p, g]—order of solutions of (1.1) have been found by different researchers [3-5,14,18,22]

in D. Recently, Chen et al. in [9] gave some results about the growth and fixed points of solutions
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of higher-order linear differential equations in the unit disc, they studied and estimated the fixed
points of solutions of (1.1) and (1.2), and also extended the coefficient conditions to a type of
one-constant-control coefficient comparison and obtained the same estimates of iterated order of
solutions. The aim of this paper is to contrast coefficients by producing better estimates of the
growth of solutions by using the concept of [p, g]—order, and optimizing the coefficients’s conditions
with less control constants of the coefficients’'s modulus or characteristic functions and we will obtain

results which improve and generalize those of Chen et al, Belaidi, Cao, Tu and Xuan.

Throughout this paper, we shall assume that the reader is familiar with the fundamental results
and the standard notations of the Nevanlinna's theory in the unit disc D = {z € C : |z| < 1}
(see, [12,13,17,21)).

Now, we give the definitions of iterated order and growth index to classify generally the
functions of fast growth in D as those in C (see, [0]). Let us define inductively, for r € R, exp; r 1= e”
and exppiqr = exp(expp r), p € N. We also define for all r sufficiently large in (0, +00),
log; r :=lograndlog, ; r :=log (Iogp r) , p € N. Moreover, we denote by expg r :=r, logg r :=r,

log_1r:=-expy;rand exp_;r:=logyr.

Definition 1.1 (see [7]) Let f be a meromorphic function in D. Then the iterated n—order of f is
defined by
log! T (r, f)

on (f) =limsup T (n>1 is an integer),

1= log (%)
where logf x = log™ x = max{logx, 0}, log;f, ; x = log™ (log} x) . For n = 1, this notation is
called order (o1 (f) = o (f)) and for n =2 hyper-order ([19]). If f is an analytic in D, then the

iterated n—order of f is defined by

+
0 M{(r, f
omn (F) = limsup In+1 g ) (n > 1 is an integer) .
o1 log (1)

Forn=10opm1(f)=0m(f).

Now, we introduce the concept of [p, g]-order of meromorphic and analytic functions in the

unit disc.

Definition 1.2 ([3]) Let p > g > 1 be integers and f be a meromorphic function in D. Then, the
[p. q]-order of f is defined by
. log T (r, f)
O[p.ql (F) = limsup—L——"==.
ogq (1)

r—1- i—r
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For an analytic function f in D, we also define
_ logh , M (r, f)
TM.[p.q] (f) =lim suppﬂ—1
r—1= q (ﬁ)
Remark 1.1 It is easy to see that 0 < o, g (f) < 00 (0 < Opppg (F) < 00), for any p >
g > 1. By Definition 1.2, we have that o117 = o (f) (om 1,1 = om(f)) and opp 1y = 02 (f)

(UM,[z,l] =0Mm2 (f)).

Proposition 1.1 ([3]) Let p > g > 1 be integers, and let f be an analytic function in D of
[p, q]-order. The following two statements hold:
() If p=gq, then

Olp.q] (f) < TM.[p.d] (f) < Olp.q] (f) + 1.
(i) If p> q, then

Iip.q1 (F) = Tmt [p.q1 (F) -

Definition 1.3 ([4]) Let p > g > 1 be integers and f be a meromorphic function in D. Then, the
[p, q]-exponent of convergence of the sequence of zeros of f is defined by

logt N (r, L
A[p,g1 (f) = lim supgpi(lf),
1= logg (=)
where N (r, }) is the integrated counting function of zeros of f in {z:|z| < r}. Similarly, the

[p, g]-exponent of convergence of the sequence of distinct zeros of f is defined by

_ N (r, L
Ap.q (F) = limsup—= (1 7)
ro1= 109q 1

where N (r, %) is the integrated counting function of distinct zeros of f in {z : |z| < r}.

Definition 1.4 Let p > g > 1 be integers and f be a meromorphic function in D. Then, the
[p, g]-exponent of convergence of the sequence of fixed points of f is defined by
log! N (r, +2=
Ap.ql (f —2) = lim supM
-1 logg (737)
Similarly, the [p, q]-exponent of convergence of the sequence of distinct fixed points of f is defined
by

z

_ logt N (r, 2=
Alp,q (f —2) =lim supM
—1 logg (1)
Recall that for a measurable set £ C [0, 1), the upper and lower densities of £ are defined by
—_— . m(ENJO0,r)) . ...m(EnNJ0,r))
denspE = limsup———————~ and denspE =Iliminf———M*=
r»1- m([0,r)) P71 m([o,r)
respectively, where m(F) = fF% for F C [0,1). It is clear that 0 < denspE < denspE <1

for any measurable set £ C [0,1).


https://doi.org/10.28924/ada/ma.3.10

Eur. J. Math. Anal.

Proposition 1.2 If a set E satisfies denspE > 0, then m(E) = [ % = +o00.

Proof. Suppose that m(E) = [, 1‘% =0 < 0o. We have

m([0,r)) =—log(1—r).

Since m(EN[0,r)) < m(E), then
m(ENJO0,r))

denspE = limsup <limsup——— = 0.
r—1- m([O,r)) r—1- _|09(1_r)
So denspE = 0. Hence
S dt
denspE >0= m(E)= | —— = +o0.
el—t

In 2012, Belaidi in [4] and [5] treated the growth of solutions of homogeneous linear differential
equations in which the coefficients are analytic functions of [p, g]—order in D. As for the equation

(1.1), he got the following results.

Theorem A (see [4]) Let p > q > 1 be integers. Let H be a set of complex numbers satisfying
densp{lz| :ze HC D} > 0, and let Ay (2), ..., Ak—1(2) be analytic functions in the unit disc

D such that for real constants a, 3, where 0 < 3 < o, we have

0 2)| 2 o0y {cton, (1= )|
and
|Ai (z)] < exppyq {ﬁlogq (1—1]z|) } (i=1,...k=1)
as |z| — 17 for z € H. Then every solution f % 0 of equation (1.1) satisfies o[, 4 (f) =

OM.[p.q] (f) = oo and Olp+1,q] (f) = OM,[p+1.q] (f) =2 o

Theorem B (see [5]) Let p > q > 1 be integers. Let H be a set of complex numbers satisfying
densp{lz| :ze HC D} > 0, and let Ay (2), ..., Ak—1(2) be analytic functions in the unit disc

D such that for real constants a, 3, where 0 < 3 < o, we have

1
> -
T (r,Ao) > expp {alogq ( =17 ) }
and
1
T (r,A;) <exp, {[5logq (1_|Z’) ]» (i=1,...k—=1)
as |z| = r — 17 for z € H. Then every solution f % 0 of equation (1.1) satisfies oy, q () =

OM.[p.q] (f) = oo and Olp+1,q] (f) = OM,[p+1.q] (f) =2 o
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After that in 2021, Chen et al. [9] investigated the growth of solutions of equations (1.1) and
(1.2) in D by using the iterated order, and they got the following results.

Theorem C (see [9]) Let n > 1 be an integer. Let H be a set of complex numbers satisfying
densp{|z|:z€ HC D} > 0, and let Ag, A1, ..., Ak_1 be analytic functions in the unit disc D
such that

max{omn(Aj) i=12,.. . k=1} <opmn(A) =p (0 < pu<o0),

and for a constant o« > 0, we have

lim inf 1—|z|)¥I A
it (1 =12)logn 140 (2)]) > o

and
1 I
a@ <o fa( =) ] =120
as |z| — 17 for z € H. Then every solution f # 0 of equation (1.1) satisfies o, (f) = opmn(f) =

oo and opy1 (F) = opmp (Ag) = .

Theorem D (see [9]) Let n > 1 be an integer. Let H be a set of complex numbers satisfying
densp{lz| :z€e HC D} >0, and let Ao, A1, ..., A be analytic functions in the unit disc D, and

for some constants o > 0 and u > 0, we have

liminf  ((1—|z|)*log,_1 T (r. A0)) >«

|z|=»1-,zeH

and

T (r,Aj) < exppy {oc (1—1|z| )u} (i=1,2,...k)

as |z| = r — 17 for z € H. Then every meromorphic (or analytic) solution f # 0 of equation

(1.2) satisfies o, (f) = 0o and op11 () > p.

Theorem E (see [9]) Assume that the assumptions of Theorem C hold. Then every solution f # 0

of equation (1.1) satisfies

Xn(fw—z) — X (F = 2) = 00 (F) = o0,

Xt (f(f) - z) i (F—2)=0pr ()= (=12 ).

In this paper, we improve and generalize the recent results of Chen et al. [9] by using the
concept of [p, g] —order instead of the iterated order with less control constant. At the same time,
our work improve some results of Belaidi in [4] and [5]. To be specific, we will decrease the control
constants of the coefficients’ modulus or characteristic functions and obtain the same results of

Belaidi, Tu and Xuan. Here, we study the problem and get the following results.
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Theorem 1.1 Let p > q > 1 be integers. Let H be a set of complex numbers satisfying
densp{|z| :z€ HC D} >0,
and let Ay, ..., Ak—1 be analytic functions in the unit disc D such that
max {opmpq (A) 11 =12,k =1} <oppg (Ao) = (0 < p < 400)

and for a constant o > 0, we have

. log, |Ao (2)]
lzllr?l’njeH(logqpl (jl'Z') )u (1.3)
and
w1 <o, fa fonas (3]} 63 s

as |z| — 17 for z € H. Then every solution f # O of equation (1.1) satisfies oy, g () =

OM,[p.q) (F) = 00 and 0(p11,4) (F) = O [pt1,q (F) = -
By Theorem 1.1, we easily obtain the following corollary.

Corollary 1.1 ([22]) Let p > g > 1 be integers. Let H be a set of complex numbers satisfying
densp{lz| :ze HC D} > 0, and let Ao, ..., Ak—1 be analytic functions in the unit disc D such
that

max {om pq (A) 11 =1,2,....k =1} < oppg (Ao) =1 (0 < p < 400)

and for some real constants o, B where 0 < 8 < o, we have

Ao (2)] = expp{a ('qu—l (1—1|z|) )M}

|A; (2)] < exp, {5 (Iogq_l (1_1|Z|) )“} i=1,.., k-1

as |z| — 17 for z € H. Then every solution f # O of equation (1.1) satisfies oy, g () =

O [p.q] (F) = 00 and 0(p11,q (F) = Oppt1,q (F) = .

and

Theorem 1.2 Let p > q > 1 be integers. Let H be a set of complex numbers satisfying
densp{|z|: z€ HC D} >0,
and let Ay, ..., Ak—1 be analytic functions in the unit disc D such that
max {op(p.q (A1) i =12,k =1} <opppg (A) =1 (0 < p < 400)

and

I A; I A
lim sup ng| ((2) < liminf ng| 0 (2)]

|z|—>1-,zeH (|qu71 (1j|2| ) )“ 2|1~ z€H (Iogqfl (%M) )u (i=1,...k—=1) (1.5)
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as |z| — 17 for z € H.Then every solution f # 0 of equation (1.1) satisfies oy, g (f) =
OM,[p.q (F) = 00 and o(pi1,q (F) = Oy [pt1,q (F) = w.
Theorem 1.3 Let p > q > 1 be integers. Let H be a set of complex numbers satisfying
densp{|z| :z€ HC D} >0,
and let Ay, ..., Ak—1 be analytic functions in the unit disc D such that
max {opmp.q (A) 11 =1,2,....k =1} < oppg (Ao) =1 (0 < p < 400)

and for a constant o > 0, if p> g > 2 we have
log,—1 T (r, Ao)

it (1000 (2) )" (1.6)
and
T(nA) < eppr o loges (7))} (= 1k-) (1.7)

as |z| = r — 17 for z € H, then every solution f # 0 of equation (1.1) satisfies oy, g (f) =
OM,lp.q () =00 and 0141, (F) = Oppppt1,q) (F) = 1. If p=q =1, we have

fiminf 1" Ao)

21 zeH ( 1}|Z| )M >(k—1a (1.8)

and
T(r,A,-)Soc(l%‘Z‘)u, (i=1, . k—1) (1.9)

as |z| = r — 17 for z € H, then every nontrivial solution f of equation (1.1) satisfies o(f) =

om(f) =00 and oz (f) =opmo (f) = L.
By Theorem 1.3, we easily obtain the following corollary.

Corollary 1.2 ([22]) Let p > g > 1 be integers. Let H be a set of complex numbers satisfying
densp{lz| :z€ HC D} > 0, and let Ao, ..., Ak—1 be analytic functions in the unit disc D such
that

max {op (p.q (A1) i =1,2,...k =1} < oppg (Ao) = (0 < i < +00)

and for some real constants o, B, where 0 < 3 < a, we have

T (r,Ao) > expp_q {a (logq_l (1—1|Z|) )u}

T(r'Ai)Sepr_l{B(logq—l(%m))u} (i=1..k—-1)

as |z| =r — 17 for z € H. Then the following statements hold:

and
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(YIfp=qg=1and 0 < (k—1)B < a, then every nontrivial solution f of equation (1.1) satisfies
o(f)=om(f) =00 and oz (f) =oma (f) = p.
(ity If p>qg>2and 0 < B < a, then every nontrivial solution f of equation (1.1) satisfies

Oip.g) (F) = Opmp.q (F) = 00 and o(p11 g (F) = O jpt1.q (F) = b

Theorem 1.4 Let p > q > 1 be integers. Let H be a set of complex numbers satisfying
densp{|z| :z€ HC D} >0,
and let Ay, ..., Ak—1 be analytic functions in the unit disc D such that
max {omp.q (A) 11 =1,2,....k =1} < oppg (Ao) =1 (0 < p < 400)

and if p > q > 2, we have

log,_1 T (r, A log,_1 T (r,A
[im sup 99p-1 (r, A7) < liminf %91 (r: Ao)

w _
2|1~ zeH (|qu_l (1_1‘2‘ )) 2|1~ zeH (|qu_1 (1_1|Z| ))

as |z| =r — 17 for z € H, then every nontrivial solution f of equation (1.1) satisfies oy, g (f) =

o (i=1..,k-1) (1.10)

OM,lp.ql () =00 and 01p41,q1 (F) = Opp[pt1,q) (F) = k. If p=q=1, we have

k—1)T (r, A T(r, A
lim sup ( ) (Z ) < liminf LOBL
|z|—=1-,zeH ( 1 ) |Z|4>1’,Z€H( 1 )

C(i=1,.,k=1) (1.11)

1—|z| 1—|z]

as |z| = r — 17 for z € H, then every nontrivial solution f of equation (1.1) satisfies o(f) =

om(f) =00 and o2 () = oma2 (F) = p.

Theorem 1.5 Let p > q > 1 be integers. Let H be a set of complex numbers satisfying
densp{|z| :ze HC D} >0,

and let Ao, ..., Ax be analytic functions in the unit disc D such that for some constants o > 0 and

w >0, we have (1.3) and

14 (2)] < exp, fa (loggs (25)) ) G=1.k)

as |z| — 17 for z € H. Then every meromorphic (or analytic) solution f # 0 of equation

(1.2) satisfies o[y, q (f) = 00 and opi1,q (F) > p.

Theorem 1.6 Let p > q > 1 be integers. Let H be a set of complex numbers satisfying

densp{|z| :ze HC D} >0,
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and let Ay, ..., Ax be analytic functions in the unit disc D such that for a constant . > 0, we

have

log.. |A; log.. |A
imsup %A@ 09p |40 (2)]

|z|—=1—,zeH (|qu_1 (%M) )“ |z|=1-,zeH (|qu_l ( 1_1‘2‘ ) )

as |z| — 17 for z € H.Then every meromorphic (or analytic) solution f # 0 of equation

o (=1, k)

(1.2) satisfies oy, g (f) = 00 and o[pi1,q (F) > p.

Theorem 1.7 Let p > q > 1 be integers. Let H be a set of complex numbers satisfying
densp{|z| :z€e HC D} >0,

and let Ao, ..., Ax be analytic functions in the unit disc D such that for some constants o > 0 and

w>0,if p>qg>2 we have

logp,—1 T (r, Ao)

|z|irTi,nzfeH(|ogq1 (%M) )u >a (1.12)

and
T(rA) <expp_q {a (Iogq_l (l%ld) )“} . (i=1,...,k) (1.13)
as |z| = r — 17 for z € H, then every meromorphic (or analytic) solution f # 0 of equation

(1.2) satisfies o[, q (f) = 00 and opi1,q (f) > u. If p=q=1, we have

T(r,A

lim inf Lﬂ{ > ko (1.14)
|z|—=17,zeH 1
()
and

w
T(r,A,-)ga(l%lzl) C(i=1,..k) (1.15)
as |z| = r — 17 for z € H, then every meromorphic (or analytic) solution f # O of equation

(1.2) satisfies o (f) = 0o and 0, (f) > L.

Theorem 1.8 Let p > q > 1 be integers. Let H be a set of complex numbers satisfying
densp{lz| :ze HC D} >0,

and let Ao (2), ..., Ak (2) be analytic functions in the unit disc D such that for a constant > 0,
if p>q>2 we have

log, 1T (r, A o log, 1T (r,A
lim sup 9p-1 (r, A7) < liminf Ip-1 (r, Ao)

2 _
|z|—=1-,zeH (|qu,1 (41j|z| ) ) |z|=1—,z€EH (|qu71 ( 1}|Z| ) )

z. (1=1..k) (1.16)
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as |z| = r — 17 for z € H, then every meromorphic (or analytic) solution f # 0 of equation

(1.2) satisfies oy, g (f) = 00 and opi1,q (f) > w. If p=q =1, we have

KT (12| A T (2|, A
imsup <L UZLA) e T (2] Ao)

|z\—>1*,zeHH |z|—>1—,zeH( 1 )“' (1=1,...K) (1.17)

1—|z|
as |z| = r — 17 for z € H, then every meromorphic (or analytic) solution f # 0 of equation (1.2)

satisfies o(f) = oo and o, (f) > .

Remark 1.2 For equation (1.1), we can easily conclude that Theorems A-C are generalized to

Theorems 1.1-1.4.

In the same paper, Chen et al. [9] obtained some results of the fixed points of solutions and
their arbitrary order derivatives of equations (1.1) and (1.2). Here, we generalize these results,

and we obtain our theorems as following.

Theorem 1.9 Assume that the assumptions of Theorem 1.1 or Theorem 1.2 hold. Then every solution

f # 0 of equation (1.1) satisfies

;\[P.q] (f(J) - Z) = >‘[P,CI] (f - Z) = O[p.q] (f) = 00,

Xpiral (FO = 2) = Xpir.a) (F=2) = 0fpy1q () = (=12,

Theorem 1.10 Assume that the assumptions of Theorem 1.3 or Theorem 1.4 hold. Then every

solution f # 0 of equation (1.1) satisfies

Np.a) (f(j) - Z) = Ap.q) (f = 2) = 0pp,q (F) = o,

Xprval (FO = 2) = Xpir.a) (F = 2) = 01 () = (=12,

Theorem 1.11 Assume that the assumptions of one of Theorem 1.5 to Theorem 1.8 hold. Then every

meromorphic (or analytic) solution f # 0 of equation (1.2) satisfies

Alp.d] (f(j) - Z) = Ap.q) (f = 2) = 0, (F) = 00,
x[erl,q] (f(") - Z) = X[erl,q] (f - Z) = U[p+1,q] (f) > K, (j =1,2, ) .

2. SOME LEMMAS

In this section we give some lemmas which are used in the proofs of our theorems.
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Lemma 2.1 ([11], Theorem 3.1) Let k and j be integers satisfying k > j > 0, and let € > 0 and
d € (0,1). If f is a meromorphic function in D such that fY) does not vanish identically, then for
£ (2)

1z| ¢ Ex |
1 2+¢ 1 k—J
fO) (2) S[(1_|Z) max{log(1_|Z|);T(s(|z),f)}] :

where E; C [0,1) is a set with -[El % <ooands(|z])=1—-d(1—|z]).

Lemma 2.2 ([13]) Let f be a meromorphic function in the unit disc D, and let k > 1 be an integer.

Then
£ (k)
m(r'f) :S(I’,f),

where S(r, f) = O (log™ T(r, f) + log (X)), possibly outside a set E> C [0, 1) with fEZ 2L < .

Lemma 2.3 ([1]) Let g : (0,1) = R and h: (0,1) — R be monotone increasing functions such
that g (r) < h(r) holds outside of an exceptional set Es C [0,1) for which fE3 % < oo. Then
there exists a constant d € (0,1) such that if s(r)=1—d(1—r), then g(r) < h(s(r)) for all
rel0,1).

Lemma 2.4 ([3]) Let p > q > 1 be integers. If Ay (2),...,Ak—1(2) are analytic functions of
[p, q] —order in the unit disc D, then every solution f # 0 of (1.1) satisfies

Olp+1,q] (f) = OM,[p+1,q] (f) < max {UM,[p,q] (Aj) :J=0,1,..., k— 1} .

Lemma 2.5 ([4,18]) Let p > q > 1 be integers. If f and g are non-constant meromorphic functions
of [p, q] —order in D, then we have

() 0p.q) (F) = 0p.q) (7)  Opp.q1 (aF) = 01 (F) and 01 g (F + @) = 01 ) (F) (2 € C),

(it) 07p,q (') = Opp,q1 (F),

(iit) o1p,q (F + 9) < max{o(p,q (F) p.q (9)}.

(iv) Oppq (fg) < max {a[p,q] (). op.ql (9)}. if Olp.q () > 0ppq(9), then we obtain
Ofp.q) (F +9) = 0ppq (Fg) = 0pp q ().

Lemma 2.6 ([4]) Let p > q > 1 be integers. Let Ao, ..., Ax—1 and F % O be finite [p, q] —order
analytic functions in the unit disc D. If f is a solution with o1, g (f) = 00 and o(p11 ¢ (f) = 0 < 0
of equation
FO L A 1 (2) FR D 4 A (2) F + Ag(2) F = F, (2.1)
then
;‘[p,q] (F) = A, (F) = 0, q (F) = 0,

x[p+1,q] (f) = >‘[p+1,q] (f) = Olp+1,4q] (f)=o.
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By using the same arguments of the proof of Lemma 3.5 in the paper [14, p. 4], we obtain the

following lemma in the case when oy, ;1 (f) = 0 = cc.

Lemma 2.7 Let p > q > 1 be integers. Let A; (j =0,...,.k—1), F # 0 be meromorphic functions
in D, and let f be a solution of the differential equation (2.1) satisfying

max {0(p.q (Aj) G=0.,...k =1),00pq (F)} < 0ppq (f) =0 < 0.
Then we have
Ap.al (F) = o) (F) = 95,1 (F)
and

Apr1.aql (F) = ANpy1.q (F) = 0pr1,g ()

3. PROOFS OF THEOREMS 1.1 TO 1.8

Proof of Theorem 1.1. Suppose that every solution f of equation (1.1) not being identically equal
to 0. From the conditions of Theorem 1.1, there exists a set H of complex numbers satisfying
denspH; > 0, where Hy = {r=|z|:z€ HC D}. Then H; is a set with le % = 400, such
that for z € H we have (1.3) and (1.4) as |z| — 17. By Lemma 2.1, there exists a set £; C [0, 1)
with fEl % < oo such that for |z| ¢ Eq, we have for j =1, ..., k

(2l el e af] e

where s(|z|])=1—-d(1—|z|), d € (0,1). From (1.1), we get

£0) (2)
f(z)

(k) F(k—1) /
A0 () < || +1Aks (| |+ + 1M (2|7 52

By (1.3), we know that

| A
S eR: liminf 2940 () >y a
|z|=1-,zeH (|qu_l ( l—1|z| ) )
Obviously
log, |A

@ .

(10301 (1))

as |z| -+ 17 for z € H. By (1.4) and (3.3), we obtain

02> e, v (109 277 | ]

> oo, {109, ))“}2|A,-<Z)| (=12 . k-1) (4

1—|z|
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as |z| — 17 for z € H. Applying (3.1) and (3.4) into (3.2), we have

oo (25} 2

<o) “wefen ) o]
comy o (1090 (1251) )}

holds for all z satisfying |z| € H1\E1 as |z| — 17. Noting that v > a, by the last inequality, we

exp ((1 —o0(1))expp_y {fy (|qu—1 (1—1|Z|) )M})

k(2+¢€)
<kliZm) Tl 55

for all z satisfying |z| € H1\E1 as |z| — 1. Then, by (3.5) and combining with Lemma 2.3, we

[Ey

obtain

get for all r = |z] € Hq

exp ((1 —o(1)) expp_1 {'7 (Iogq_l (11—r) )“})

1 k(2+¢)
< -
=k (1 = s(r))

where s3(r) = 1 —d?(1—r) with d € (0,1). Therefore, from (3.6) we obtain oy, 4 (f) =

UI\/I,[p,q] (f) = o0 and

TF(s1(r), f), (3.6)

|Og;+1 T (51 (I’) ' f) >

Olp+1,q) (F) = O [p+1,q (F) = limsup > (3.7)
si(n—=1= log, (ﬁl(r))
By Lemma 2.4, we get
Olp+1,q] (f) = OM,[p+1,q] (f)
<max{ompq (A) 11 =0,1,....k =1} = oppq (Ao) = b (3.8)

Therefore, by (3.7) and (3.8), we obtain oy, o (f) = opy[p,q (f) = o0 and

Olp+1,q) (F) = Om[pt1,q) (F) = Om[p.q) (Ao) =

Proof of Theorem 1.2. Set

B . |ng|AO (Z)|
ap = liminf I
|z|—1-,zeH (|qu_1 ( 1_1|Z| ) )
| A;
a;j = limsup 09, 14 (2) o (=12, k=1).

|z|»1-.zeH (|qu—1 ( 171\2\ ) )
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By (1.5), there exist real numbers a,y such that a; < a <y <ap, i =1,2,...,k — 1. It yields
log, |A; (z log, |Ag (z
gp| I(l)| /,L<a<'Y< gp|0(1)| .
(10991 (231 ) (10901 (1))

as |z| = 17 for z € H. Hence, we have (3.4) as |z| — 17 for z € H. Then, by using the same

proof of Theorem 1.1, we get

Ilp.ql (F) = Omfp.q (F) =00 and 0y, (F) = O [pr1,q (F) = 14

and by Lemma 2.4 we obtain the conclusion of Theorem 1.2.

Proof of Theorem 1.3. Suppose that every solution f of equation (1.1) not being identically equal
to 0. By (1.1), we can write

FI(2) FE(2) f'(z)
—AO(Z)—W_FA[(_]_(Z)W—F+A1(Z)m (39)
From (3.9), we obtain
k—1 k f(’)
T(r,Ag) = m(r,Ag) < ;m(r, Ai) + ;m (r, - +0(1)
i= i=
k—1 k f(j)
=1 =1
If p> g > 2, then by (1.6), we know that
| T(r,A
SyeR:  lminf %1 T (n O)M > 9> a
|z|=1-.zeH (|qu_l ( 1_1‘2‘ ) )
Obviously
log,_1 T (r, A
09p-1 T (r O)M>'y>a20 (3.11)

(1096-1 (7))

as |z| - 17 for z€ H. By (1.7) and (3.11), we obtain

T (r,Ao) > exp,_1 {'v (logql (1_1|Z|) )M}

> expp_1 {a (Iogql (1_1|Z|) )M} >T(r,A), (Ii=1,2,...,k—1) (3.12)

as |z| — 17 for z € H. By applying Lemma 2.2 and substituting (3.12) into (3.10), we get

oo (oo (125) 2 memsfo s (25

+0 (|og+T(r, f) + log (11_r))
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for all z satisfying |z| = r € H1\E> as |z| = r — 17. Noting that v > «, by the last inequality,

exp {(1 —0(1))expp_2 {7 ('qu—l (:Lir) )MH

<0 (Iog*T(r, f) + log (L)) (3.13)

for all z satisfying |z| = r € H1\E> as |z| = r — 17. Therefore, from (3.13) we obtain

we have

Oip,q) (F) = Omp.q (F) =00 and G(py1 4 (F) = Ong[pr1,q (F) = 1. (3.14)
By Lemma 2.4, we get
Op+1.q] (f) = OM,[p+1.q] ()
< max {oppq (A) 1 1=0,1,....k =1} = 0py[p.q (Ao) = . (3.15)
Therefore, by (3.14) and (3.15), we obtain

Olp.q] (f) = OM,[p.q] (f) = oo and O[p+1,q] (f) = OM,[p+1.q] (f) = U.

If p=gqg=1, then by (1.8), we know that

T(r A

3y eR: liminf T(r.Ao) OZ
|z|=>17,zeH 1

()

>q>(k—1)o.

Obviously
T (I’, Ao)

as |z| - 17 for z€ H. By (1.9) and (3.16), we obtain

>y>(k—1)a>0 (3.16)

T (r,A0) >y (1_1|Z)“>(k—l)a (1_1|Z|)M

1 ©w
2a(1_|2|) >T(r,A), (i=12,..,k-1) (3.17)
as |z| = 17 for z € H. By applying Lemma 2.2 and substituting (3.17) into (3.10), we get
1 H 1 H
- < _ -
’Y(l—r) < (k 1)Ol(l—r)
N 1
+O |Og T(I’, f) + |Og ﬁ
for all z satisfying |z| = r € Hi{\E» as |z| = r — 17. Noting that v > (k — 1) a, by the last
inequality, we have
1 \# N 1
(y—(k—=1)a)|—— | <O|log" T(r,f)+log|— (3.18)
1-r 1-r
for all z satisfying |z| = r € H1\Ez as |z| = r — 17. Therefore, from (3.18) we obtain

o(f)=om(f) =00 and o2 (f) =oum2 () > u. (3.19)
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By Lemma 2.4, we get

o2 (f) =oma (f) <max{op(A)):i=0,1,...k—1} =op (Ag) = i (3.20)

Therefore, by (3.19) and (3.20), we obtain o (f) = op (f) = o0 and 02 (f) = opmo (F) = w.

Proof of Theorem 1.4. If p > g > 2, we set

log,_1 T (r,A
a0 = liminf Jp-1 (1 o)

1-,
|z]— ze (|qu71 (17|Z| ))

, log,—1 T (r, Aj)

a; = limsup ;
|Z|~)17,Z€H (logq_l (1_7‘2‘) )

By (1.10), there exist real numbers o,y such that a; < a <7y < g, i =1, 2,
log,—1 T (r, Aj) log,—1 T (r, Ao)

(Iogq—l (1—%2\))“ e ('09q—1 (flzl))u

as |z| = 17 for z € H. Hence, we have

a0 > e fr (oo (7))}

1

o (i=12,.,k-1).

... k = 1. It yields

> expp_1 {a (Iogq_l (1—|z|) )M} >T(r,A), (i=1,2,...k—1)

as |z| — 17 for z € H. Then, by using the same proof of Theorem 1.3, we get

Oip,q) (F) = Omp.q (F) =00 and G(pi1 6 (F) = Onp[pr1,.q (F) = 1,

and by Lemma 2.4 we obtain the conclusion of Theorem 1.4.

Ifp=g=1, we set

T(r,A
ap=_liminf Log
|Z|~>l_,Z€H( 1 )
1-I2]
k—1)T(r, A
aj = limsup ( ) (Z ’), (i=1,2,...k—1).

|z|—=1-,zeH (#)
1—|z|

By (1.11), there exist real numbers o,y such that a; < a <7y < g, i = 1,2,
k—1T(r, A T(r, A
(-DTCA) __ TirA)
1 1
(1) ==

as |z| - 17 for z € H. By (3.21), we obtain

T ()

>a( _12 )uz(k—nT(r,A,), (i=1,2, .. k—1)

.., k= 1. It yields

(3.21)

(3.22)
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as |z| — 17 for z € H. By applying Lemma 2.2 and substituting (3.22) into (3.10), we get

fy(lir)ﬂga(L)M+O(I09+T(r,f)+log(ir))

for all z satisfying |z| = r € H1\E» as |z| = r — 17. Noting that v > «, by the last inequality,

we have
(v—a) (-2} <0 [log* T(r, F) + 10g [ - (3.23)
K 1—-r] — J ' N1 ’
for all z satisfying |z| = r € H1\E> as |z| = r — 17. Therefore, from (3.23) we obtain
o(f)=onm(f)=oc0cand oo (f) =0oumo(f) > u. (3.24)
By Lemma 2.4, we get
()] (f) =0M.2 (f) < max{aM (A,) 1=0,1,..., k— 1} =0Mm (Ao) = W. (325)

Therefore, by (3.24) and (3.25), we obtain o (f) = op (f) = o0 and 02 (f) = opo (F) = w.

Proof of Theorems 1.5 and 1.6. Suppose that every meromorphic (or analytic) solution f of
equation (1.2) not being identically equal to 0. From (1.2), we get
(k) (k=1)

f

A0 (2) < 1A () | bera @l (3.20

f'
+ |Ak-1(2)] ‘

By using a similar proof as in Theorem 1.1 or Theorem 1.2, we obtain

|Ao (2)] > exp,, {'Y (Iogq_l (1—1|Z|) )u}

> exp, {a (Iogq_l (1—1|z) )“} > A (2) (1=1,2,..., k) (3.27)

for |z| € H1\E1 as |z| — 17. Applying (3.1) and (3.27) into (3.26), we get

oo {1 (109 (1171 )“} < 1o (2)]

e B e R )|
connfa b (22))]

for all z satisfying |z| € H1\E1 as |z| — 1. Noting that v > «, by the last inequality, we have

exp ((1 —o(1))expp1 {,y (Iogql (1—1|Z|) )u})

<k( L )k(2+E)Tk(s(|z|) F) (3.28)
=Klim ' '
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for all z satisfying |z| € H1\E1 as |z| — 1. Then, by (3.28) and combining with Lemma 2.3, we
get for all r = |z] € Hq

exp ((1 —o(1)) expp_1 {’Y (Iogq_l (11—r) )M})

<k (1)k(2+£) T (s1(r) . F) (3.29)
- 1—5s(r) LA ’

where 53 (r) = 1—d? (1 — r) with d € (0, 1). Therefore, from (3.29) we obtain O[p,q (f) = 0o and

. logy 1 T (s1(r), f)
Ofp+1,q) (F) = limsup —>+2 :
s1(r)—1~ |qu (?1(/’))

Proof of Theorems 1.7 and 1.8. Suppose that every meromorphic (or analytic) solution f of

equation (1.2) not being identically equal to 0. By (1.2), we can write

F1(2) F(z) f'(z)
— Ao (2) = Ax (z)m+ k_l(z)w+-~+A1 (2) o) (3.30)
From (3.30), we have
k k f(’)
T(r,Ag) = m(r,Ag) < ;m(r, Ai) + ;m 4 +0(1)
= =
k k f(’)
If p> g > 2, then by using a similar proof as in Theorem 1.3 or Theorem 1.4, we obtain
1 K
T (o > ey {1 (et () )
1 23
>expp_1 {Ol (|qu_1 (1—|Z|)) } ZT(I’,A,‘), (I:1,2,,k) (332)

as |z| = 17 for z € H. By applying Lemma 2.2 and substituting (3.32) into (3.31), we get

ewns o [osea (1)) <o fo o0+ ()]

+0 (Iog+ T(r,f)+log (11—r))

for all z satisfying |z| = r € H1\E» as |z| = r — 17. Noting that v > «, by the last inequality,

exp{(l —o0(1))expp o {"Y ('qu—l (11—r) )u”

<0 (|Og+ T(r,f) +log (1:) ) (3.33)

for all z satisfying |z| = r € H1\E> as |z| = r — 17 . Therefore, from (3.33) we obtain

we have

Tlp.al (f) =00 and Olp+1.q] (f) > u.
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If p= g =1, then by using a similar proof as in Theorem 1.3 or Theorem 1.4, we get

Tr Ao = (1—1|z|)u>k°‘ (1—1|z|)u

>oz(1_1|z|)M2T(r,A,-), (i=12,..k) (3.34)

as |z| = 17 for z € H. By applying Lemma 2.2 and substituting (3.34) into (3.31), we obtain
1\# 1\# . 1
¥ < ka + O |log™ T(r, )+ log T

1—r 1—r

for all z satisfying |z| = r € H1\E» as |z| = r — 17. Noting that v > ka, by the last inequality,

we have
(7 — ka) 1t M<O log* T(r,f) +1lo o (3.35)
" 1—-r] — J ' N1+ )
for all z satisfying |z| = r € H1\E2 as |z| = r — 17. Therefore, from (3.35) we obtain

o (f) = o (f) = 0o and 05 () = owa (F) > .

4. PROOF OF THEOREM 1.9

Suppose that every solution f of equation (1.1) not being identically equal to O.

First step. We consider the fixed points of f. Define the function g by setting
g(z):=f(z)—z, zeD.
It follows from (1.1) that
9" + A_1g )+ Arg 4 Avg = — AL — zA (4.1)
and by Theorem 1.1 or Theorem 1.2, we get

I1p,q] (9) = Olp,q (F) = 00, Tp11,4) (9) = Oppt1, (F) = 1,

_ A (4.2)
>‘[p+1,q] (9) = >‘[p+1,q] (f - Z) .

Now, we prove that —A; — zAg # 0. Assume that —A; — zAp = 0. Clearly Ag # 0. Then

ALl — 1 and by (3.4), we have

lim yim

|z|>1—,zeH

exp, {a (Iogq_l (1_1|Z|)
exp, {'Y (lqufl (1fz|)
1

B exp {(1 —o(1l))expp_1 {’Y (|09q71 (17\2\ v

A1 (2)
Ao (2)

[
N —
N —

=
—
——
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as |z| - 17 for z € H. Then lim =

|z|—1-,zeH | A0
—A; — zAp # 0. Next by Lemma 2.5, we get

max {J[p,q] (A,) (I =0,1,....k— 1),0’[p’q] (—Al — ZAo)} < Q.

We deduce, by using (4.1),(4.2) and Lemma 2.6 that

Ap.q) (9) = 05,1 (9) = 00, Apr1,g1(9) = Oppy1,q (9) = 1

Therefore, we obtain
Ap.al (F = 2) =N, (9) = 01, g (9) = T[p,q (F) = 0,

Mot (F = 2) = Npr1,q1 (9) = 0[p11.q1 (9) = Oppr1.q (F) = 1.

241 = 0. It is easy to see the contradiction.

Hence,

Second step. For the following proof, we use the principle of mathematical induction. Set A, (z) =

1, then

niorzon, o (s (2] ]

and equation (1.1) becomes (1.2). We consider the fixed points of fU) (z) (j = 1,2, ...). Define

the function g; by setting
91(2):=f'(z) -2z zeD.
Then, by Lemma 2.5 and (4.2), we have
Olp.q) (91) = Op.q) (F') = 00, Opp11,4 (91) = Tp11,q (F') = 11,
Ap+1,q] (91) = Apt1,q (F' = 2).

Dividing both sides of (1.2) by Ap, we obtain

Ak ey o Ak=1 (k-1) AL, o
A FO S e S f =0,

It follows, by differentiating both sides of equation (4.4) that
%f(k-i—l) + ((ﬁ\\g)/+ Aﬁ\;l) FR) 44 ((2\2)/+ /;\\1) %
+ ((;‘;)IH) fl=0.
Multiplying (4.5) by Ag, we have
A FEFD L A FR o A Agaf =0,
Substituing f' = g; + z into (4.6), we obtain
Ak,1g§k) + Ak—1,19§k71) + -+ A9 + Avigr = Fu,

where

!/
Acr=Ac =1, A,-,leo((A;\gl) +f}") (i=12 .., k=1),

(4.4)
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AOJ:AO((?;) +1), (4.9)
Fl = — (Al,l + ZAoyl) . (410)

Next, we prove that Ag1 # 0 and F; # 0. Assume that Ag1 = 0, then ﬁ—é = —z+ Cy, where Cy is
an arbitrary constant. Hence, we have A; + (z — Co) Ap = 0. Then, fy = z — Cp is a solution of
(1.1) and oy, ) (fo) < co. This contradicts (4.2) . Now, assume that F; = 0. By (4.6) and (4.10),
we know that the function f; such that f{ = z is a solution of equation (4.6) and oy, ) (f1) < oo.
This contradicts (4.2) . Therefore, Ap1 # 0 and 1 # 0. It follows by (4.8) — (4.10) and Lemma
2.5 that

max {0 q (A1) (I=0.1,...k),00q (F1)} < co.

We deduce by using (4.3),(4.7) and Lemma 2.6 that

Np.a1 (91) = 01p.q1 (91) = 00, Xpi1,q1 (91) = Oppy1,q) (1) = k.

Therefore, we obtain

Mol (F' = 2) = Xp.q1 (91) = 01p,q (91) = 0 q (F) = 00,

Apt1.q) (F' = 2) = Npt1.q (91) = Oppr1.q) (91) = Oppr1.q (F) = L.
Set g» (z) = " (z) — z, z € D. Then, by using a similar discussion as in the case of the function
g1, we can get
Ak'2f(k+2) + Ak—1,2f(k+1) 4ot A1,2f(3) + Agof” =0
and
Ak,29§k) + Ak—1,29§k_1) + o+ A1agh + Avnge = Fo,
where

A", Au -
A2 =1, Ai2=Ao1 (W) + a2, (=12 ..k-1),

A1 ), )
Aos=Aos | [221) +1],
0.2 01 ( (AO,l
Fo=—(A12+ zA02).

Therefore, by the same procedure as for g;, we obtain

Alp.q) (Ff"—2z) = X[p,q] (92) = 0pp,q1 (92) = 0pp,q) (F) = o0,

X[p+1,q] (fﬂ - Z) = ;\[p+1,q] (92) = O[p+1.q] (92) = O[p+1.q] (f) = .

Now, assume that

AO,s ?_é O,
Ap.g) (FS) = 2) =0y, 4 (F) = 0, (4.11)

X[p+1,q] (f(s) - Z) =0O[pt1,q (F) =1
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forall s =0,1,...,j—1, and we prove that for s = j we have (4.11) holds. Set g; (z) = fU) (z) —
z € D. Then, by using (4.2), we obtain

Tp.q) (9) = Opp.q) (FP) = 00, Tpi1.41 (9) = Tpyr,q) (FP) =

~ 8 _ (4.12)
Mp+1.a1 (91) = Apprrq (Y = 2).
By following the same procedure as before, we have
A PR Ay D o A FUTD A D) = 0 (4.13)
and
Akj ( ) + Ak—l,jg}k_l) + e + A].Jgjl + AO,jgj = ’L_jy (414)
where

A =1 A= An A1t I Aij1 =1,2 k—1
k.j o Ay 0j-1 yryenll Bl (i 2, ),

Agj-1

!/
Ao = Ao,j—1 ( (f\;jj) + 1) Z0 (Aoo=Ao, Aio=A1),
— (Alyj + ZAOJ) 5_'5 0.
We deduce by applying Lemma 2.6 in (4.14) that
Npal (F9 = 2) = N (91) = O (9)) = opp (FP) =
Npiva (F = 2) = Xpira (9)) = oppr1.a ()
p+1q]( ):,U'(_j:].,z,)
Therefore, we obtain
Xpal (F = 2) = Xpq) (F = 2) = 0pp.q (F) = o
;‘[P+1,q] (f(j) - Z) = X[erl,q] (f—z) = Olp+1.q] (fHl=w =12 ..).
5. PROOFS OF THEOREM 1.10 AND 1.11

Proof of Theorem 1.10. Suppose that every solution f of equation (1.1) not being identically
equal to 0. By applying Theorem 1.3 or Theorem 1.4, we get

Ofp,q) () =00, Oppt1,4 (F) = L.
Now, we prove that —A; — zAg # 0. Assume that —A; — zAg = 0, then we can easily obtain

T(r,A1)=T(r,—zA0) < T (r,A) +T(r,2z),

T(vao):T(f,%)ST(r,A1)+T(r,z)+O(1). (1)

It follows from (5.1) that

T(r.z)+0(1) < T (r,Ap) <14 T(r,2)

L= 0 A ST A ST T Ay

(5.2)
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By following the same reasoning as in the proof of Theorem 1.3 or Theorem 1.4, we have
1 K
rasenf e ()

w
> expp_1 {a (Iogq_l (1_1|Z|) ) ]» >T(r,A1) (5.3)

as r =|z| — 17 for z € H. By using (5.3), we obtain

T(r,2) T(r,2)
< -0 (5.4)
o
T (I’, AO) exppil {ry (|qu71 ( 1E|Z| ) ) }
as |z| = 17 for z € H. Then, by (5.2) and (5.4), we get
T(r,Al)
— 55
|z|—>1|azeH T (r,Ag) (5)
On the other hand, we have for p=qg=1
T(r,A)) «
— <1 5.6
T(r.A0) v (50
and forp>qg > 2
1 p
T(r,A) _ Pe1 {O‘ ('qu—l (1_|z|)) }
A < im0 (5.7)
A e {7 (log-s () )}
as |z| = 17 for z € H. It follows by (5.6) and (5.7) that
T(r’Al)#l (58)

|z|e1m,z€H T (I’, Ao)

Obviously, (5.5) contradicts with (5.8). Hence, —A; — zAg Z 0. Set Ax (z) =1, then T (r, Ax) <
n
expp_1 {a (Iogq_l (I%M)) } . Clearly, Ao # 0. We can get the conclusion of Theorem 1.10, by

reasoning in the same way as we did in the proof of Theorem 1.9.

Proof of Theorem 1.11. Suppose that every meromorphic (or analytic) solution f of equation (1.2)

not being identically equal to 0. By applying one of Theorem 1.5 to Theorem 1.8, we get

Olp.q] (f) = 00, O[p+1,q] (f) ey

Then, we can get the conclusion of Theorem 1.11, by reasoning in the same way as we did in the
proof of Theorem 1.9 and Theorem 1.10 by using 0,1 g (f) > p instead of o414 (f) = 4 and
Opi1ql (FY) = winstead of o114 (FY) =p G =1,2,..).
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6. EXAMPLES

Example 6.1 Consider the following differential equation

"+ K1 (z) expy { (I092 (1_12) )5} f!
+K0(z)exp4{3(|092 (1_12))5}7‘20, (6.1)

where Ky and K are analytic functions in the unit disc D such that |Kp| > 1, |K1] < 1 and

max {o w43 (Ko) op a3 (K1)} < 5.

In the equation (6.1), we have

Ao (2) = Ko (z)exp4<[3 (I092 (1_12) )5}
() = Ky (Z)eXD4{(|092 = )5}

max {UM,[4,3] (AO) ’ O-M'[4’3] (Al)} = 5

Then

let H={ze€C:|z|=r<1and argz =0} C D be a set of complex numbers satisfying

densp{|z| :z€e H} =1>0.

Then
5
140 (2)| = 1Ko (2) exp4{3 [os2 () }
5
SR
1091 A0 @) 5y fiine 129 lA @] 5y
(logz (%)) r=17.2€H (log, (127))
and

AL(2)] = |Ki(2)]

oo (v (2]
oo (v [25))]

as r — 17 for z € H. It is clear that the conditions of Theorem 1.1 hold witha=1,u =5, p=4

IN

and g = 3 on the set H. By Theorem 1.1, every solution f # 0 of equation (6.1) satisfies

o3 (f) = opmas () =00 and o053 (f) = opms3 (F) = ons,3 (Ao) = 5.
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Example 6.2 Consider the following differential equation
K2 (2) expy {(Iogz (ﬁ)f} f"+K1 (2) exps {2 (log, (i))Y} f'

7
+ Ko (2) expq {5 (109 (25)) "} £ = 0, (6.2)
where Ko, K1 and K> are analytic functions in the unit disc D such that |Ko| > 1, |K1| < 1,|Kz| < 1

and
max {owm 43 (Ko) o a3 (K1) ez (K2)} < 7.

In the equation (6.2), we have

Ao (2) = Ko (2) exp4 {5 (109> ()"}
A1 (2) = K1 (z) expy {2 (logz (ﬁ)f} :

Ao (2) = Ko (2) expa { lo02 ()"}
Then
max {opm (4.3 (Ao) . Omjaz) (A1) Onpazy (A2)} = 7.

let H={ze€C:|z|=r<1and argz =0} C D be a set of complex numbers satisfying

densp{|z| :z€e H} =1>0.

Then
140 ()| = Ko (2)l|expa {5 (1002 ()"}
> expy {5 (logs (ﬁ)y}
1094 Ao (2)] (Z)|7 > 55 liminf %A (D) (Z)|7 >5>02,
(log> (7)) r=126H (log, (127) )
and

AL(2)] = [Ki(2)]

oo ) )
exp4{2 '092(1;))7}

A2(2)] = |K2(2)] exp‘*{('ogz(liz))?}
< onfefon (2] ]

IN
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as r — 17 for z € H. It is clear that the conditions of Theorem 1.5 hold with =2, u =7, p=4
and g = 3 on the set H. By Theorem 1.11, every meromorphic (or analytic) solution f # 0 of
equation (6.2) satisfies

Aa.3] (f(j) - Z) = A3y (F —2) = 04 3) (f) = o0

and

Noal (0= 2) =Xe3y (F=2) =053 (N =7 (1=1.2,..).

REFERENCES

[1] S. Bank, General theorem concerning the growth of solutions of first-order algebraic differential equations. Compos.
Math. 25 (1972) 61-70. http://www.numdam. org/item/CM_1972__25_1_61_0.

[2] B. Belaidi, Estimation of the hyper-order of entire solutions of complex linear ordinary differential equations whose
coefficients are entire functions. Electron. J. Qual. Theory Diff. Equ. 2002 (2002) 5. http://real .mtak.hu/23284.

[3] B. Belaidi, Growth of solutions to linear equations with analytic coefficients of [p,q] -order in the unit disc. Electron. J.
Diff. Equ. 2011 (2011) 156. http://ftp.gwdg.de/pub/EMIS/journals/EJDE/Volumes/2011/156/abstr . html.

[4] B. Belaidi, Growth and oscillation theory of [p,q]-order analytic solutions of linear equations in the unit disc. J.
Math. Anal. 3 (2012) 1-11.

[5] B. Belaidi, On the [p,q]-order of analytic solutions of linear equations in the unit disc. Novi Sad J. Math. 42 (2012)
117-129.

[6] L. G. Bernal, On growth k -order of solutions of a complex homogeneous linear differential equation. Proc. Amer.
Math. Soc. 101 (1987) 317-322. https://doi.org/10.1090/50002-9939-1987-0902549-5.

[7] T. B. Cao and H. X. Yi, The growth of solutions of linear differential equations with coefficients of iterated order in
the unit disc. J. Math. Anal. Appl. 319 (2006) 278-294. https://doi.org/10.1016/7. jmaa.2005.09.050.

[8] T. B. Cao, The growth, oscillation and fixed points of solutions of complex linear differential equations in the unit
disc. J. Math. Anal. Appl. 352 (2009) 739-748. https://doi.org/10.1016/]. jmaa.2008.11.033.

[9] Y. Chen, G. T. Deng, Z. M. Chen and W. W. Wang, Growth and fixed points of solutions and their arbitrary-
order derivatives of higher-order linear differential equations in the unit disc. Adv. Diff. Equ. 2021 (2021) 431.
https://doi.org/10.1186/513662-021-03579-3.

[10] Z. X. Chen and C. C. Yang, Some further results on the zeros and growths of entire solutions of second order linear
differential equations. Kodai Math. J. 22 (1999) 273-285. https://doi.org/10.2996/kmj/1138044047.

[11] I. Chyzhykov, G. Gundersen and J. Heittokangas, Linear differential equations and logarithmic derivative estimates.
Proc. London Math. Soc. (3) 86 (2003) 735-754. https://doi.org/10.1112/50024611502013965.

[12] W. K. Hayman, Meromorphic functions. Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.

[13] J. Heittokangas, On complex differential equations in the unit disc. Ann. Acad. Sci. Fenn. Math. Diss. 122 (2000)
1-54.

[14] H. Hu and X. M. Zheng, Growth of solutions of linear differential equations with analytic coefficients of [p,q]-order
in the unit disc. Electron. J. Diff. Equ. 2014 (2014) 204.

[15] O. P. Juneja, G. P. Kapoor and S. K. Bajpai, On the (p,q)-order and lower (p,q)-order of an entire function. J. Reine
Angew. Math. 282 (1976) 53-67. https://doi.org/10.1515/crll.1977.290.180.

[16] O. P. Juneja, G. P. Kapoor and S. K. Bajpai, On the (p,q)-type and lower (p,g)-type of an entire function. J. Reine
Angew. Math. 290 (1977) 385-405. https://doi.org/10.1515/crll.1977.290.180.

[17] I. Laine, Complex differential equations. Handbook of differential equations: ordinary differential equations. Vol. IV,
269-363, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008.


https://doi.org/10.28924/ada/ma.3.10
http://www.numdam.org/item/CM_1972__25_1_61_0
http://real.mtak.hu/23284
http://ftp.gwdg.de/pub/EMIS/journals/EJDE/Volumes/2011/156/abstr.html
https://doi.org/10.1090/S0002-9939-1987-0902549-5
https://doi.org/10.1016/j.jmaa.2005.09.050
https://doi.org/10.1016/j.jmaa.2008.11.033
https://doi.org/10.1186/s13662-021-03579-3
https://doi.org/10.2996/kmj/1138044047
https://doi.org/10.1112/S0024611502013965
https://doi.org/10.1515/crll.1977.290.180
https://doi.org/10.1515/crll.1977.290.180

Eur. J. Math. Anal. 10.28924/ada/ma.3.10 27

[18] Z. Latreuch and B. Belaidi, Linear differential equations with analytic coefficients of [p,q]-order in the unit disc.
Sarajevo J. Math. 9 (2013) 71-84. http://doi.org/10.5644/SJM.09.1.06.

[19] Y. Z. Li, On the growth of the solution of two-order differential equations in the unit disc. Pure Appl. Math. 4 (2002)
295-300.

[20] J. Ly, J. Tu and L. Z. Shi, Linear differential equations with entire coefficients of [p,q]-order in the complex plane. J.
Math. Anal. Appl. 372 (2010) 55-67. https://doi.org/10.1016/7. jmaa.2010.05.014.

[21] M. Tsuji, Potential Theory in Modern Function Theory. Chelsea, New York, (1975), reprint of the 1959 edition.

[22] J. Tu and Z. X. Xuan, Complex linear differential equations with certain analytic coefficients of [p,q]-order in the unit
disc. Adv. Diff. Equ. 2014 (2014) 167. https://doi.org/10.1186/1687-1847-2014-167.


https://doi.org/10.28924/ada/ma.3.10
http://doi.org/10.5644/SJM.09.1.06
https://doi.org/10.1016/j.jmaa.2010.05.014
https://doi.org/10.1186/1687-1847-2014-167

	1. Introduction and main results
	2. Some lemmas
	3. Proofs of Theorems 1.1 to 1.8
	4. Proof of Theorem 1.9
	5. Proofs of Theorem 1.10 and 1.11
	6. Examples
	References

