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ABSTRACT. We study a third-order nonlinear equal width equation, which has been used for simulation
of a one-dimensional wave propagation in a non-linear medium with dispersion process, by symmetry
analysis. First, Lie point symmetries are obtained and used to reduce reduce the equal width equation
thereby constructing exact solutions. Traveling waves are constructed using of a linear combination of
space and time translation symmetries. We have used the multiplier technique to compute conservation

laws.

1. INTRODUCTION

The Equal width Equation [1] is given by,
A= up + auuy + Bux = 0, (1.1)

where t and x represents time and spatial independent variables ; @ and 3 are the nonlinearity
and the dispersion parameters respectively. Equation (1.1) was first studied by Morrison [2] and
describes nonlinear dispersive waves, particularly those generated in a shallow water channel.
Several techniques have been employed to compute solutions of Equation (1.1). A case in point,
is in [3], where a Petrov-Galerkin approach applied quadratic B-spline finite element. In [4], the
researchers applied least-squares approach in the construction of numerical solutions. We present

a group analysis approach in this paper by first giving the preliminaries.

2. PRELIMINARIES
This section is a prelude to the sequel.
Received: 3 Nov 2022.
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Local Lie groups. [5] We will consider the transformations
Te: X =@ (X u*e), T =9 ue), (2.1)

in the Euclidean space R” of x = x’ independent variables and R™ of u = u® dependent variables.
The continuous parameter € ranges from a neighbourhood N/ C N C R of € = 0 for ¢’ and %*

differentiable and analytic in the parameter €.

Definition 2.1. Let G be a set of transformations in (2.1) . Then G is a local Lie group if:

(i). Given T¢,, Te, € G, for €1,€2 € NV C N, then
Te,Te, =Tey, €G, €3 = ¢(€1,€2) € N (Closure).
(il). There exists a unique Tp € G if and only if € = 0 such that T Tg = ToTe = T¢(ldentity).
(iil). There exists a unique T.-1 € G for every transformation T, € G,
where e € NV C N and € ! € N such that
TeTe-1 =T—1Te = To (Inverse).

Remark 2.2. The condition (i ) is sufficient for associativity of G.

Prolongations. Consider the system,

Ao (X' u®, Uy, o Uy ) = Dg =0, (2.2)

,—i—u‘?‘i+u¢¥i—|—..., (2.3)
u u

the total differentiation operator with respect to the variables x’ and 6{ the Kronecker delta. Then

Di(xX)=¢&,", u*=Di(u*), u®=Dj(D;i(t®), ... (2.4)

ij
where u> defined in (2.4) are differential variables [6].

(1) Prolonged groups Let G given by

)‘(i = ('D’I(X’.v Lla,é), (pi o = Xi, 0% = '(/}a(xj, Ua,e), ’l/)a o = u°, (25)

where means evaluated on € = 0.
e=0

Definition 2.3. The construction of G in (2.5) is equivalent to the computation of infinitesimal
transformations

= Xi,
<=0 (2.6)

7% ~ y® + na(Xi, uo‘)e, ,lpa _ ua’

e=0

5~ x gi(xi, u*)e, (pi
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obtained from (2.1) by a Taylor series expansion of ¢'(x’, u%, €) and 9'(x’, u®, €) in € about

€ = 0 and keeping only the terms linear in €, where

- Oy’ (x', u™, €) - oY (x', u, €)
Iyl 2 — oyl ) — 27
£ ) Oe o' (<, ) Oe =0 (27)
Remark 2.4. By using the symbol of infinitesimal transformations, X, (2.6) becomes
X (1+ X)X, 0%~ (1+X)u*, (2.8)
where
X = €00, 0%) o (0, %) o (29)
" Tox! T Toux '
is the generator G in (2.5).
Remark 2.5. The change of variables formula
D; = Di(¢')D;, (2.10)

is employed to construct transformed derivatives from (2.1). The D; is total differentiation

%', As a result

oy = Di(a®),

* = B;(a%) = Di(a). (211)

If we apply the change of variable formula given in (2.10) on G given by (2.5), we get
Di(y™) = Di(¢’), D;j(@*) = a*Di(¢’). (2.12)

If we expand (2.12), we obtain

(224 p28) -2 s 20

, P ) P = : [T 213
Ox! Lous | Ox! Tt ouB ( )
The @ can be written as functions of x' ue, U(1), meaning that,

0> = d%(x', u®, upy,€), @

= uf. 214
= 214)
Definition 2.6. The transformations in (2.5) and (2.14) give the first prolongation group G,
Definition 2.7. Infinitesimal transformation of the first derivatives is

0% ~ u™ + (%, where (%= (¢¥(x', u*, Uey, €). (2.15)

Remark 2.8. In terms of infinitesimal transformations, Gl is given by (2.6) and (2.15).

(2) Prolonged generators
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Definition 2.9. By the relation (2.12) on GI! from 2.6, we obtain [7]

Di(x! + &e)(u? + (Fe) = Di(u* + n*e), which gives (2.16)
u + (e + ujaeD,-Ej = ui* + Din%e, (2.17)

and thus
(¥ =Di(n®) — u Di(¥)), (218)

is the first prolongation formula.

Remark 2.10. Analogously, one constructs higher order prolongations [7],

/(} = DJ(C?) - U%Dj(gn)' 2‘ ik D/K(Cg ..... /K,l) - Uﬁ‘,@,.“,iﬁqu(fj)- (2.19)

Remark 2.11. The prolonged generators of the prolongations G, .., Gl¥l of the group G

are
X[l] =X+ C‘?‘i . X[K] — X[K_ll + CQ‘ . L K>1 (2 20)
] aula ..., Ik a(g ..... I_Fu - .

for the group generator X in (2.9).
Group invariants.

Definition 2.12. A function (x’, u®) is said to be an invariant of G of in (2.1) if
M(x', 0% =(x', u®). (2.21)

Theorem 2.13. A function T(x', u®) is an invariant of the group G given by (2.1) if and only if it
solves the following first-order linear PDE: [8]

"o (2.22)

o or .
! 1 a [0 ! (03
X =& u*)z=+n*(x", u 3

Ox!

From Theorem (2.13), we have the following result.

Theorem 2.14. The Lie group G in (2.1) [9] has precisely n— 1 functionally independent invariants

and one can take as the basic invariants, the left-hand sides of the first integrals
Yi(x', u*) =cr, o Yo (X U®) = e, (2.23)

of the characteristic equations for (2.22):
dx’ o du®
gi(xi, LIO‘) - ’I’]o‘(X", LIO‘)'

(2.24)
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Symmetry groups.

Definition 2.15. We define the vector field X (2.9) as a Lie point symmetry of (2.2) if the determining

equations

XA, Lm0 a=1 m o m>1, (2.25)

are satisfied for the m-th prolongation of X, namely X[™.

Definition 2.16. The Lie group G is a symmetry group of (2.2) if (2.2) is form-invariant, that is
Ag (X', 0%, Gy, .., Oy) = 0. (2.26)

Theorem 2.17. The Lie group G (2.1) can be constructed from the infinitesimal transformations in
(2.5) by integrating the Lie equations

b

gl o =i
de E(X’U)' Xe—

=x, ——=n*& %), @ =u* (2.27)

Lie algebras.

Definition 2.18. A vector space V), of operators [8] X (2.9) is a Lie algebra if for any X;, X; € V,,
X0, X]] = XiX; = X;X, (2.28)

isinV, forall/,j=1,..., r.

Remark 2.19. The commutator is bilinear, skew symmetric and admits to the Jacobi identity [5].

Theorem 2.20. The set of solutions of (2.25) forms a Lie algebra [10].

Exact solutions. The methods of (G'/G)-expansion method [7], Extended Jacobi elliptic function

expansion [9] and Kudryashov [11] are usually applied after symmetry reductions.
Conservation laws. [11]
Fundamental operators.

Definition 2.21. The Euler-Lagrange operator % is

0 0 15}
505 =3 T Y (=1)*Dy. ..., Digra (2.29)
K>1 i3
and the Lie- Béacklund operator in abbreviated form [11] is
. 0 0
X=¢_"4n*— 4+ (2.30)

ax! ou™
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Remark 2.22. The Lie- Backlund operator (2. 30) in its prolonged form is

X = g" (2.31)
1112 IK
for
= DWW+ g, (R = Dy WA U L j=1,...n. (2.32)
and the Lie characteristic function
W =n* - gu?. (2.33)
Remark 2.23. The characteristic form of Lie- Backlund operator (2.31) is
0 0
X =¢'D; +We— + Dy i (W) 5 (2.34)
Ou Ou /1/2 Lk
The method of multipliers.
Definition 2.24. A function A* (x', u®, u(yy,...) = A%, is a multiplier of (2.2) if [/]
N*Ny = DT, (2.35)
where D;T' is a divergence expression.
Definition 2.25. To find the multipliers A%, one solves the determining equations (2.36) [10],
]

Ibragimov's conservation theorem . The technique [5] enables one to construct conserved vectors

associated with each Lie point symmetry of (2.2).
Definition 2.26. The adjoint equations of (2.2) are
A (X u v Uery Vimy) = 6S<"(V6Aﬁ) =0, (2.37)
for a new dependent variable v*.
Definition 2.27. The Formal Lagrangian £ of (2.2) and its adjoint equations (2.37) is [8]
L= v* (X', u®, Uy, - - Uimy)- (2.38)

Theorem 2.28. Every infinitesimal symmetry Xof (2.2) leads to conservation laws [6]

pT| -0, (239)
Aq=0
where the conserved vector
oL oL oL
a _ _

=L+ w [6‘0‘ D, 60‘ + DDy aufj‘k ]+

(2.40)
oL oL oL
(64 o ) (04 _
D;(W<) lauff Dy augk + .. ] + DDy (W%) lauffk ] .
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3. MAIN RESULTS

3.1. Lie point symmetries of equal width equation(1.1). We start first by computing Lie point

symmetries of the equal width Equation (1.1), which admits the one-parameter Lie group of trans-

formations with infinitesimal generator

0 0 0
X =7(t,x, u)a +&(¢, x, u)a—x +n(t, x, u)a

if and only if

xXBlal - =o.
A=0
where
0 0 0
X8l = x i —
+ (1 au, + CzauX + (122 I

is the third prolongation of the Lie point symmetry X as defined in (2.20) and

G = Di(n) — urDe(7) — uxDe (),
€12 = Dx(C1) = uee Du(T) — uexDx(§),
C = Dx(n) — ueDx(T) — uxDx(8),
G2 = Dx(C12) = UrexDx(T) = ussx Dx(§),

as defined in (2.19), and

Dt — g+ut2+uti+u i‘i‘
ot du = ou, ' Tou !

Dy = 2—i—u2+u i%—u i%—

x ox *du XAy txaut

(3.1)

(32)

(33)

(3.8)

(3.9)

Applying the definitions of D; and Dy given in (3.8) and (3.9), we obtain the expanded form of the

(s as

C1=nr + ur(nu — Te) + ux(=E€t) + urun(—&u) + Ug(_'ru)v

C12 = Mex + ux('r]tu - gtx) + Utx('r]u — Tt — ‘gx) + Ut(nxu - Ttx) + Utux('r]uu —&xu — Ttu)

+ Uplpn (—2Ty) + U2 (—Txy) + U2 U (—Tu) + tx (=€) + U2 (—Ery) + Usctipx(—2€,)

+ Utu)%(_guu) + UtUxx(_gu) + Utt(_Tx) + UxUtt(_Tu)

C2 = Mx + Ux(My — &x) + ut(—Tx) + urux(—=74) + U)%(_Su)r


https://doi.org/10.28924/ada/ma.3.13

Eur. J. Math. Anal. 10.28924/ada/ma.3.13

C122 = Nixx + Ux(277txu - gtxx) + Uxx('r]tu - 2£tx) + U>2<(77tuu - 2£txu) + Utxx(nu — Tt — 2&x)

+ Ut (2Mxuu — Exxu — 2Texu) + UxUex(2Muu — 4€xu — Tew) + Utx(2Mxu — 2Tex — €xx)

+ Ut (Mxu — Texx) + Ut (Muu — 2650 — Tew) + Ut (Muus — 2Exuu — Teuu) + Un(—274)

U Upsx (—27T0) + U Uex(—4Txw) + UZ (= Taxu) + U7 (—2Txuu) + UrlxUex(—4Tuy),

+ VU (—Tuuu) + Ussx(—€e) + UF tx (—Tuw) + Uxte(—4€e0) + U3 (—Eruu) + UxxUex(—3€4)
Us U (—2€0) + UZ U (—3€uu) + U s (—38uu) + Ut (—Euuu) + Utto(—Eu)

+ Uttx(_2Tx) + Utt(_TxX) + UXUtt(_2TXU) + U)%Utt(_'ruu) + Uxxutt(_Tu) + UxUttx(_2Tu - gu)

(3.10)

Now from Equation (3.2), we have

G+ anux + alau +5C122}Um:,%,%uux =0, (3.11)

If we substitute for (1, (2 and (122 in the determining Equation (3.11), we obtain the following;

Nt + ur(My — Tt) + U (—Er) + et (=€) + v (—74) + anuy

+ OlU{'fIx + Ux(nu - gx) + Ut(_Tx) + Utux(_Tu) + U)%(_gu)}
+B{"7txx + Ux(2ntxu - gtxx) + Uxx('ntu - 2€tx) + U>2<(77tuu - thxu) + Utxx(nu — Tt — 25)()

+ Ut (2Nxuu — Exxu — 2Texu) + UxUex(2Muu — 4xu — Tew) + Utx(2Mxu — 2Tex — €xx)

+ Ut(Mxu — Texx) + Ul (Muu — 26xu — Tew) + Utz (Muww — 26xuu — Trau) + Upe(—27T4)
UtUpsx (—27y) + Urtex(—4Txu) + UF (= Taxu) + Ux U7 (—2Txuu) + Uetx Uex (—4Tuu),

+ UZUF(—Tuuu) + Uxsx(—€e) + UF tx (= Tuw) + Ux U (—4€0) + U3 (—Erun) + UsxUex(—3€4)

Uxutxx(_zgu) + U)%Utx(_:gguu) + UXUtUxx(_?)guu) + Utui(_guuu) + UtUxxx(_Eu)

+ Uttx(_z'rx) + Utt(_TXX) + Uxutt(_z'rxu) + U>2<Utt(_Tuu) + UxxUtt(_Tu) + UxUttx(_zTu - gu)]’

=0

u ur _a
tXX=— 23— 7 Ul
BB

(3.12)

Now replacing usxx by —% — %uux in Equation (3.12), we have


https://doi.org/10.28924/ada/ma.3.13

Eur. J. Math. Anal. 10.28924/ada/ma.3.13

Nt + ue(My — Te) + tx(—E¢) + urtn(—€u) + U2 (—Ty) + anuy

+ OCU{TIX + Ux("?u - gx) + Ut(_'rx) + UtUx(_Tu) + U)%(_gu)}

+,B{77txx + Ux(277txu - gtxx) + Uxx('ntu - 2£tx) + U)%(T’tuu - 2£txu)+

Ut
[ 5 6uux]('r7u — Tt — 2€x)

+ Utx(2Mxuu — Exxu — 2Ttxu) + UxUex(2Nuy — 4&xu — Teu) + Uex (2Mxu — 2Tex — Exx)

+ Ut (Mo — Tood) + Utthod(Muw = 26 — Tew) + U0 (Muwy — 2Exun — Teuu) + Upx(—274)

+ ut[ ﬁ ~5 uux]( 27,) 4 Urtex (—4Txy) + U2 (= Taxw) + UxUZ(—2Txuu) + UrlxUpx (—4T ),
+ URUF (= Tuuu) + oo (—€8) + U7 Uoe(=Tuu) + Ul (—4€eu) + U3 (—Euu) + Uxliex(—3€4)
] = G = G| (2600 4 (360 + 01 360) + U] + (61
+ Urex(—2Tx) + Uee(—Tox) + Uxtiee (—27Txy)

+ UG Ut (—Tuu) + UsxUet(—Tu) + U Upex (=27, — fu)]’ =0

(3.13)
which can be written as

Nt + aunx + BNexx + Ut(ﬁnxxu — BTixx + 28 — OCLITX)
+ Uy (28N txu — B txx — &t + aibx + auTt 4 an)

+ Utux(2£u + 2,877xuu - ﬁ‘gxxu - 2BTtxu + OCLI’TU) + U?(Tu - 6Txxu)+
U§(2au'£u + 577tuu - 26£txu) + .B{ Uxx(ntu - 2€tx)

+ U Ut (2Nuy — 4€xu — Teu) + Uex(2Mxu — 2Tex — €xx)

+ Ul (M — 2650 — Tew) + UelZ(Muwy — 26xuu — Teuw) + UB(—27)

+ Urtex(—4Txu) + UxUZ (—2Txuu) + UrtxUp(—4Tuy),

+ 20 (—Tuuu) + txsx (=€) + U U (—Tuu) + txtixx (—3€0) + U3 (—Eruu) + UsxUex(—3€0)

+ Ugutx(_?’guu) + UXUtUXX(_3$LIU) + Utus(_guuu) + Utuxxx(_gu)

+ Uttx(_sz) + Utt(_Txx) + UxUtt(_szu) + Ugutt(_'ruu) + UxxUtt(_Tu) + UxUttx(_zTu)} =0

(3.14)
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| 10 |

Since the functions 7, £ and 1 depend only on £, x and v and are independent of the derivatives

of u, we can then split the above equation on the derivatives of v and obtain

Tx = Ty = &u = &t = &x = Nuu = New =0,
N+ ute =0,
Nt + aunx + Bnexx =0
From Equation (3.15), we find that
T =T7(t),
=G,

n =A(x)u + B(t, x).

Now substituting 17 into Equation (3.17) yields

B:(t, x) + au[A(X)XU + B, (t, x)] + BBixx(t, x) = 0.

Separation of (3.21) on powers of u gives the following equations
u? A(X)x =0,
u:By(t,x) =0,
U :Bi(t, x) + BBuxx(t, x) = 0.
Integration of Equations (3.22) and (3.23) with respect to x gives that
Alx) = G
B(t, x) = B(t).

Now use Equation (3.26) in Equation (3.24) to obtain Bixx(t, x) = 0 and as a result

Be(t, x) =0.
Integrating Equation (3.27) with respect to t gives
B(t, x) = Cs.
If we substitute n = Cou + C3 into Equation (3.16), we have
Cou+ C3+ 1:u = 0.
From Equation (3.29), if we obtain

t
T(t) = —0Cot — C3E + C4.

(3.15)
(3.16)
(3.17)

(3.18)
(3.19)
(3.20)

(3.21)

(3.22)
(3.23)
(3.24)

(3.25)
(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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and finally;
T:—CQI'—C3§+C4, (3.31)
§=C (3.32)
n =Cou + Cs. (3.33)

We have obtained a four-dimensional Lie algebra of symmetries spanned by

0
X1 =3’ (3.34)
0 0
X2 =g = ta, (3.35)
0 to
X3 =30 Lot (3.36)
X _9 (3.37)
M T '

3.2. Commutator Table for Symmetries. We evaluate the commutation relations for the symmetry

generators. By definition of Lie bracket [9], for example, we have that

RG] RG]
[X1, Xa] = X1 X4 — Xa X1 = (axat) - (atax) = 0. (3.38)

Remark 3.1. The remaining commutation relations are obtained analogously. We present all

commutation relations in table (1) below.

[Xi, Xj]) | Xa| Xo | X3 | Xa
Xy | 0] 0 0 0
Xo | 0] 0 | -Xz | Xa
Xz |0 [=Xs| 0 |ix,
Xa | 0| -Xs|-LX4| 0

TABLE 1. A commutator table for Lie algebra of equal width equation.

3.3. Group Transformations. The corresponding one-parameter group of transformations can be
determined by solving the Lie equations [0]. Let T, be the group of transformations for each
Xi, 1 =1,2,3,4. We display how to obtain 7, from X; by finding one-parameter group for the

infinitesimal generator X3, namely,

X, = —. (3.39)


https://doi.org/10.28924/ada/ma.3.13

Eur. J. Math. Anal.

In particular, we have the Lie equations

& o g =t
de €=0 -
dx _
R (3.40)
de e=0
o
de . €=0 -
Solving the system (3.40) one obtains,
t=t, X=x+¢ O=u, (3.41)

and hence the one-parameter group T¢, corresponding to the operator X; is
Te, o (t.x,0)=(t,x+e€1,u). (3.42)

All the five one-parameter groups are presented below :
Te,: (t,x,0)=(t,x+e,u)
Te, . (t,x,0)=(te”, x,ue®?)
- e (3.43)
Te,: (X, 0)=(te v, x,u+e€3)
Te,: (t.%x,0)=(t+e€q x,u).
3.4. Symmetry transformations. We now show how the symmetries we have obtained can be used
to transform special exact solutions of the equal width equation into new solutions. The Lie group
analysis vouches for fundamental ways of e constructing exact solutions of PDEs, that is, group
transformations of known solutions and construction of group-invariant solutions. We will illustrate

these methods with examples. If 7 = g(t, X) is a solution of equation (1.1)
o(t, x,u,e) =g(f(t,x, u€) L(t x, ue€)), (3.44)

is also a solution. The one parameter groups dictate to the following generated solutions:

Te, 1 u=9g(t, x+e€1)

Te, 1 u=g(te 2, x)e 2,
(3.45)

Tes U :g(te_%,x) — €3,

Te, : u=9g(t+ €4, x).
3.5. Construction of Group-Invariant Solutions. Now we compute the group invariant solutions of
Burger’s equation.
. 2l
() X1 = 5%

The associated Lagrangian equations
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dt dx du

T =T = (3.46)
yield two invariants, J; = t and J» = u. Thus using J» = ®(J1), we have

u(t, x) = d(t). (3.47)

The derivatives are given by :

Ut :q)/(t),
Ux :0,
Utxx =0.

If we substitute these derivatives into Equation (1.1) , we obtain the first order ordinary

differential equation

d'(t) =0,
whose space invariant solution is
®(t) = Cu, (3-48)
and the group-invariant solution associated to the X; is
u(t,x) = Cy.

Xo = u% — t% The Lagrangian equations associated to this symmetry are

dt  dx du
Il 3.49
—t 0 u ( )
This gives the constants J; = x and J» = tu, giving the solution
f
u= & (3.50)
t
We obtain the derivatives as follows:
f(x)
U = — 7, (351)
f/
Xzf) (3.52)
f(x
o =~ ) (353)

If we substitute the above derivatives in Equation (1.1), we obtain the second order ordinary

differential equation

f(x) —af(x)f'(x) +Bf"(x) = 0. (3.54)
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Hence the group invariant solution to Equation to (1.1) will be given by

f(x)

U(t,X) = ; , (355)
where f satisfies Equation (3.54).
(i) X3=2 -2
The Lagrangian system associated with the operator X3 is
dt  dx du
— ==, (3.56)
I 1
whose invariants are J; = x and J; = tu. So, u = @ is the group-invariant solution.
(v) X4 = %
Characteristic equations associated to the operator X4 are
dt  dx du
T=0 -0 (3.57)

yleldsJ; = x and J» = u. As a result, the group-invariant solution of (1.1) for this case is

Jo = ¢(J1), for some ¢ an arbitrary function. That is,
u(t, x) = ¢(x). (3.58)

The derivatives of given function are

Uy =0, (3.59)
U = ¢'(x), (3.60)
Upxx = 0. (3.61)

Substitution of the value of ¢(x) into Equation (1.1) yields a first order nonlinear ordinary

differential equation
()¢ (x) = 0. (3.62)

From Equation (3.62), either ¢(x) = 0 or ¢/(x) = 0. The case ¢p(x) =0 = ¢'(x) =0,
and the equation is satisfied. The case ¢(x) # 0 implies that ¢'(x) = 0 and by integration,

¢(x) = Cq, hence the group invariant solution is given by
u(t,x) = Ca. (3.63)

3.6. Soliton. We obtain a traveling wave solution of the equal width Equation(1.1) by considering

a linear combination of the symmetries X7 and X4, namely, [7]

0 0
X=cX1+ X4 = o + s for some constant c. (3.64)
The characteristic equations are
dt dx du

at _dx _du (3.65)
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We get two invariants, J;1 = x — ct and J» = u. So the group-invariant solution is
u(t, x) = Q(x — ct), (3.66)

for some arbitrary function ¢ and c the velocity of the wave.

Substitution of u into (1.1) yields a second order ordinary differential equation

c@ — aQQ +BcR" =0, (3.67)
which can be integrated with respect to Q to give
Q? /
cQ — a— +BcQ =0, (3.68)

where we have used 0 as a constant of integration. Equation (3.68) can be rearranged and variables
separated to have

¢  dQ
2B8c  aQ?2—-2cQ’

The right hand side can be resolved into partial fractions to obtain

§ 1 a 1 _ 1 a@ — 2c¢
25C_2c/[aQ—2c_Q]dQ_2cln

Q
where C3 is a constant of integration. After rewriting, we have

£ =x—ct. (3.69)

+1n|Csl, (3.70)

2cC
Qx—ct) = — 2. (371)
aCs3—e B
Finally, the soliton solutions are given by
2cC
u(t, x) = — =3 (3.72)
aCz3—e B

4. CONSERVATION LAWS OF EQUATION (1.1)
We will employ multipliers in the construction of conservation laws.

4.1. The multipliers. We make use of the Euler-Lagrange operator defined as defined in [6] to look

for a zeroth order multiplier A = A(t, x, u). The resulting determining equation for computing A is

0
(TU[/\{Ut+OéUUx + Butxx}] = 0. (4.1)
where
5 9 ) 8 , 8
50 ou Ptan  Pran, PPt (*:2)

Expansion of Equation (4.1) yields
Ay (Us + ity + Bugxy) + atx N — De(A) — aDy(ul) — BD:D3(A) = 0. (4.3)

Invoking the total derivatives
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Dt — 2+Ut£+uti+u i_|_
at du = ou, ' Tou ’

Dy = 2—i—u£+u i%—u i—i—

x ox *du X By Xouy

on Equation (4.3) produces
Nt + ouN + BAxx + 26(/\txu)ux +6(/\tu)uxx + ,B(/\tuu)ug + 2,8(/\><L1)Utx

+ 2.6(/\uu)uxutx +5(Axxu)ut + 2.B(AXUU)UXUX + ,6(/\uu)utuxx +6(Auuu)utu>2< =0

(4.6)

Splitting Equation (4.6) on derivatives of u produces an overdetermined system of four partial

differential

equations, namely,
Ayu =0,
Nxu =0,
Nty =0
At + aulN + BAtxx =0
By Equation (4.7), we have
A= A(t, x)u+ B(t, x),
which if used in Equations (4.8-4.9), implies that
A= Ciu+ B(t, x).
If we substitute (4.12) into Equation (4.10), we obtain
Bi(t, x) + auBy(t, x) + BBexx(t, x) = 0.
Separation of Equation (4.13) into powers of u gives us
u:By(t,x) =0,
u° :Bi(t, x) + BBuxx(t, x) = 0.
Equation (4.14) insists that
Boa(t,x) =0 = Bi(t,x) = 0 = By(t,x),
and thus
B(t, x) = Co.
As a result

A(t, x,u) = Ciu+ Co.

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
(4.15)

(4.16)

(4.17)

(4.18)
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Essentially, we extract the two multiplies
A =1 (4.19)

No =u. (4.20)

Remark 4.1. Recall that a multiplier A for Equation(1.1) has the property that for the density
Tt=THt, x,u, ux) andflux TX=TX(t,x, u, Uy, Ugx),

A (U + auuy + Buexx) = DT+ DT (4.21)

We derive a conservation law corresponding to each of the multipliers.

(i). Conservation law for the multiplier Ay =1

Expansion of equation (4.21) gives
H{us + auuy + Bupx} = T+ ueTE+ utXTLfX + T+ Ty + U Ty, + Utxx T, - (4.22)
Splitting Equation (4.22) on the third derivative of u yields

U T =B, (4.23)

Utx

Rest : up 4oty =T+ usTE 4 usdTL 4+ T+ Ty + tex Ty (4.24)
The integration of Equation (4.23) with respect to u:x gives
T* = Bux + A(t, X, u, Uy). (4.25)
Substituting the expression of 7 from (4.25) into Equation (4.22) we get
{ur + auu} =TF + u TE+ utXTLfX + Ax + UxAu + UsxAu, (4.26)

which splits on second derivatives of u, to give

b @ Ay =0, (4.27)
U T =0, (4.28)
Rest : {us+auuy} =TF+ uTE+ Ax + uxAg. (4.29)

Integrating equations (4.27) and (4.28) with respect to uy manifests that Tt = T*(t, x, u) and
A = A(t, x, u). Using values of A and T* in Equation (4.29), we have

{ur + auuy} = TE+ ue T+ A+ uAg, (4.30)
which separates on first derivatives to give us
ur o Tr=1, (4.31)
ue : Ay =oau, (4.32)
Rest : T+ A=0. (4.33)
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Equations (4.31-4.32), can be integrated with respect v to obtain
T =u+ B(t, x),
2
A= OL? + C(t,X)y

If we use the obtained values in (4.33), we have

Be(t, x) + Cx(t, x) = 0.

(4.34)

(4.35)

(4.36)

Since B(t,x) and C(t, x) contribute to the trivial part of the conservation law, we take

B(t,x) = C(t,x) =0 and obtain the conserved quantities

Tt =u,
2

u
T :a? + Bux

from which the conservation law corresponding to the multiplier A; = 1 is given by

U2
Dt(U) + DX (a2 +6Utx) =0.

. Conservation law for the multiplier A; = u

u{ue + auuy + Buex} = T+ ueTE 4 e T + T3+ U T+ U Tof + Ussx T

Utx”

Splitting Equation (4.40) on the third derivative of u yields

Uxx @ T = Bu,

Utx

Rest : wup+oauuy =T; + ueT)+ utXTLfX + T+ u Ty + e Ty
The integration of Equation (4.41) with respect to vy gives
TX = Buuex + A(t, x, U, Uy).
Substituting the expression of 7 from (4.43) into Equation (4.40) we get
u{u + oy =TF 4 U TE 4 U T+ Ax + UxAu + UxBugx + UxxAu, .
which splits on second derivatives of u, to give

Uxx © Ay =0,
U © TL =-p
tx - ux — Ux,

Rest : w{ur+auuy} =T+ uTE+ Ax + uAy.

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)
(4.42)

(4.43)

(4.44)

(4.45)
(4.46)
(4.47)
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Integrating equations (4.45) and (4.46) with respect to u, manifests that
Tt= —653 + B(t,x,u) and A= A(t, x, u). Using values of A and T in Equation
(4.47), we have

u{ur + auuy} = T+ ur TE+ A + ulAg, (4.48)

which separates on first derivatives to give us

ur Bt x,u)u=u, (4.49)
U © Ay=au? (4.50)
Rest : B:+ A =0. (4.51)

Equations (4.49-4.50), can be integrated with respect u to obtain

2

B = ”7 4 C(tx), (4.52)
U3
A=aZ+D(tx), (4.53)

If we use the obtained values in (4.51), we have
C(t, x) + Dy(t, x) = 0. (4.54)

Since C(t,x) and D(t,x) contribute to the trivial part of the conservation law, we take
C(t,x) = D(t,x) = 0 and obtain the conserved quantities

2 2

u u
Ti=—B2+ — 4,
6] >t (4.55)
U3

from which the conservation law corresponding to the multiplier Ay = u is given by

u2 U2 u?

Remark 4.2. It can be shown that the two sets of conserved quantities are conservation laws. Given

that Ay = 1, the verification reaffirms that the equal width equation is itself a conversation law.

5. CoNCLUSION

In this manuscript, an infinite dimensional Lie algebra of Lie point symmetries has been applied
to study a third-order equal width equation. A commutator table has been constructed for the
obtained Lie algebra. We have also used symmetry reductions to compute exact group-invariant
solutions, including a soliton. Conservation laws have also been derived for the model with the use

of zeroth order multipliers.
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