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ABSTRACT. The paper shows that the distribution of the normalized least squares estimator of the drift
parameter in the fractional Ornstein-Uhlenbeck process observed over [0, T] converges to the standard
normal distribution with an uniform optimal error bound of the order O(T~Y/2) for 0.5 < H < 0.63
and of the order O(T*"~3) for 0.63 < H < 0.75 where H is the Hurst exponent of the fractional
Brownian motion driving the Ornstein-Uhlenbeck process. For the normalized quasi-least squares
estimator, the error bound is of the order O(T~%/#) for 0.5 < H < 0.69 and of the order O(T*"~3)
for 0.69 < H < 0.75.

1. Introduction

The fractional Ornstein-Uhlenbeck process, is an extension of Ornstein-Uhlenbeck process with
fractional Brownian motion (fBm) driving term. In finance it is known as fractional Vasicek model,
and is being extensively used these days as one-factor short-term interest rate model which takes
into account the long memory effect of the interest rate. The model parameter is usually unknown
and must be estimated from data.

Parameter estimation in stochastic differential equations is studied in Bishwal [1]. For the
standard Ornstein-Uhlenbeck process, sufficiency and Rao-Blackwellization was studied in Bish-
wal [4] where also a time transformation to reduce the general problem to a fixed time case and
the asymptotics were studied in large parameter case. For the fractional Ornstein-Uhlenbeck pro-
cess, Berry-Esseen inequalities of minimum contrast estimators based on continuous and discrete
observations was studied in Bishwal [2]. Hu et al. [11] studied parameter estimation for the frac-
tional Ornstein-Uhlenbeck process of general Hurst parameter. Bishwal [5] studied Berry-Esseen
inequalities for the fractional Black-Karasinski model of term structure of interest rates. Using
fractional Levy process as the driving term which include jumps, maximum quasi-likelihood estima-
tion in fractional Levy stochastic volatility model was studied in Bishwal [3]. Parameter estimation

in partially observed stochastic differential system was studied in Bishwal [6].
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Let (2, F, {Ft}t>0, P) be a stochastic basis on which is defined the Ornstein-Uhlenbeck process

X satisfying the |t6 stochastic differential equation
dX; = 0Xedt +dW/, t>0, Xo=0 (1.1)

where {W/}'} is a fractional Brownian motion with H > 1/2 with the filtration {F;}+>0 and 8 < 0
is the unknown parameter to be estimated on the basis of continuous observation of the process
{Xt} on the time interval [0, T].

Recall that a fractional Brownian motion (fBM) has the covariance
~ 1
Cu(s.t) =5 [s27 + 2" — s —t?H], s, t>0. (1.2)

For H > 0.5 the process has long range dependence or long memory and the process is self-similar.
For H # 0.5, the process is neither a Markov process nor a semimartingale. For H = 0.5, the
process reduces to standard Brownian motion.

Note that the solution of the equation (1.1) is given by
t
X = / =) g (1.3)
0

Let the realization {X;,0 < t < T} be denoted by XJ. Let PQT be the measure generated
on the space (Ct, Bt) of continuous functions on [0, T] with the associated Borel o-algebra Bt
generated under the supremum norm by the process XJ and P/ be the standard Wiener measure.
Applying Girsanov type formula for fBm, when 6 is the true value of the parameter, P is absolutely
continuous with respect to POT and the Radon-Nikodym derivative (likelihood) of PQT with respect

to P{ based on X/ is given by

9T or N
L1(0) = d—PJ.(XO):exp {9/0 QtdZt—Q/O Qtdvt}. (1.4)
Consider the score function, the derivative of the log-likelihood function, which is given by
T T
Y7 (6) = / Q:dZ; — 9/ Q%dvy. (1.5)
0 0
A solution of Y7(8) = 0 provides the maximum likelihood estimate (MLE)
_ Jo QrdZ:
= (1.6)
Jo Q%dve.

Kleptsyna and Le Breton [13] showed that 67 is strongly consistent. Using the Fourier method,
Bishwal [2] proved a Berry-Esseen type theorem for the estimator 6+ which gives the rate of weak
convergence in asymptotic normality.

Using the fractional It6 formula, the score function Y7(6) can be written as

Y(@)—E M /TtZHle -T —9/TQ2dv (1.7)
a2 T ‘ o T '
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Consider the contrast function

.
Kr(8) = —THZ(H) — 9/0 Q%dv; (1.8)

and the minimum contrast estimate (MCE)

G ._ —THI(H)

TIi=— (1.9)
2 fOT Q%dvt
The least squares estimator (LSE) of 6 minimizes
T .
/ |X: — 0X¢|2dt (1.10)
0
and is given by
] XedX, JJ Xedwt
br =T~ =0 (1.11)
[y Xzdt. [y Xzdt.
Based on ergodicity, quasi least squares estimate (QLSE)
1
~ —THI(2H) | ™"
AP el KNG (112)
[, Xzdt
The LSE and the QLSE are strongly consistent and asymptotically norma as T — oo
~ ~ 603
VT (67 —6) =P N(0,60%), VT (67 —8) =P N(0, TH’;) (1.13)
where
Fr3—4H)I(4H —1)
2
=M4H-1) (1 1.14
h = ) ( T Tr 2R (2A) (1.14)

Observe that H = 1/2, o2 = 2. In this case the LSE and the MLE are identical. Since o7 is a

consistent estimator of 6, we can derive the self normalized limit distributions immediately:

T ~ T ~
(—)Y2(67 — 6) 5P N(0,1), 2H(—=)Y?(67 — 6) »P N(0, 1). (1.15)
O'2H9T O'2H9T
Define
T T
Mt ::/O Xt dWH and 17 ::[O X2dt, Np:=6%"I+ — THI(2H). (1.16)
Vigg := 6 2HHI (2H). (1.17)
Observe that
20\ 1/2
T O\ ( ?%’9) Mr
(29) 07 =0) = —=pv— (1.18)
B (%) ir

Applying Taylor’s formula to the function X2 at the point Vi ¢, we have

L

/T T 2H _ 1 1 _142H /T 1+2H _1xH /T 2
(T) :VHVQQH _ﬁVH,GQH (T—VHQ) +W'w7— 2H (T—VHQ) (119)
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where wr is a random point between V4 and /% Further

B gLrteH [, (1+2H)(HT(2H))2 1t (|7 i
e T _ . (12
or 0= " orer2h) (T VH’G) i 8H> “r (T VH'G) 0
Thus /
_2a\1/2
T o\Y2 (ﬁ) Nr
2H\ =z Or=0 ="y — 2
H (FH/#) Ir

We study the large deviations, moderate deviations and Berry-Esseen bounds of the LSE and
the QLSE in this paper. We will use the following optimal fourth moment theorem from Nourdin

and Peccati [14] in the sequel. See also Douissi et al. [15].

Theorem 1.1 (Skewness Kurtosis Inequality) Let (X,),>1 be a sequence of random variables in
fixed Wiener chaos of order q > 2 such that Var(X,) = 1. Assume X, converges to normal
distribution which is equivalent to lim, E(X,)* = 3, which is also known as the Fourth Moment
Theorem. Then we have the following optimal rate for dr/(X,, N') known as the Optimal Fourth
Moment Theorem: There exist two constants ¢, C > 0 depending only on the sequence (Xp)n>1

but not on n, such that

cmax{E(X}) =3, |ECX)|} < dry(Xn, N) < Cmax{E(X}) —3, |[E(X2)|}. (1.22)

Let ®(-) denote the standard normal distribution function. Throughout the paper, C denotes a
generic constant (which does not depend on T and x). We have not tried to estimate the constant
in the bound on normal approximation.

Hu et al. [11] obtained limiting normal distribution of the LSE and the QLSE for the memory
range % <HKL % with the rate /T for % < H< % and VT (log T)~1/? for the case H = %, and
limiting Rosenblatt distribution for the memory range % <H<KL

We only consider the memory range % < H< %. Jiang et al. [12] used self-normalization along
with the splitting method for the LSE and the QLSE in fractional Ornstein-Uhlenbeck process and
obtained the rate 7—1/2 log T for the range % <HKLZ g for the LSE and 7 1/4 log T for the range
% < HKL % for the QLSE. They obtained the rate T4H=3 for the range g < H< % for the LSE
and the same rate 7473 for the range % <H< % for the QLSE.

In this paper we improve the first rate to T—~1/2 for the MLE for the range % < HKL g and
T4 for the range 3 < H < 1 for the QLSE using the squeezing method as in Chapter 1 in
Bishwal [1]. The main contribution of the paper is thus improvement in the rate my removing the

log T term.

Note the critical points:
1 =050, 2=063,%=067 1 =069 2 =075 Also 0.63+0.06 =0.69,0.69+0.06 = 0.75.


https://doi.org/10.28924/ada/ma.3.14

Eur. J. Math. Anal.

Remark on the Critical point g : For the discrete observations case, Es-Sebaiy and Viens [7]
3
40
then the fourth moment is of the order n?(*=3) where n is the number of observations. The

Berry-Esseen rate for 6 is shown to be of the order n=¥/4 for 0 < H < g and of the order

n~(UH=3)/2 if 5 < H < 3. for H = 2, the rate is (log n)~ /4.

pointed out that if 0 < H < %, then the fourth moment is of the order n=! and if g < H<

The proofs also need large deviation results for the stochastic integral and the energy integral.
These integrals can be represented by multiple Wiener integrals. Then their expectations and
variances as well as the fourth moment of their Malliavin derivatives can be estimated.

First we calculate bounds on the moments. Let

pr(s.t) = e S (s 1) = e HTHEED gr(s, 1) = e g (), (1.23)
Ve := 0 2HHI(2H), Cpg:=0""*"(4H — 1)H? [T?(2H) + TH)T(3 — 4H)T(4H ~ 1) (1.24)
F(2 = 2H)
Observe that
Xe = h(gr(- 1)), (1.25)

T T t
1 1
Mt _/0 XedWH _/0 /0 St awHaw/} = Eemt’S'dWSHthH = Sh(er).  (1.26)

T T
1 1
= [ Xedt= Soater) + plar)+ [ lor( 0lBde (1.27)
0 20 26 0
where /1 and /> are first and second Wiener chaos respectively. Furthermore,
T
| lgrt )l =ViyoT + o(T). (1.28)
0
For % < H< %,
E(X:Xs) < C|t — 5?2, (1.29)
lorl3 = 2T (cnr + (o(1)). llwrlF = O(1). (1.30)
For H = % by the isometry of the Itd integral, we obtain
T t T 20T _ 1
T2, = 2/ / e?(=)dtds = — + ———— = 2T(Cpr + (o(1)). (1.31)
o Jo 0 262 '
T T (6729T _ 1)2
173, = e‘*”/ / e 2B+ gtds = 1 = O(1). (1.32)
For % < H< %,, using Lemma 5.3 in Hu and Nualart [10], we have
M2(2H)
2 < =g 1.

Let Tr=Tfor H=2%and T+ =T8""*for L < H< 3.

We obtain the variances bounds on the Malliavin derivative of M+ and /+.

E(|DM7|2, — E|IDM7|3,) < CT7, (1.34)
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E(IDI7|l3 — EIDIT|3) < CTr (1.35)

where D is the Malliavin derivative operator.

We have the bound on the fourth moment

E(|IDla(07)||3, — E|IDl2(07)I3,)? < CYr. (1.36)

For % < H< %,, we have the bound on the fourth moment
E(IDl(o1)|3 — EIlDL(p7)|I3,)? < CT8*. (1.38)

We have the bound on the fourth moment

E(IDL2(w7)ll3 — EIIDL(%7)]3,)* < C. (1.39)
T
Dslo(h7) = —2e29T+95/ eStdwl. (1.40)
0
T 40T 2 T 4
E||Dsla(¢7)|3, = 16787 (/ eetthH) (/ e29fdt) = 48897 (/ e29fdt) . (1.41)
0 0 0
T 2
END-R(rI = 4e T ( [ e (1.42)
0
Therefore
2 242 4 22 21— e 20Ty
E(IDI2(¥7)l3 — EIDL(WT)I%)° = EIDL(WT)|% — (EIIDR(¥T)3)° = —
(1.43)
Similarly for the case % < H< %, it can be shown that
32I*(2H)
E(IDl(¥1)|F — ElDl(¥r)]5) < 68", (1.44)

2H —1)4
First we have the Berry-Esseen bounds for the stochastic 'Lnte(gral and) adjusted energy integral. By
using the Optimal Fourth Moment theorem (Skewness-Kurtosis Inequality) from Stein-Malliavin
theory, we have:

For 3 < H < 5/8, we have

_1\ 1/2
sup |P # Mr < x ¢+ — d(x)
xeR
1.45
o1\ 1/2 1)1/ oY 1/2 ( )
<c{E|ID (T) Mr |3, — EIID (T) MT||%) <CTV2,
3
For % <H<3,
1 1/2
sup (P % Mr < x ¢ — ®(x)
x€ER
1.46
c-1 1/2 o1 1/2 2 1/2 ( )
<cie(io(%) " mri - eio () /V/TII%) <cTHs
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For % < H <5/8, we have

1/2
H.6 . T
sup [P B 97’/7'—72 <Xx —CD(X)
x€R T -0y
o1\ 12 o\ 1/2 27 1/2
< ce(Io(F) " (Frir- L) - ElD () (@i QM;)
< CT7 Y2
(1.47)
3
For g <H<7Z,
i\ (-
sup |P —- OT/T—_ 5| <xp—®(x)
X€ER H
c 12, 1/2 212
< celIo(F) " (G- ) 13- E10 (7 (ww—jﬁﬁJ
< CT4H-3,
(1.48)
For £ < H < 2, we have for |x| < 2(log T)/2,
1/2 ~
_UHQT —oRb7 ~1/2
sup |P My — It =1 x<y¢—9)| <CT ) (1.49)
yER T T

For 2 < H < 2, we have for |x| < 2(log T)/2,

B 5= 1/2 B vy
sup |P ( "#97) MT—(( ”;’GT)/T—l)xsy —d(y)| < CTH20 (1.50)

c-1\ 12
sup P # Ny < x & — d(x)
x€R
1/2 (1.51)
-1\ /2 o1\ 172 21V
SCELIP (T) Nrll3 - EID (T) Nr 12, <CcTV2,
Foril < H< 2,
1\ 1/2
Che
sup [Py | —— Nt < x t — d(x)
xeR
1.52
-1 1/2 1/2 2 1/2 ( )
<cle(io (%) “wo-ein () ) <o
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For % <H< %, we have for |x| < 2(log T)/2,

oz |\ 1/2
—O'HGT

sup |P 4 2H Ny —
YeR

Y
( G?T)/T—l)xsy —d(y)| < CT V4 (1.53)

For 1 < H < 2, we have for |x| < 2(log T)*/?,

1/2
Ny —

—0/2_/97' —0'12_/97'

T

sup |P <4 2H
yeR

H—l)xgy —d(y)| < T3 (1.54)

2. Main Results

We need the next two lemmas from Jiang et al. [12] on large deviations to obtain bounds on

the tail probabilities of the estimators. The first lemma is on large deviations for stochastic integral.

Lemma 2.1 For every § > 0,

T35
1/2
4C,/s

o

Remark For the case H = 0.5, there is a long history of work:

25}§Cexp

For every 6 > 0,

> 6]» < Coexp (—C1T4?).

M+
P -
U7
See Gao and Jiang [9].
For any 0 < a < 62/4, there exist constants C3 and C4 such that

E(e*'7) < C3e%4eT. (2.1)
See Gao and Jiang [9]. By Chebyshev inequality, we have
P(IXT — E(X7)| > 8) < 2exp(—667). (2.2)

The second lemma is on large deviations in the ergodic theorem.

Lemma 2.2 For every § > 0,

/ T2
P{ %—VH,Q 25} < Cexp —71/(23
4C 4
Observe that by (1.11)
~ M
br=6——_

I
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Using the elementary inequality
PUE I 0) < PO 2 ) + Pn—2v] 2 ),

we have

P67 — 6] > o)
P(|l7 = VigoT| > 2VigoT) + P10 — 0] > 6, |I7 — ViuoT| < 2ViyeT)

<
< P(llt = VieT| = $VieT) + P(IMr| = $V4y6T9).

Combining Lemma 2.1 and Lemma 2.2, we obtain

Lemma 2.3 For every § > 0 and large T > 0, we have

a) P(|6r — 6] > &) < Coexp(—C1TY26)

b) P(|67 — 6] >§) < Coexp(—C1TY26%/?).

(2.3)

(2.4)

To obtain the rate of normal approximation for the LSE and the QLSE, we need the following

tail probability estimate of the estimators.

Lemma 2.4
- 1/2
(a) P = 07 — 6] > 2(log T)Y/2 L < cT /2,
—UHQT
1/2
T = 1/2 —1/4
(b) P4 2H — 67 — 6] > 2(log T) <CcT 4,
—O'HQT

Proof : Observe that

- 1/2
_ 67 — 6] > 2(log T)/2
—O'2H9T
~ 1\ 1/2 I
) "
— P oy >2(log T)'/? ¢
(—)!
2~ 1/2 ) 2~
—020 —0g,0 1
< P 07'L_’T M+ >(IogT)1/2>+P{ OH T/T <2}
3 1/2
< |pP 07’_4 Tl My > (log T2 — 20(—(log T)/?)
20 1
12d(—(log T2y + P [THI 1 9| > =
2
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sz \1/2
< sup|P ( (M| = x ¢ —29(—x)
xER T
—02,6 1
+zw—wgrﬂﬂy+P{' 7#T)h~4 22}
T1/2
gc740+cwmgm4ﬂ+Cap-_jﬁ
8 H.,6
< CcT7V2

The bounds for the first and the third terms come from Lemma 2.2 and Lemma 2.1 respectively and

that for the middle term comes from Feller [8] (p. 166). Proof of (b) is similar. O

Now we are ready to obtain the uniform rate of normal approximation of the distribution of the
LSE and the QLSE.

Recall that
FM3—4H)I(4H - 1)

2:=(4H-1)(1 2.
h = '\ Tre—2mren (2:5)
Theorem 2.5
Af3<H<?2
- 1/2
sup |P - (Br —0) < xp —d(x)| < CT V2
x€eR —0'/2_/97'
b)If 3 <H<2

xeR 2

1/2
T ~
sup |P ( - ) (07 —0) < x + —d(x)| < CT*~3
—O’HQT

o
-
I
T
I
=

16

T 1/2
sup |P 4 2H - (67 —0) < x t —d(x)| < T V4,
XER —O'HQT

A <H<3

sup [P 4 2H
xeR

1/2
T (67 —60) < x p — d(x)| < CTH=3,
—O'2H9T

Proof : First we prove (a). We shall consider two possibilities (i) and (ii).

(L) |x| > 2(log T)Y2.
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We shall give a proof for the case x > 2(log T)*/2. The proof for the case x < —2(log T)/? runs
similarly. Note that

1/2 - 1/2
P{ (§TQ)<X]»¢(X) <P{( _ ) (§T9)>x]»+cb(x). (2.6)

—UIZ_/@T
But from Feller [8] (p. 166) we have

T

2
—O'HQT

d(—x) < d(=2(log T)?) < cTL. (2.7)
Moreover, by Lemma 2.4 (a), we have
- 1/2
P = (61 —6) >2(log T)V/2 + < CcT V2, (2.8)
AO'HQT
Hence
- 1/2
P = (61 —0) < x } — d(x)| < CT~ Y2, (2.9)
—UHQT
(ii) |x| <2(log T)¥2.
1/2
. T . 1/2 . IT
Let Ar = = |9T - 9| < 2(Iog T) and Bt =1 => (2.10)
—0207 T
H

where 0 < ¢ < ﬁ. By Lemma 2.4, we have
H
P(AS) < CT1/2, (2.11)

By Lemma 2.1, we have

_ 20
P(B%):P{( 07’17—)/7—1<02H9c0—1}

—03,6- TY2(1— 020
<P{'( 07'L_’T)IT—1 >1—02H9C0}§C6Xp — ( 1/C;H %) (2.12)
4C 5
1/2
Let by be some positive number. On the set AxNBt forall T > Ty with 4bg(log To)1/2 (ﬁ) <

Co, we have
1/2

T .
(61 —0) <x

—U2H9T

1/2
A~ T
= It +boT(6r —0) < I+ + = ) 0%bofx

—O'HQT

T 1/2
Tg ) O'2Hb09X]

1/2
T N
= (97’ — 9)[/7’ + boT(@T — 9)] < X[/T +

( —O'2H9T

= (/9\7' — 9)/7’ + bQT(QT - 9)2 <

1/2

— 52,0
THIT /TX+02Hb09X2

T
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1/2
ITx + 03 bofx>

UQHéVT
T

= M+ (67 —0)I1 + boT (67 — 6)> < =My +

2
—0?28
= 0< —My+ | —ZHT

1/2
) ITx 4 0%bofx?

since

I+ boT(é\T — 9) >Tc+ boT(é\T — 9)
1/2
— ofbo(log T)' ™"

1/2

—0'12_/97'
T

~ 1/2
~7nfT / >0
A .

5z
—O'HQT

> 20%bo(log T)1/? T

= o3 bo(log T)Y/?

_\1/2
On the other hand, on the set A7 N By for all T > Ty with 4bg(log To)/2 (_UTE(QOT) < ¢p, we

have
1/2
T ~
= (97’ - 9) > X
—O'2H9T
T 1/2
= I —bT(Or—0) < It — _ 2box
O'HQT
1/2 1/2
= Y (97’ — 9)[/7’ — bQT(QT — 9)] > X[/T — Y O'Hb()@X]
—UHQT —UHQT
-1/2
= (61 —6)IT — boT (67 — 6)%> > - ITx — 03 bgfx>
—0'/2_/97'
-1/2
= —Mr+ (67 — 0)I+ — boT(67 — 0)> > —Mr + - ITx — 03 bgfx>
—O'2H9T
~ \ 1/2
—o20
= 0> Myt | 2H T) ITx — 0%1bofx>
since

I+ — boT (61 — 6) > Tco — boT (67 — 6)
1/2
— afybo(log T)M/?

1/2

—0'2/_/97'
T

~ 12
00 I
A .

—0'12_,97'

> 20%bo(log T)Y/? -

= 0% bo(log T)Y/?
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Hence
1/2 1/2
0 < —Mr+ = /TX—UHbQQX = = (97-—9)§X.
—0'12497' —O'2H9T
Letting
02,6 H2
DF, =4 —Mr+ | === rx £ ofbodx® > 0
we obtain
- 1/2
D;XHATQBTQATQBTQ = (é\T—Q)SX gD?XﬂATﬂBT. (213)
’ —O-HQT ]
If it is shown that
|P{D7F,} —®(x)| < CT1/2 (2.14)

for all T > Tp and |x| < 2(log T)'/?, then the theorem would follow from (2.11) - (2.14).
We shall prove (2.4) for D;x' The proof for D7 is analogous. Observe that

026\ 02,6
- T - T
75/) /\/IT—(( = )/T—l)x<x+a2H

IN
< »
mc
=S

Y
—r—

_|_
= A1+N>
(2.15)
(1.50) immediately yields
A < CT7V2, (2.16)
On the other hand, for all T > Ty,
25 1/2
-0
Ap<2|—F T boox®(2m) Y2 exp(—x2/2)
where
~ \ 1/2
—02.0
|X—X|§2( 07’L_’ T) bobx2.
Since |x| < 2(log T)/2, it follows that |X| > |x|/2 for all T > Ty and consequently
25 1/2
—oRoT -
< H 2 1/2,2 2
Ay < 2 - ) bofx“(27) x< exp(—x</8) (2.17)

< CcT Y2
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From (2.15) - (2.17), we obtain
|P{DF, }—o(x)| < CcT Y2

This completes the proof of part (a) of the theorem.
Next we prove (c). Again we shall consider two possibilities (i) and (ii).
(L) |x| > 2(log T)*/2.

We shall give a proof for the case x > 2(log T)¥2. The proof for the case x < —2(log T)'/?

runs similarly. Note that

P12H

T 1/2
2~) (67 —0) > x t +D(—x).

T 1/2
- (67 —0) < x ¢ —d(x)| < P{2H
2 —O'HQT

—O'HQT

By (2.7) and Lemma 2.4 (b), we have

1/2
T ~
P32H | —= (61 —6) >2(log T)Y? } < CTV/4,
U%@T
Hence
- 1/2
P{2H _ (61 —0) < x p —d(x)| < CT V4,
—0'2,_,97'
(ii) |x| <2(log T)¥2.
T\ /
Let Ay 7:=42H = 67 — 6] < 2(log T)*?  and By 7 1= {TT > co}
—O'HQT
where 0 < ¢ < ﬁ. By Lemma 2.4, we have
H
P(AS 1) < CT V4, (2.18)

By Lemma 2.1, we have

c _‘7/%/9 2 _‘72H9 2 -1
P(BIr) =P | g7rs | Ir —1<omba—1t <P\l g7pm | Ir 1| > 1 —ohbeot < CT 1.
(2.19)

Let by be some positive number. On the set A+ N By for all T > Tp with
B 1/2
4bg(log To)1/2 ( il ) < ¢y, we have

AToH?
1/2

T _
(6r —0) <x

2H

—O'HQT

= /T+b0T(§T—9) < I+ +2H

- 1/2
= ) 02,bofx
2 H
—O'HQT
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1/2 1/2
T ~ T
= 2H = (07 — O)[IT + boT (67 — 0)] < x | IT + 2H = 0%bofx
—O'HQT —O'HQT

2

1/2
~ o
= (07 —0)IT + boT (67 — 6)? < (MIZQ ) I7x 4 0% bgHx>

2

1/2
= —Ny+ (07 —0)I7 +boT(67 —0)%> < =Ny + (4Tﬁ/2) I7x 4 02, byfx>
—0%,6 1/2
= 0<-—-Ny+ (47_//://2) /TX+0'2Hb09X2
since
I+ + boT (67 —6) > Tco+ boT (61 —6)
201y 1/2 294\ 1/2
12 [ —9HO 2 1-H [ i
> 4by(logT) ( AT ) orbo(log T) ( YRgTE
2 1/2
_ 2 12 [ =910
= UHbo(logT) / (47_I_l2) > 0.
. 2 _0.29 1/2
On the other hand, on the set Ay 7 N By forall T > To with 4by(log To)/ (4T0;’,2) < ¢,
we have
- 1/2
2H Y (6r —0) > x
UHQT
- 1/2
= I —byT(6r —0) < I+ —2H - 0%, bobx
—O'2H9T
1/2 1/2
T ~ T
= 2H ¥ (97’ — 9)[/7‘ — boT(QT — 9)] > x|l —2H Y 2bofx
—O'HQT —UHQT
o2 1/2
a a 2 “OH 2 2
= (97‘ — 9)/7’ — boT(@T — 9) > (4TH2 ) ITx — O'Hb09X

2

1/2
= =N+ (07 = 0)Ir — boT (67 — 60)* > —Nr + ( ok ) ITx — of;bobx?

4T H?

—02,0
4T H?

1/2
= 0> —Np+ ( ) ITx — 1bofx>

since
I+ — boT (61 — ) > Tco — boT (61 — 6)

2 1/2 —07,6 V2 2 1/2 _02H9 H2
> 20Hb0(|OgT) (47_1_/2) —UHbo(logT) (47_1‘_12)

2 1/2 29 Y2
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H
ence _029 1/2 -
0< —Np+ (4#32) I7x — 0%bgbx> = 2H(W)1/2(97 -0) < x.
—0267
Letting
—020\ Y3
DYy, = {—/\lr + (le_’lz) I7x + 07 bobx> > 0} ,
we obtain

D;T'XﬂAl,TD Bit C Al,Tﬂ BitN<2H >

1/2
T -
= ) (07’-9) <x¢ C DfoﬂAl,TmBl,T'
—O'HQT Y

(2.20)
If it is shown that
|P{Df;, }—o(x)|<CcT V4 (2.21)
for all T > To and |x| < 2(log T)'/?, then the theorem would follow from (2.18) - (2.21).
We shall prove (2.21) for DIT'X. The proof for Dy is analogous.
Observe that

P{oir.} - o)

_ 29 1/2 _ 29 _ 29 1/2
_ P{( UH) NT—(( H )/T—l)x<x+2( UH) bobx2 b — d(x)

4T H2 4T H?

—o26\? —02,0
P{(ﬂﬁz) NT_((MZZ)/T—l)xsy - ()

< sup
veR
> 1/2
oy 2
+|P | x+ (4TH2) bobx“ | — d(x)
=. All + A12.
(2.22)
(1.53) immediately yields
Ay < CT7V4 (2.23)
On the other hand, for all T > Ty,
0_29 1/2
< —OH 2 —1/2 2
Ap <2 (4TH2) bo6x“(2) exp(—x~/2)
where 1o
—o26
X —x| <2 ( 4;;1’/2 ) bofx.
Since |x| < 2(log T)/2, it follows that |X| > |x|/2 for all T > Ty and consequently
_U2H9 v 2 —1/2.2 2 —1/4
Ap < 2 1T bobx?(2m) /% x? exp(—x?/8) < CT~1/%. (2.24)

From (2.12) - (2.14), we obtain
|P{D{+, .} — ()| < T4
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This completes the proof of part (c) of the theorem. Next we demonstrate the proof of (b) and (d).

If g <H< % by following similar steps, one can show that

1/2
T ~
sup |P - (07 —0) < x p — P(x)| < CuTH 3.
X€ER 0'2,_,97'

If % <H< % by following similar steps, one can show that

1/2
T ~
sup |P 4 2H - (01 —0) < x + — d(x)| < CpTH3.
x€eR 0',2_/97'
This completes the proof of the theorem. 0O

Concluding Remark For the case % <HZL %, our rate is O(T~/?) is optimal.
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