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ABSTRACT. A deterministic compartmental model for the transmission dynamics of onchocerciasis with
nonlinear incidence functions in two interacting populations is studied. The model is qualitatively an-
alyzed to investigate its local asymptotic behavior with respect to disease-free and endemic equilibria.
It is shown, using Routh-Hurwitz criteria, that the disease-free equilibrium is locally asymptotically
stable when the associated basic reproduction number is less than the unity. When the basic repro-
duction number is greater than the unity, we prove the existence of a locally asymptotically stable

endemic equilibrium.

1. INTRODUCTION

Onchocerciasis is one of the neglected tropical diseases caused by the parasite Onchocerca
Volvulus, a filarial nematode [2]. The disease is transmitted from one person to another by repeated
bites of black flies. The disease is endemic in Sub-saharan Africa. Many researchers have worked
on many ways to reduce the spread of the disease. For instance, Remme et al. [10] used skin snip
survey in West Africa to investigate the impact of controlling black flies by larviciding. Plaisier
et al. [9] used micro simulation model to determine the period required for combining annual
ivermectin treatment and vector control in the onchocerciasis Control Programme in West Africa.
Alley et al. [1] used a computer simulation model to study prevention of onchocerciasis by using
macrofilaricide which kills the adult worms. Asha Hassan & Nyimvua Shaban [3] investigated the
effects of four control strategies on the spread of the disease.

In this paper, we consider onchocerciasis transmission dynamics with nonlinear incidence functions.
The human population is sub-divided into four compartments and the vector population is sub-
divided into three compartments. We show local asymptotic behaviour in disease-free and endemic

equilibria. The rest of the paper is organized as follows: the description of the model and theorems
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on positivity of solutions are given in section 2 while section 3 is devoted to the proof local stability

theorems.

2. MobDEL DESCRIPTION

Two interacting populations are considered; the humans and the black-flies populations. The
human population is partitioned into four compartments: the susceptible human compartment;
Sh, the exposed compartment; Ej, the infectious human compartment; /, and the recovered
human compartment; R, The black-fly population is partitioned into three compartments:
susceptible vector; S,, the exposed vector compartment; E, and the infective vector compart-
ment. The total human and vector populations at any given time, t, are respectively given by;
N = Sp(t) + En(t) + In(t) + Rp(t) and V = S,(t) + E,(t) + I,(t). We assume that the
transmission of onchocerciaisis in susceptible hosts is only through contact with infectious vector.
We also assume that susceptible vector becomes infectious as a result of contact with infectious
hosts during blood meal. The population under study is assumed to be large enough to be
modelled deterministically. The following system of non-linear ordinary differential equations,

with non-negative initial conditions, describes the dynamics of onchocerciaisis epidemics.

dShCS?XI) = W,(x;) — Z/L:O M) Sh(txi)Iv(t) h(x)Sh + w(x)Rn(t, x;))

R AT )
) = 57 o PR — (an(0) + () En(t, x)
X = 575 an(xi)En — (r() + ¥n (%) + a(xi)) In(t, x37)
BREX) — 571 o r(a) i — (ln(x) + w(x))Ra(t, %) SENCAY

v o 5>\v X SV / Xi,
5~ v, - BLOSON _, 5,1

0 vAX[ % i
by = DCASOLELD (o, + ) Eo()

dly — o, E, (1) — (v + 7)1 (2)

subject to the following initial conditions:
Sn(0, i) = Son(xi), En(0, x;) = Eon(Xi),
In(0, xi) = lon(xi), Ra(0, x;) = Ron(xi)
Sm(0) = Som, Em(0) = Eom, Im(0) = lom (2.2)


https://doi.org/10.28924/ada/ma.3.22

Eur. J. Math. Anal.

Symbols  Definitionss

Sn(t,xi)  Number of susceptible humans at time t and discrete age x;
En(t,x;)  Number of exposed humans at time t and discrete age x;
In(t,x;)  Number of infectious humans at time t and discrete age x;
Ru(t, ai)  Number of recovered humans at time t and discrete age x;
Su(t) Number of susceptible black-flies at time t
E,(t) Number of exposed black-flies at time t

1,(t) Number of infectious black-flies at time t
Wp(x) Recruitment term of the susceptible humans at discrete age x;
v, Recruitment term of the susceptible vectors
1 Biting rate of the vector
An(Xi) Probability that a bite by an infectious vector results in transmission of disease to human at discrete age x;
Av Probability that a bite results in transmission of parasite to a susceptible vector
wh(xi) Per capita death rate of humans at discrete age X;
Ly Per capita death rate of vector
Yh(Xi) Disease-induced death rate of humans at discrete age x;
Y Disease-induced death rate of vectors
an(x) Per capita rate of progression of humans from the exposed state to the infectious state at discrete age x;
ay Per capita rate of progression of vectors from the exposed state to the infectious state
r(xi) Per capita recovery rate for humans from the infectious state to the recovered state due to treatment at discrete age x;
w(x;) Per capita transition rate of recovered humans to the susceptible state at discrete age x;
vh(xi) Humans disease-inhibiting factor at discrete age X;
vy Vectors disease-inhibiting factor

Model assumptions

The formulation of the compartmental model is based on the following assumptions:

1. That all humans are born susceptible. That is, humans are liable to contract the disease.

2. That the susceptible humans, when infected, becomes exposed humans who are not yet
infectious.

3. That the exposed humans progress to become infectious only.

4. That the infectious humans may either die naturally or as a result of the disease, and if
not, they become recovered humans due to treatment.

5. That the recovered humans become susceptible again.

6. All black-flies are born susceptible.

7. That the susceptible black-flies, when infected, becomes exposed black-flies who are not
yet infectious.

8. That the exposed black-flies progress to become infectious only.

9. That the infectious black-flies remain infectious for life. That is, there is no recovered class

for black-fly population.

2.1. Existence and Positivity of Solutions. In this section, we analyse the general properties of
the system (2.1) with positive initial conditions. It describes the population dynamics both in human

and black-fly populations. The system is biologically relevant in the set given by

L

Q = (Sn(t,x;), En(t, ), In(t, x;), Ra(t, %)) € RY 1 N, < Z
=0

n(x) (Su(t), Ev(t). Iu(t)) eRY - N, < ™
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Here, the following results are provided which guarantee that the model governed by system (2.1)

is mathematically well-posed in a feasible region €2 defined by:
Q=QyxQ, CR*xR3

Theorem 1:

There exists a domain Q in which the solution set Sy(t, x;), Ex(t, x;), In(t, x;), Rn(t, xi), Sy (t), E,(t), I, (t)
is contained and bounded.

Proof

If the total human population size is given by Ny = Sy(t, x;) + En(t, x;) + In(t, x;) + Ra(t, x;i), and

the total size of black-fly population is N, = S,(t) + E,(t) + /,(t). From model (2.1), we have

that

dNp(t, X
INEX) < ) - ;umwh(t %) 23)
and N
B v, o, 24

dt —
It follows from (2.3) and (2.4) that

Wh(6) 11 glemn() e Np(0ux)e 00

pr(xi)

Np(t, x;) <

and
\U}
N, < M—V[l — e M1 4+ N, (0)e ™!
v

Wi (xi)
pn(Xi)
tions of the humans population only are confined in the solution set €25, and all solutions of the

Taking the limsup as t — oo gives N <

and N, < % This shows that all solu-

black-fly population are confined in €2,. It also suffices to say that €2 is positively invariant as

Na(t,xi) < ¥ j_o 229 whenever Ny (0, x;) < 129 and N, (t) < ¥+ if N, (0) < 2, Therefore the

solution set for the model (2.1) exists and is given by Q = Q, x Q, C R* x R2 O

It remains to show that the solutions of system (2.1) are nonnegative in €2 for any time t > 0O since
the variables represent human and black-fly populations.

Theorem 2:

The solutions, Sy(t, x;), En(t, x;), In(t, x;), Run(t, xi), Sv(t), E,(t), I,(t), of model (2.1) with non-
negative initial conditions in €2, remain nonnegative in €2 for all t > 0.

Proof: Given that the initial conditions, Son(X;), Eon(xi), lon(xi), Ron(Xi), Sov.Eov.lov, are non-
negative and from (2.1),

dsm %) +i[ bA(xi) Iy (1)

e IN G “h(Xf)] Sh(t.xi) 20

1=

so that

d [y C DO ()
dt [; Su(t, xj)exp (/0 H—Uh(X/)/v(n)dn—i_Mh(Xi)t)] >0, (2.5)
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Integrating (2.5), we have

L

© bAn(xi)Iv(n)
n(t, 5 ————d i)t >0,
which implies that for all ¢ > 0 and for all a € Ry, we have

: t DA ()
Sh(t,X,') > ;Sof,(x,-)exp [— (/0 HUh(Xi)/V(n)d’f]—f—/.Lh(X,')t):l > 0.

Hence, Sy(t, x;) > 0 for any arbitrary x;. Also, we have

L
dEL(t, x;
e (@) x))En(rx) 20
=
so that
d L
s [Z En(t, (xi))exp(an(xi) + ,uh(Xi)t)] >0 (2.6)
i=0
Integrating (2.6), we have for all t > 0 and for all a € mathbbR, that
L
En(t.ay > Eon(xi)exp[—(can(xi) + un(x))t]
i=0

Hence, Ex(t, x;) > 0 for any arbitrary x; Also we have

d/h t X,

L
> = (r(x) + 7n() + n () (1)
i=0

so that
9 n(D)exp(r() + 1(x) + ()] > 0 27

Similarly, (2.7) becomes

L
In(t, a) > Z lonexp [—(r(x;) +vn(x;) + wn(x;))t] > Ofor all t > 0 for all a € Ry
i=0

Hence, /5(t, x;) > 0O for any arbitrary x;. Also from (2.1), we have

dRp(t, x;)

L
St Z(.U'h(Xi) 4 w(x))Ra(t, %) > 0

1=

and we have
L
Z Ri(t, x)exp((un(x) +w(x))t [ =0 (28)

Integrating (2.8), we have, for all t > 0 and a € R, that

L

Ri(t,a) > Y Ron(xi)exp(—(un(xi) + w(x;))t) > 0
i—0
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Hence, Ry(t, x;) > 0 for any arbitrary X;. In a similar manner, we have

ds, [i A In(t))

+,va] S,(t) >0

dt Py 14 vylp(t)
so that
d £ bAvIn(n))

Integrating (2.9), we have
£ bAvIn(n))
Su(t) = Sov — ——d + wyt >0Vt>0
(0= Sovexp |~ ( [ 208D dn) + )|
Also we have

dE
dtv > —(ay + uy)Ey(t)

which on integration gives

E,(t) > E,(0)exp[—(oy + y)t] >0Vt >0 (2.10)
And finally, we have
dl
T; + (/-Lv +'Yv)/v(t)
so that
d
— [l (t)exp(uy +v,)t] >0 (2.11)

dt
And we have

/v(t) > Iv(O)exp [_(Nv +’Yv)t] >0,Vt>0

This completes the proof O

3. EXISTENCE AND STABILITY OF THE EQUILIBRIUM POINTS

3.1. Disease-free equilibrium. The disease-free equilibrium (DFE) points are steady state solu-
tions that depict the absence of infection in both the human host and black-fly vector populations,
i.e, onchocerciasis does not exist in the population. Thus, the disease-free equilibrium point, Eg, for
the model (2.1) implies that S*(x;)n # 0, E;(x;) = I} = 0(x;) = Rj(x;)) =0, Sy, #0, E, =1, =0

and putting these into (2.1), we have S*(xj), = ‘:Z:((;’)) and S} = % Consequently we obtain Ej

as

W(x v
= (Yr4) 50, ¥v 0.0 (3.1)
pr(xi) fhy

A key notion in the analysis of infectious disease models is the basic reproduction number Rg , an

Eo

epidemiological threshold that determines whether disease dies out or persists in the population.The
basic reproduction number Rg of the system (2.1) is computed using the next generation matrix

method and is given by

Ro=+VRrRy
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where R = ¥ o pmtr im0 o ntaremtoy A Ry = mial ity The basic
reproduction number Rg, determines whether onchocerciasis dies out or persists in the population.
Therefore, Rj, describes the number of humans that one infectious black-fly infects over its expected
infectious period in a completely susceptible humans population, while R, is the number of blac-
flies infected by one infectious human during the period of infectiousness in a completely susceptible

black-fly population.

3.2. Local Stability of the Disease-free Equilibrium Point Eg. Using the basic reproduction num-
ber obtained for the model (2.1), we analyse the stability of the equilibrium point in the following
result.

Theorem 3:

The disease-free equilibrium point, Ep, is locally asymptotically stable if Rg < 1, and unstable if
Ro > 1.

Proof: The Jacobian matrix of the system (2.1) evaluated at the disease-free equilibrium point Eg,

is obtained as

Mi1 0 0 Mg O 0 My
0 My O 0 0 0 My
0 Mz Mz O 0 0 0
M(Eo)=| O 0 Mz Mas O 0 0
0 0 Mss 0 Mss O 0
0 0 Me O 0 M O
0 0 0 0 0 My Myy
where My = —pp(x;), Mia = w(a1), Miz = =Y 1, W Moo = —(an(x;) + pn(xi)),
Moy = Y J_o Do) Moy = ay(x;), Mag = —(r(x) + Va(x:) + a(x:)), Maz = r(x;), Mag =
—(n(x) + w(x)), Ms3 = _%, Mss = —py, Me3z = %, Mes = —(ay + wy), M7s = ay,

M7z = —(y + 7vv) We need to show that all the eigenvalues of M(Ep) are negative. As the first
and fifth columns form the two negative eigenvalues, ;(x;) and —,, the other five eigenvalues can
be obtained from the sub-matrix, I\//l(Eo), formed by excluding the first and fifth rows and columns
of M(Ep). Hence

M, 0 0 0 M
an(x)) M, 0 0 0
MY E))=| 0  r(x) Mi 0 0 0
0 Z 0 (o) 0
0 0 0 ay — (v + )

In the same way, the third column of M!(Ep) contains only the diagonal term which forms a

negative eigenvalue, (up(x;) + w(x;)). The remaining four eigenvalues are obtained from the
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sub-matrix M?(Eg) given by

M, 0 0 M1y
M2(Eq) — an(xi) My 0 0
F)=1 0 o g4 0
WUy v ,U’V
0 0 ay —(y + )

Thus, the eigenvalues of the matrix M?(Eg) are the roots of the characteristic equation of the form

L

(E+an())(E+r(x) +9n06) + pa(xi) (E+ i +7) =Y
=0

620‘/7(Xi)>\h(XI'>wh(Xi)v>\vwv _
(X )ty

0 (3.2)

If we let Y1 = ap(x;) + pun(Xi), Yo = r(x;) +vn(xi) + wn(xi), Yz = oy + ly, and Yz = py + vy, then
(3.2) becomes

X4£4 + X3f3 + X2£2 + X1€&+ X =0, (33)
where
Xs=1 ]
X3:Y1+Y2+Y3+Y4
Xo=M+Y2)(Ya+Ya) +V1Y2 +Y3Ys > (34)

X1= M +Y2)Y3Ya + (Y3 + Ya)Y1Yo
Xo = ViYa¥a¥s — Y1 o Zelbilusa)huv,
=

pr(xi) iy 2

Expressing Xp in terms of reproduction number Rg, we have
Xo = Y1YaY3Y4(1 — R3) (3.5)

We can see from (3.4) that X3 > 0, X3 > 0, X3 > 0, X4 > 0, since all Yjs are positive. Moreover,
if Ro < 1, it follows from (3.5) that Xo > 0. Thus, using the Routh-Hurwitz criterion, we have
Hi=X3>0

Xz X
Ho = ><3 x4 = Yi(Ya+ Y+ Ya) (Y1 + Yo+ Ys 4+ Ya) + (Ya + Ya) (Ya+ Y4) (Y3 + Y4) > OSimilarly
1 X2
X3 X4 0 O
Xz X3 0
X1 Xo Xz Xa
we have Hz > 0 and Hy > 0 where H3 = | X; Xo Xz |and Hy =
0 Xog X1 Xo
0 Xp Xi
0 O 0 Xo

T herefore, alltheeigenvaluesoftheJacobianmatrixM(Eq) have negative real parts when Rg <
1 and the disease-free equilibrium point is locally asymptotically stable. However, when Ry > 1,
we see that Xp < 0 and there is one eigenvalue with positive real part and therefore the disease-

free equilibrium point is unstable O
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3.3. Endemic Equilibrium Point E.. We shall show that the formulated model (2.1) has an endemic
equilibrium point, E.. The endemic equilibrium point is a positive steady state solution where the
disease persists in the population.

Theorem 4: The model (2.1) has a unique endemic equilibrium E. whenever Rg > 1.

Proof: Let Ec = (S1(xi), Ef(xi). I (xi), R} (xi), Sy, EV. 1)) be a nontrivial equilibrium of the model

(2.1). That s, all components of E. are positive. Then the onchocerciasis model (2.1) at steady-state

becomes ,
5>\h(Xi)S;;/(Xi)/v / 1
)~ 3 (i HaUSH00) + )R | =0 (39
L
OAn(xi)Sp(xi)ly _
> (ISR — (anlx) + wnODERGS) | =0 (37
L
Z(ah<x,>Eh(x, (r(>) + wn(xi) + 0 (6) 17 (x:)) = 0 (38)
=0
L
> rOa) () = (ma(xi) + w())Rp(x) = 0 (3.9)
i=0
6}\v5vlh(X/) " _
RN (6% Bl A 219
5>\VS</,/h(X,‘) "
1+UV(X/)/;7/(XI) — (v +v)E, =0 (3.11)
avEy = (puy + 7)) =0 (3.12)
From the last three equations, we have
1" ayEy
= — 313
Y Uy + Vv ( )
O SUIh(X)
E) = e 3.14
T T T ) () (e + ) 314
and
W
S = - (3.15)
X SUT(x))
Tho, )y T B
Substituting (3.14) and (3.15) into (3.13) yields
Ryl (i)
V= L h 3.16
oy + (O + o) (%) (3.16)
From (3.8) and (3.9), we have
L
(r(xi) + pr(x;) +vr(xi)) In(x)
= 317
) Z an(xi) (3.17)
and ,
. /// i
noa) =Y _ra)lTx) (3.18)
i

— pn(Xi) + w(x;)
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If we put (3.16) and (3,17) in (3.7) in terms of Rg, we have

S VRO [y + (BAy + vy + vn () R I(0)]

Sh(xi) = G R (3.19)
Finally, using (3.16), (3.18) and (3.19) in (3.7), we have
Ih(x) = i pn (i) W (X)) (e (X)) + w(x,-))(R%p_l) (3.20)
where -
p= Z:(Nh(xi)+w(xi))[5>\h(X:')MVRV—I—\Uh(X,-uh(X,-)(5>\V+,u,vuv+uh(x,-)uv)73m)]—i L (X))t w (x:) r (X)) R3.
(321)

If in (3.20), w(x;) = 0 then p > 0. From this, one sees that model (2.1) has no positive solution
when Ry < 1. However, with w(x;) = 0, a unique endemic equilibrium exists when Ry > 1. This
completes the proof. O
Remark 1: It is important to have a remark that positive solution exists for the model (2.1) in a
case where p < 0 and Ro < 1. This implies that the disease-free equilibrium co-exists with the
endemic equilibrium state when Rg is slightly less than unity resulting into a phenomenon of

subcritical (backward) bifurcation.
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