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ABSTRACT. In nonlinear problems where function’s derivatives are difficult or expensive to compute,
derivative-free iterative methods are good options to find the numerical solution. One of the important
parts in the development of such methods is to study their convergence properties. In this paper, we
review the concepts of local and semi-local convergence for a derivative-free method for nonlinear
equations. In the earlier study of the considered method, the convergence analysis was carried out
assuming the existence of higher order derivatives while no derivative is used in the method. Such
assumptions certainly restrict its applicability. The present study further provides the estimate of
convergence radius and bounds on the error for the given method. Thus, the applicability of the
method clearly seems to be extended over the wider class of problems. We also review some of the
recent developments in this area. The results presented in this paper can be useful for practitioners

and researchers in developing and analyzing derivative-free numerical algorithms.

1. INTRODUCTION

There are several numerical methods such as Newton’s method, Broyden's method, secant method

and Steffensen’s method [3-11,13,14,17] that can be used to approximate x* of the equation
F(x) =0, (1.1)

for F : Q C Z — Z, F is a continuous operator, acting between Banach space Z and itself.

Newton’s method is a popular iterative method used to find the roots of a nonlinear equation.
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Iterative solution methods are commonly used when it is not possible to obtain the solution x* in
closed or analytical form. Instead, these methods generate a sequence of approximate solutions
that converge towards the true solution x*.

Steffensen’s method [5, 9] defined for each n=10,1,2,... by

Xn+1 = Xn — BilF(Xn)r (12)

where B = B, = [un, Xn; F] and u, = x, + F(x,), has been used extensively to generate such a
sequence converging quadratically to x*.

Many iterative approaches have been developed to improve efficiency and order convergence
(see [1,2,15,16]). An approach established in [16] that is defined for xo € Q2 by

Up = Xn+ F(Xn), Vo =Xn— F(xp), D= Dp=un, vy F],
Yo = Xo— DT'F(xp),
Zp = Yn— (81 = 2D [y, Xoi F)) D™ F(vn),
Xn+1 = Zn — (%/ — D™ [zy, yni F] (gl - ZDil[anYn; F]))D’lF(Zn), (1.3)

has received significant attention in this paper. The convergence order seven is shown in [16],
when Z = R etc. using assumption on Floi=1,2 ..., 8 not present in the method, significantly
reducing its applicability although it may converge.

Consider the function

Fit) = { 7t3log(t) + 5t — 5t4, t £ 0 14

0, t=0

Then, in any neighborhood of 0 and 1, say F” is unbounded. Hence, the results in [16] cannot
assure convergence to t* = 1. But the method converges.

In this article we study convergence of the method (1.3) that includes mainly the local and
semi-local convergence (not provided in [16]).

Local convergence analysis uses information about the actual solution to determine the rate
and radius of convergence of the method. This typically involves estimating the size of the region
around the true solution where the method is quaranteed to converge. This type of analysis also
usually involves deriving upper bounds on the error norms, which provide an estimate of how close
the iterates of the method are to the true solution.

In contrast, in semi-local convergence analysis, the convergence behavior of the method is studied
using information from the initial point, typically by deriving sufficient conditions that guarantee
convergence of the method. This analysis is usually carried out without any knowledge of the
actual solution of the problem.

Generalized Lipschitz-type conditions are often used in both semi-local and local convergence

analysis. These conditions involve bounding the difference between the iterates of the method
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and the true solution using a Lipschitz constant or a related quantity. These conditions can be
used to derive sufficient conditions for convergence, as well as to estimate the rate and radius of
convergence of the method.

It is crucial to examine how technique (1.3) converges in both the local (Section 2) and the
semi-local (Section 3) cases. Moreover, our approach gives a prior error estimates and isolation
of the solution results not provided before and in Banach space. This approach also enables a
comparison of the convergence criteria of method. If the approach is examined separately, the new
convergence criteria may be weaker than those that have been provided. The numerical examples

are included in Section 4, and the conclusions are discussed in Section 5.

2. LOCAL CONVERGENCE

Some real functions assist in the local analysis of the method. Set T = [0, +00). Assume:

(H1) There exist continuous as well as nondecreasing functions (CN) f; - T — T, b : T — T,

and wp : T x T — R so that the equation
wo(fi(t), f(t)) —1=0

admits a smallest solution (SS) denoted by § € T — {0}. Let Tog = [0, §).
(H2) There exist (CN) functions w : To = T, wy : Tox ToxTog— T,and wo : Tox ToxTog — T

such that the equations

h(t)—1=0, =123
have (SS) solutions denoted by §; € Tg — {0}, provided that
wi(fi(1), f2(1). t)
1 —wo(fi(t), (1))’

_ w8t f(t), B(1) | 2wa(t, h(8)t, A(2), H(8))(1 + w(t))
) = [ . o) RGN - Gl
h (t) . 1[5( W2(h]_(t)t, h2(t)t, fl(t), fg(t)) )2 4W2(h1(t)t, hz(t)t, fl(t), fz(t))
Ty 1—wo(fi(1), K(1)) 1 —wo(fi(2), £(1))

hi(t) =

0 = [ R (o, 5 O
Consider, the parameter * given as
§* = min{§;}. (2.5)
Let T3 = [0, 6*). These definitions imply
0 < wo(A(1), H(t)) <1 (2.6)

and
0< hi(t) <1, (2.7)
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for all t € T;.

Let B(X,r), B[x, r] abbreviate open and closed balls in S, respectively so that the

center is X and the radius is some r > 0. The preceding real functions are associated to
the divided difference [., .; F] as:
(H3) There exists an invertible operator L € £(Z) so that for each x € Q, v = x + F(x),
v=x—F(x)
L7 ([u, vi F] = LI < wo(llu = x|, [lv = x*[]),
lu = x| < Allx = x]),
v = x*[] < B(lIx = x*)).
Let Bp = B(x*,9).
(Ha)
L7 x5 F1 = DI < w(llx = x*]]),

L= (%, i F1 = [z, x5 FDIL < wa(llx = x| lly = x*[]. [1z = x*[])
and
L= ([, vi F1 =Ty, X DI < wa(llx = x*I]L [y = x| o = x*[], v = X)),

for each x,y, z, u, v € By.
(Hs) B[x*,6*] C Q.

The local analysis is based on the conditions (H1) — (Hs) under the preceding notations.
Theorem 2.1 Assume the conditions (H1) — (Hs) are validated. If xo € B(x*,§*) — {x*}, then the

following items are valid

{xa} C B(x*,6%), (2.8)

1yn = X" < halb = x* DI = x| < lllxa — X" < 6%, (2.9)
1Zn = x*|| < ha(llxn = X" DX = x| < [lllxa = X1, (2.10)
X1 = x| < ha(llxn — x*IDIIxn — X7 < NllIx — X7 (2.11)

and the sequence {x,} is convergent to x*.
Proof. These items are shown by mathematical induction. By the condition (Hs), estimate (2.7)

for up = xo + F(x0), vo = xo — F(xo) it follows

A

17 ([wo, voi F1 = LI < wollluo — x7II, [vo — x*11) < wo(fi(llxo — x*[1). B(lxo — x*11))

wo(fi(u), f2(v)) < 1. (2.12)

IN
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Then, the existence of [ug, vo; F] ! is assured by the estimate (2.12) and the perturbation Lemma
on linear operators with inverses attributed to Banach [6]. We also have

1

Uy, vo; F171L|| < . 213
Mo vor FT L < 3 o = ). Aol — 71D 213)
Thus, the iterate yg is well defined and
Yo — x* = xo — x* — [uo, vo; F] ' F (x0).
[0, vo; F17 ([uo. voi F] — [x0. x™5 F1)(x0 — x*). (2.14)
Then, the conditions (H3), (Ha), (2.5), (2.7) (for i = 1), (2.13) and (2.14) give in turn
wi(lluo — x*|, [lvo — x|, [[xo — x*|)[Ixo — x*|
yo — x*|| < " .
1 — wo(fi(llxo — x*|1), f2(llx0 — x*[[))
<hi(llxo = x*[DlIxo — x*[| < [Ixo0 — x*|| < 8™ (2.15)

Hence, the iterate yp € B(x*, §*) and the item (2.9) is validated for n = 0.
Notice that the iterates zp and x; are also well defined by the second and the third substep of

the method (1.3). In particular, we get
20— x* = yo = x" = D F(y0) + 2D (D — [yn, xni F1)D™ F(yn)

=D7H(D ~ [y, X" FD(n — x*) + 2D ([uo, vo; F] = [vo, x0; FDD ™ F(0).  (2.16)

But we can write by the first substep that
F(vo) = F(yo) = F(x*) = [vo, x™; Fl(yo — x¥),
so by (Hy)
1L~ F (o)l = IIL™H([vo, x*; F1 = L+ L)(yo — x¥)|
< (T4 w(llyo = x*IN)llyo — x*1I. (2.17)

Consequently, (2.5), (2.7) (for i = 2), (Ha), (2.13), (2.16) and (2.17) imply

wa(llyo — x*[[, luo — x*|I. [[vo — x*[)

z0 — x| <
120 =Xl < | T o e — <D, o —x1)
2ualbo =l o= o =l o ~ D o = I
(@ — wolhi(lxo — ). flllxo — x*)))2 '
< ma(llxo = x*INlIxo = x*11 < IIxo — x*11 (2.18)

Thus, the iterate zg € B(x*, §*) and the item (2.10) is validated for n = 0. Moreover, the third

substep gives
x1—X*=z2g—x"— D F(z) — AD7 F(z)
=D YD — [z, x*; F])(z0 — x*) — AD™YF(z), (2.19)
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where
A= —[%/ - gD_l[Zn,Yn; Fl+ Z(D_l[zn,yn; F])2]
= —%(5(0_1([2,7,%7: F1 = [Un, Vi F1))? — 4D~ ([, Yn; F] = [tn, va; F1)).

Therefore,

) < 5( 2allso =Xl 20 =l o — . I — 1) 2
AR TR INA(EE))

wa(llvo = x*11 120 — X1, 1o — x*I1 Ilvo — x*[)
L4 — ho. 2.20
(e (e R (220
Then, by (2.5), (2.7) (for i = 3), (Ha), (2.13) and (2.18)-(2.20)
- [MH% o lvo = X1 l1zo = x*1)
< T wolB (o —x . Bl —x)
ho(1 + w(lzo — x*|))
+ 20 — X
ot (e — ) Bl 12
< hs(llxo = x* Dlixo = x*1| < llxo = x°1I. 221)

Hence, the items (2.8) and (2.11) are validated for n = 0 and the iterate x; € B(x*,0*). If the
preceding calculations are repeated with X, Vm, Xm+1, replacing xo, Yo, X1, respectively, the

induction for the items (2.8)-(2.11) is terminated. Furthermore, from estimation
[Xms1 = X[ < pllxm — x*I < [1xm — x|, (2.22)
where = h3(||xo — x*||) € [0,1), we conclude that limy 00 Xm = X* and the iterate xp11 €
B(x*,¢6*). O
Remark 2.2 The second and third hypotheses in (H3) are left as uncluttered as possible. Some
possible choices for the functions f; and f, are specified.
Up— X" =xp — X"+ F(xn) = (I + [0, X*; F])(xn — x¥)
= (4 L+ LL7Y([xp, x*; F] = L)) (xy — x*),

)

llun =1 < (I =+ LI+ AL w =3I Ga = x)]-
Thus, we can choose

A(t) = (I/+ Ll + ILIw(D)t.

Notice also that we can set w(t) = wy(0, t).

Similarly, we define
f(t) = (IlF = LI + ILw(D))t.
In view of the above the second and third conditions in (Hs) can be dropped if (Hs) is replaced by

(Hs) B[x*,68] C Q, where § = max{6*, f1(6%)86*, £(5%)0*}.
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Possible choices for L are
L = F'(x*) (The differentiable case)

or
L=1.,.;F] (The non-differentiable case).
In practice L should be chosen to optimize the results.
Next, the point x* is shown to be the only solution of the equation F(x) =0 in a certain set.
Preposition 2.3 Assume: There exists a solution x; € B(x*, 04) of the equation F(x) = 0 for some

04 > 0; The first assumption in (Hs) is validated on the ball B(x*,04) and there exists 65 > 4 so
that

W(55) < 1.
Let By = QN B[x*, d5]. Then, the only solution of the equation F(x) = 0 in the set By is x*.
Proof. Let Q = [x*, x{]. By the assumption it follows
IL7HQ = DIl < w(lbg = x*|I)

< W(65) <1,
thus @1 € £(2) and consequently from the approximation
X —x"=QHF ()~ F(x")) =Q7(0) =0,

it is concluded that x{ = x*. O

Clearly, we can choose 64 = 0*.

3. SEMI-LOCAL ANALYSIS

The role of x* is exchanged by xo. But there are some more differences.
Assume:
(C1) There exist (CN) functions g1 : To = T, go: To = T and wp : To X Top — T so that the
equation
wo(g1(t), g2(t)) =1 =0
has a (SS) denoted by rp € To — {0}. Set T3 = [0, rp).
Define the scaler sequence {a,} for ag = 0, by € [0,rp) and some (CN) functions

gliT3—>T,ggiT3—>T, W22T3XT3XT3XT3—>Tbg

. wa(an, bp, fi(an), 2(an)) | 2wa(an, bn, fi(an), f2(an)) _

I e (X P W e MR e oy e 14 (A OB
. 1 wa(an, by, fi(an), f2(an)) |2 wa(an, b, fi(an), f2(an)) |2

S B e e e o IR eere e e e M
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Yn = wa(an, bn, g1(an), 92(an)) (b — an),
(1 + WO(bny Cn))(cn - bn)ﬁn + Yn
1 —wo(9g1(an), 92(an))
dnt1 = (1 + wo(an, bn))(an+1 — an) + (1 + wo(g1(an), g2(an)))(bn — an)

dpn4+1 = Cp

and

5n+1
1 —wo(g1(ant1), g2(ans1))

bn+1 = dn+1 +

Next, general convergence conditions are developed.

Lemma 3.1 Assume there exists u1 € [0, rp) such that for each n=0,1,2, ...,

(C2) wo(g1(an), g2(an)) <1 and ap < 1.
Then, the following items hold

Ogangbngcngan—klgﬂl

and there exists a* € (0, u1] such that lim,_ a, = a*.
Proof. The conclusions follow immediately by the formula (3.23) and the condition (C5).
O

Notice that the limit a* is unique, since it is the unique least upper bound of the sequence

{an}.
(C3) There exist an invertible operator L and a point xp € Q such that for each x,y € Q,
u=x+ F(x), v=x—F(x)

IL7H([w vi F1 = Ol < wo(llu = xoll, [[v = xoll),
lu =0l < g1(llx = xol]),
v =Xl < g2([lx — xoll)

and wo(g1(I[F (x0)I). g2(IIF (o)) < 1.

The existence of [ug, vo; I—_]*1 is guaranteed, by the Banach lemma and since
L™ [[uo, vo; F1 = LI < wo(lluo — xoll. llvo — Xoll) < 1.

(Ca) Il[uo, vo; F171F (x0) || < bo. Let By = B(xo, o).

(Cs) IL7H(x, yi F1=[w, vi FDII < wa(llx =xoll, ly = xoll. llu = xoll, [lv = xo|1) for each x, y, u, v €
B-.

(Ce) Blxo, a*] C Q.

Next, the semi-local convergence is provided for the method (1.3).
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Theorem 3.2 Assume the conditions (C1) — (Cg) hold. Then, the following items hold

{xn} C B(x0, "), (3.24)
1¥n = Xnll < by — an, (3.25)
120 = ynll < cn = b, (3.26)
[Xn+1 = Zoll < @nt1 — cn, (3.27)

and there exists a solution x* of the equation F(x) = 0 such that
[x* = xpll < @ — ap. (3.28)

Proof. The items (3.24)-(3.27) are shown by induction. Notice that the iterates yp, zo, X1 exists
by the invertibility of [up, vo; F] and the method (1.3). The estimate (3.25) is validated for n = 0,
since by the condition (Cy)

lvo — xoll = [[uo, vo; F1 7 F(x0)|| < bo = by — ag < a* (3.29)

and the iterate yp € B(xg, a*).

Then, as in the local convergence case but using xp, (C) instead of x*, (H), we obtain from

F(yn) = F(yn) = F(xn) = D(¥n — xn) = ([Vn, Xn; F] = D)(¥n — Xn),

SO

ILTHF )l < wallxn = xoll. lyn = xoll. llun = xoll. Ve = xoll). (3.30)

Hence, by the second substep

Zn —Yn = _D_IF(Yn) - 2D_1(D - [J/n:Xn; F])_ID_IF(Yn),

and
wo(1xn — xoll. 1y — xoll, |tun — Xoll, ||V — X
HZn_ynH SI: 2(” n_ OH H n _OH || n OH_H n OH)
1 — wo(fi(Ilxn — xoll). 22(llxa — xoll))
W2(||Xn_XO||r||YH_XO||’||Un_XO||’||Vn_XO||) 2
2 T ol T o)) e =l S 20— (331
and

lzn = xoll < lzn = Yall + lyn — Xoll < an — by + by — a0 = ¢y < a",

thus the item (3.26) holds and the iterate zg € B(xp, a*).
Moreover, by the third substep

Xpt1 — 2n = —BD 7 F(zp), (3.32)
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where
1
B= — (131 = 14D " [z0, yoi F] + 5(D" [0, yoi F1)?)
1
= — 1(5(D_1[Zn.)/n; Fl - /)2 - 4(D_1[Zn,)/n; Fl—-1) +4/)'

thus

wa ([IXn = Xoll, [[yn — xoll. lun — xall. lIvn — Xol|) )2
1= wo(A([Ix — xol), 2(lIxn = x0ll))

wo(l[xn — xoll, lyn — xoll, llun — xoll, Iva — xoll)
1 = wo(fi([lxn — xoll), 2([1xn — x0ll))

181 < (s

+4( )+4)=B<Bn.

Consequently, we have

Bn(l + wo(llyn — xoll, 120 — x0lI))lIZn — yall
L= wo(f(llxn — xoll), f2(llxn — Xoll))
,6n(1 + WO(ﬁny Cn))(cn - bn)

X1 — Znll <

S T 1 wo(Alan), B(ay)) oMt e Bn (3.33)
and
1Xn41 — Xoll < IXn41 — Zall + |20 — X0/l < @nt1 — o+ Ch — a0 = any1 < a°.
Hence, the item (3.27) is validated and iterate x,+1 € B(xp, a*). 0

Remark 3.3 As in the local case the functions g; and g can be expressed in terms of the rest of
the conditions.

Assume that there exists a CN function ¢7 : T — R such that for each x € Q
IL=H([x, %05 F] = L) < o1 (llx = xol)).
Then, from the estimate
Up — X0 = Xp — X0 + F(xp) — F(x0) + F(x
=(I + L+ LL™H([xn x0: F] = L)) (%0 — X0) + F(x0),
so we can choose
91(t) = (1 + LI + [[Lle1(8))t + [|F (x0)l
and similarly
92(t) = (11 = LI + [[Lllex(8))t + [[F (o).
Under these choices of g; and ¢»
v = xoll = g1([[x — xol]),
v —Xoll = g2(][x — xoll)

and the second and third conditions in (Hs) can be dropped.

Possible choices for L are

L = F'(xp) (The differentiable case)
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or

L =1.,.;F] (The non-differentiable case).
The condition (Cg) can be replaced by
(Co) Blxo, a) C Q, where a = max{a*, g1(a*), go(a*)}.
A uniqueness of the solution set is specified.

Proposition 3.4 Assume: There exists a solution d € B(xp, 0¢) of the equation F(x) = 0 for some

d¢ > 0; the first condition in (H3) holds in the ball B(xg, d¢) and there exists 67 > d¢ such that
Wo(66,57) < 1.

Let B3 = B[xo, 07] N Q. Then, the point d is the only solution of the equation F(x) = 0 in the set
Bs.
Proof. Let d; € B3 be such that F(d;) = 0. Define the divided difference [d, di; F]. Then,

IL7([d, di; F] = L)|| < wo(lld — x|, |dx — xoll)

< wo(de, 67) < 1,

thus dp = d. O
Remark 3.5 If all the conditions (C1) — (Cg) hold, then set d = x* and ds = a*.

4. NUMERICAL TESTS

In order to validate the theoretical deductions, we take into account the following numerical
examples to estimate the real parameters defined in the preceding sections:
Example 1. Let Z=R x R x R and Q = B(£*, 1) with £¢* = (0,0,0)". Define the mapping F for
£=(61.62.86)7, & €Rby

Flo) = (g8 -1, Y

2
This definition gives that the F’ of the mapping F is the Jacobian matrix

gie) .

1 0 0
F'(§)= |0 e 0
0 0 (e—1)é+1
Notice that F(£*) = O and F/'(£¢*) = I. Then, the conditions (H1) — (H4) are validated if

Wo(tl,tg) = %(6—1)(t1+t2),
w(t) = %(e — 1)t
Wl(tl,tz,tg,) = %(e—l)(fl-i-tz—‘rt?,),

1
WQ(tl, t, t3, t4) = E(e — 1)(t1 + b+ t3 + f4)
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| 12 |

and the functions f; and f, are given in Remark 2.2. Then, the radius §* using (2.5) is

01 = 0.20415, 9> = 0.13109, 03 = 0.11960 and 0" = 0.11960.

Ficure 1. Graph of radius of convergence of example 1.

2.0}
1.5}
1.0
& 05f . M
0.0 M
—o0.5f b
-1.0 %

-0.2 -0.1 0.0 0.1 0.2

Example 2. Let Z = CJ[0, 1] be the space of continuous functions defined in [0, 1] and Q = B(/*, 1).

Consider the integral equation of the mixed Hammerstein-type [6,12] by

I(d) = [01 T(d,w)(/(w)3/2 + /(wz)z)dw,

T(d w) = { (1-dw, w<d,
d(1-w), d <w.
Notice that /*(d) = 0. Define H: Q2 C [0, 1] — C[0, 1] as
H(I)(d) = I(d) — /01 T(d,w)(/(w)3/2 . /(602)2)dw.

The derivative H' is given by

1
3
H' (Na(d) = q(d) —/ T(d,w)(5 I(w)Y? + /(w))dw,
0
since H'(I*(d)) = 1, it follows
_ 5
I ()T (H' () = H'(@))]| < 16! — all
In (4.35), switch g by Iy
_ 5
IH' ()T (H' () = H'(lo)) || < 16l =l
Thus, we take
wo(ty, ) =t + to,
w(t) =t,
wi(ty, to, t3) = t1 + tr + t3,

Wg(tl, to, t3, t4) =b.

(4.34)

(4.35)
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Hence, we obtain

01 = 0.17539, 8, = 0.02678, d5 = 0.90819 x 1072 and &* = 0.90819 x 10~3.

Ficure 2. Graph of radius of convergence of example 2.
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Example 3. Let Z = CJ[0, 1] be the space of continuous functions [12] defined on the interval [0, 1]
and Q = B(0, 1). Define the function H on Q by

1
H()(I) = o(1) — 10 /O low(0)3dp.
It follows that

1
H (0(€)()) = £(1) — 30 /0 low(p)?E(p)dp, for each & € Q.

Since /* = 0, so we can set

wo(t1, t2) = 2(t1 + t),

Wl(tl, to, t3) = 2(t1 + th + t3),
wo(ty, to, t3, ta) =2(t1 + to + t3 + ta).
Hence, we obtain
61 = 0.98449 x 1071, 6, = 0.62003 x 107!, §3 = 0.55704 x 10~ ! and §* = 0.55704 x 107 L.

Example 4. Lastly, a nondifferentiable nonlinear system on R x R is solved using the method
(1.3), where the divided difference is defined by the 2 x 2 matrix given for t = (t, t2) € R X R,
t= (ts, t4) ER xR, and F = (F1, F2) by

_ Fi(ts, ta) — Fi(s1, s4)

£t F;
[,, ]/,1 t3—t1

t3 # t

and
_ Fi(s1,52) = Fi(s1, 52)
S4 — S .

Sy # Sp.
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Ficure 3. Graph of radius of convergence of example 3.
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Otherwise, we set [.,.;.] = O. 7 Let us consider the nonlinear and nondifferentiable system as
3t +t5 — 14|t — 1| =0,
th+tt3 — 14|t =0.
Then, we set F = (F1, F2), where
Fi(tit)=F =3+t —1+|t1 -1 =0

and

Fo(ty, to) = Fo =t} + t1t5 — 1 + |ta| = 0.

Choose initial points (5,5) and (1,0). Then, using the aforementioned divided difference and
the method (1.3) we obtain the solution x* = (x{,x3) after three iterations with x{ =

0.894655074966771 and x5 = 0.327826643198819.

5. CoNcCLUSION

The focus of this paper is to provide a comprehensive analysis of the local and semilocal con-
vergence of a derivative-free seventh-order method in Banach space. It is noteworthy that the
convergence has been investigated in earlier studies by assuming the existence of some higher
order derivatives, which in fact are not used in the iterative method. Contrary to this, our approach
only considers the first-order divided differences that are actually present in the iterative process.
This unique feature makes the method applicable to a wider range of functions, thereby expanding
its utility. In the analysis, we present an error estimate and convergence ball that bounds the iter-
ates, providing further benefits to the analysis of convergence. In addition, the sufficient conditions
are developed to show the uniqueness of solution in the given domain. To verify the theoretical
results, we have conducted numerical tests on several problems, demonstrating the effectiveness of
this approach. Moreover, this idea has the potential to be extended to other methods, making it a

valuable contribution in the field of the theory of iterative functions [1-17].
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