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ABSTRACT. In this paper, a mathematical model for dual protection, incorporating PrEP and Condom
use, and ART adherence is formulated, based on a system of ordinary differential equations and
analyzed. The results obtained from stability analysis indicate that provided the basic reproductive
number is less than unity, the disease free equilibrium point is both locally and globally asymptotically
stable, while provided the basic reproductive number is greater than unity, the endemic equilibrium
point exists and is locally asymptotically stable. Sensitivity analysis is undertaken to establish the
most sensitive model parameter. The most sensitive parameter to the value of Ry is (51, the mean
contact rate with undiagnosed infectives. This implies that in order to control the spread of HIV
in a high risk population, efforts should be geared towards reducing the undiagnosed by testing
and enrolling them on ART treatment. This in turn lowers their infectivity as well as chances of

progressing to the AIDS class.

1. INTRODUCTION

Numerous efforts have been made in an attempt to control the spread of HIV, with the aim of
reducing its effects. According to the UNAIDS fact sheet 2019, at least 1.7 million new HIV
infections were reported by the end of the year 2018 [13].

Scientific as well as public health interventions such as testing and counseling, circumcision,
use of PrEP (Pre-Exposure Prophylaxis), PeP (Post-Exposure Prophylaxis), condom use, and an-
tiretroviral therapy have been proposed and utilized. Consistent use of condoms can result to 80%

reduction in HIV incidence among the heterosexual population [2], while the effectiveness of condom
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use for men who have sex with men is 70% [3]. Proper use (correctly and consistently) as well as
quality concerns have been directly attributed to the success of this approach.

In 2012, the U.S Food and Drug Administration (FDA) approved the use of Truvada for PrEP as
an oral pill taken once a day [14]. Numerous efficacy trials( by iPrEX, Partners PrEP, TDF2,
e.t.c) have since been conducted to ascertain the potential of PrEP to prevent HIV infection. The
iPrEX trial demonstrated that PrEP has the potential of reducing the risk of HIV infection among
transgender women, bisexual men, as well as men who have sex with men [8]. Two major studies;
Partners PrEP, and TDF2 demonstrated the effectiveness of PrEP among heterosexual men and
women. Out of all these studies, none displayed a 100% effectiveness [11]. Adherence has been
found to be directly correlated with the effectiveness of PrEP [11]. In the absence of adherence,
which guarantees efficacy, PrEP failures have been characterized by; system failures, people fail-
ures, Doctor failures, drug failures, as well as assay failures [9]. These failures expose PrEP users
to the risk of HIV infection hence the need for additional protection whenever PrEP has been
utilized.

The nature of storage, date of manufacture, religious as well as socio-cultural beliefs also influence
how each HIV prevention venture is utilized. The challenges experienced when various approaches
are employed in an attempt to control the spread of HIV infection in a high risk population form the
basis for the need to use dual protection in order to achieve maximum protection. A combination
prevention approach as proposed by [6], based on proven efficacy interventions, provides one with
the best opportunity to curb the spread of HIV among the high risk population.

In this study, we propose a mathematical model of dual protection against HIV infection by the use
of condom and PrEP, and adherence to ART treatment, while focusing on the high risk population
collectively. Earlier studies have either narrowed down to a particular category of persons at high
risk of infection [3], or have used a combination of prevention techniques where one technique
acts as a supplement to the other [4], [5] The study will focus on the impact of dual protection
on reducing the number of new infections, and that of ART adherence in ensuring those who are

infected remain less infectious.

2. MobpEL FORMULATION AND DESCRIPTION

The population is subdivided into the classes; susceptible, infected, and Aids individuals. The
susceptible class has been further subdivided into two compartments on the basis of degree of
risk of infection. These include susceptible individuals at high risk of infection, denoted by (Sy),
and those at low risk, denoted by (S;). The high risk population incorporates mainly commercial
sex workers, men who have sex with men (MSM), and HIV-Discordant couples [8]. The infected
class is subdivided into two compartments; those who are unaware of their HIV status (/), and
those who have been diagnosed and consequently enrolled for treatment (7Tp). The individuals

who are unaware of their HIV status may progress to the Tp compartment after successful HIV
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awareness campaigns that will persuade them to get tested, or when they develop HIV symptoms
and consequently enroll for ART treatment. If ART treatment fails, the individual progresses to the
AIDS compartment. This happens when there is lack of adherence to ART, which allows the virus
to multiply, thus increasing the plasma viral load. This results in weakening of the immune system
and hence the AIDS symptoms begin to manifest. The AIDS compartment comprises of those who
posses full blown symptoms, and are mostly bedridden, they thus do not significantly contribute to
the spread of the disease. Exit from the AIDS class is through natural death.Thus, considering a

population of size N(t), at a time t,
N(t) = Sp(t) + Sc(t) + 1(t) + Tp(t) + A(t). (1)

The following interventions have been incorporated in the model;

(@) 0 < ¢1 <1 - measures PrEP effectiveness, including its awareness and proper use as a means
to prevent susceptible individuals from being infected. Thus, (1 — ¢1) measures PrEP failure.

(b) 0 < ¢» < 1- measures condom effectiveness as a result of proper use, following adequate
awareness campaigns and availability. Thus, (1 — ¢») measures condom failure.

() 0 < ¢3 <1 - measures the efficacy of ART treatment, including uptake with proper adherence,
with the aim of reducing the plasma viral load and reconstructing the individual's immune system

hence making them less infectious.

Movement of individuals from the susceptible to infected and then to the AIDS classes is illustrated

by the compartmental model shown in Figure 1.
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Ficure 1. Compartmental Model.
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The following

symbols will be used to represent various phenomena as described in Table 1.

Symbol | Description
A constant rate of recruitment of susceptible upon becoming sexually active.
0 proportion of susceptible individuals at high risk of infection.
(1 —0) | proportion of susceptible population at low risk of HIV infection.
rate of acquisition of an infection by susceptibles.It is given by;
A A= ([LA?JD) where 31, and B> are the mean contact rates for the
susceptible individuals with / and Tp respectively.
natural removal rate by death.
o aids induced mortality.
represents the proportion of infected individuals who upon being
« tested and found to be HIV positive,they enroll for ART treatment.
represents the proportion of infected individuals who do not get tested
" hence remain undiagnosed until they begin to exhibit AIDS symptoms.

TaBLE 1. Table showing symbols and their description

From the dynamics described above, the following system of ordinary differential equations is

formulated.

ds
= OA— (1= ¢1)(1 — $2)ASk — uSn
ds
TtL = (1=80A—(1—¢2)AS. —uS,
dl
9 (1= 1)1 —d2)ASH + (1 — p2)AS, —al — 2l — ul
dT,
= = al—(n+wo
dA
Fri Yol +v3Tp — (4 + o)A,

3. MoDEL ANALYSIS

It can be shown that the solutions for the system of ordinary differential equations (2) are

all positive and bounded for all t > 0, with positive initial conditions in the feasible region I' =
A
{(SH(t), Sc(t), 1(t), (To(t), A(t)) € RS : N(t) < M} . It therefore suffices to study the dynamics

of the system (2) in this region.

The mathematical model developed in (2) has two unique equilibrium points, that is, the Disease
Free Equilibrium (D.F.E), and the Endemic Equilibrium (E.E). The D.F.E is obtained by setting
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I=Tp=A=0in (2) to yield
ON (1 —=0)A
Eo— (22 L2 50.0). 3)
I 7
The basic reproduction number (Rp) of the system (2), computed using the next generation matrix

approach [10] is given by
_Bs . o762
Q1 Q1Qz
By [10, Theorem 2], the following result is thus established.

Ro

(4)

Theorem 3.1. The Disease Free Equilibrium of the model (2), Eq = (%\ @, 0,0, O), is locally

asymptotically stable whenever Ry < 1 and unstable otherwise.

Proof. The proof follows immediately from the computation of Ry above and Theorem 2 of Van den

Driessche and Watmough [10]. O

Mathematically, Theorem (3.1) implies that whenever there is a small perturbation on the system,
the system returns to the disease free equilibrium. Epidemiologically, this implies that when a few
HIV infectious individuals are introduced in a population that is fully susceptible to HIV infection,
the disease dies out whenever Ry < 1, otherwise, the disease will spread. It is therefore necessary
to show that eliminating HIV in a population is independent of the size of the initial sub-population

by proving the global asymptotic stability of the disease free equilibrium.

Theorem 3.2. The Disease Free Equilibrium Eq = (% @, 0,0, O) of the system (2) is globally

asymptotically stable whenever Ry < 1.

Proof. Castillo Chavez's theorem [1] is used to analyze the global asymptotic stability of the math-
ematical model (2) such that Eq = (X*,0),

X=(Sy,S)and Z=(I,Tp, A).

Now;
AN—puS
Fox0)— | 0N HSH
(1=06)AN—uS,

Matrix P is given by
mB1SH n (1—¢2)B1SL

) and G(X,Z) = PZ — G(X,Z).

h1B2SH N (1 —¢2)B25,

N N — (472 + u) N N 0
a —(v3+w) 0
Yo Y3 —(o+u)

where hy = (1 — ¢1)(1 — ¢2), and PZ is given by

h1B11SH n (1 —¢2)B1!SL

hB2TpSH n (1—¢2)B2TpS,
N N

N N

—(a+y2+p)+

al —(v3+uw)Tp
Yol +v3Tp — (0 + 1)A
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Moreover, G(X, Z) is given by

I+ B>T I+ BT,
(1—=¢1)(1—¢2) (51/\/520) S+ (1—¢2) (BlNﬁZD) St —(a+v2+u)l
al —(v3+u)Tp
Yol +v3Tp — (0 + p)A
G1(X,Z) 0
and therefore G(X,Z) = PZ — G(X,Z)= G»(X,Z) |= | 0 | . Hence conditions H; and H, are
G3(X,Z) 0

satisfied. Also from Theorem (3.1), Eq is locally asymptotically stable whenever Ry < 1. Therefore
following Castillo Chavez's theorem, Ep is globally asymptotically stable whenever Ry < 1, as
desired. g

This implies that with a large perturbation of the disease free equilibrium, solutions of the model
represented by the system (3.2) converge to D.F.E whenever Ry < 1. Epidemiologically, this implies
that if a sufficiently large number of HIV infected individuals are introduced in a population that

is fully susceptible to HIV infection, the disease will die out whenever Ry < 1.

3.1. Existence of the Endemic Steady State.

Theorem 3.3. An endemic equilibrium point Ey = (S;, S;*, I"*, T5", A**), of the system (2) exists

whenever Ry > 1.

Proof. Equating the right hand side of each equation in the system (2) to zero and simplifying

yields;
I** T**
O\ = (1—¢1)(1 — ¢2) (ﬁlf\,ﬁ”) S —uSiy =0, (5)
I** T**
(1=0)A=(1—¢2) (WD)SZ*—MSZ*=O, (6)
/** T**
(1—¢1)(1—¢2) (ﬁILBQD) SH+
/** T**
(1-¢2) (W)St*—(a+72+u)/**=0, (7)
al™ —(y3+wu)TH =0, (8)
Yol + s3T5 — (b +0)A™ =0. (9)

a e

From equation (8), 75" = &

Substituting for T3 in equation (9) and simplifying gives A™ = (2’723 + ﬁ) ™.
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Using equation (5) and substituting 75" gives

a
SAN — (1= 61)(1 — ¢2) (/31 + %2) S — uNS = 0
o OAN
= SH = et N

Boax

where a; = (1 — ¢1)(1 — ¢») (,81 + ) In a similar manner, S;* is expressed as S =

Q2
(]_ — 5)/\/\/ Boax
h —(1— = .
azl*—l—uN'W ereap = (1 —¢) |B1 + o,
Using equation (7) and substituting for S; and S;*,we obtain
ap ™ oA ax (1 —9)A

PAE Y e 10)
Thus from equation (10),
A 1—-9)A
31/** + /,LN** 82/** + /J'N**

From equation (11), /** = 0 corresponds to the disease free equilibrium point of the system (2),
denoted by (Ep). The other solution of (11) when /** # 0 corresponds to the endemic equilibrium
point of the system such that,
aioN ax(1—=9)A
arl** 4+ uN**  as [** 4+ pN**
Multiplying through by (a1 /** + wN**)(ax/** + wN**) yields

— Q1 =0. (12)

CI**2 4+ DI*™ 4+ E=0. (13)

where: C = —Q1a1a2, D = (a1a20\ + a1a2(1 — 6)\) — (QraruN + QraxuN), and E = a;0AuN +
as(1 — 8)AuN — QruNuN.

The endemic equilibrium of the system exists if the roots of equation (13) are real and positive.
Descarte’s rule of signs is used to check the possible number of real roots of the polynomial. The
number of positive real roots is equal to the number of sign changes in the coefficients of the
terms of a polynomial [15]. Considering that all the parameters used are positive, the sign of C is

negative. The sign of E is then checked as follows;

E = a16AuN + ar(1 — 8)AuN — QiuNuN

= (1—-¢1)(1—¢2) (51 + Ban) SALN +
2
(1—¢2) (,51 + [i;j‘) (1 —=0)AuN — QiuNuN

= (1-¢1)(1 = ¢2)(B1 + Boct)0AuUN +
(1= ¢2)(B1 + B2or)(1 — 8)AuN — Q1QouNuN
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B3

afs o A :
+ and the limiting value of N = 2, we obtain E = (Rg — 1)A2. Thus E >0
Q1 R1Q2 9 H (Ro—1)

iff Ro > 1. Since C is negative, and E is positive, we see that there is at least one sign change

Using Ry =

regardless of the sign of D. This implies that equation (13) has at least one positive real root.

Hence an endemic equilibrium point of the system (2) exists whenever Ry > 1. ]

3.2. Local Stability of the Endemic Equilibrium. At the endemic equilibrium, there is persistence

of HIV infection in the population.

Theorem 3.4. The endemic equilibrium point Ey = (S}, S|, I"*, T5*, A™) of system (2) is locally

asymptotically stable if Ry > 1.

Proof. The Jacobian matrix of the system (2) evaluated at endemic equilibrium is

—-b; 0 —bo —bs 0
0 —bs —bs —bs O
JE1)=| by bg bg—Q1 big O
0 0 a Q2 0
0 0 V2 13 —Q3
where
by = (1=01)(1=¢2)(B1Q2+B20) k™" +Qop/\ by = _ (1=¢1)(A—=¢2)B1a1dNI*" by = _ (1=¢1)(A=¢2)B2a18N ™"
1= Q2A a1l +A al+A
by = (1=02)(B1Q2+B0) k™ +Qop/\ bs = (1-¢2)(1—6)ABra /™ bs = (1—¢2)(1—6)ABoan ™
4= Q2N 5= a P+ A 6= a ™A
by = (1-¢)(1- ¢2)(ﬁ1§2+ﬁ2a)#/**+02u/\ bg = _ (= ¢2)(51Q2-Eﬁ2a)#/**+(?2u/\
bo — (1=¢1)(1—=¢2)B1a10NI™ (1 $2)(1—6)ABrap ™ bio = — (1=¢1)(1—¢2)Brar16AI™" + (1—-¢2)(1—-6)ABoaz/**
9 = ai ™ +A ™ +A 10 ar ™ +A A
Clearly, —Qs is an eigenvalue of the Jacobian matrix J(E1). The other eigenvalues can be computed
by finding the solution to the equation
A+ b1 0 —bs —b3
PN = 0 A+ by —bs —be 0
b bg  A—(bg+Q1)  bio
0 0 o A+ Q2

The characteristic equation of J(E7)is then given by;

PO =X+ +ar+or+c=0 (14)

where;

Co=Db1+bs—bg— Q1+ Q>

€1 = bi1bg + bab7 + bsbg — bybg — babg — abig — b1Q1 — baQ1 + b1Q2 + baQ2 — beQ2 — Q1 Q2
Co = —abzby + bobaby + by bsbg — atbgbg — by babg — alphaby big — alphabsbig — b1 baQ1 + b1 baQ> +
bab7Q2 + bsbgQ2 — b1bgQ2 — babgQ2 — b1R1W2 — baQ1Q2

c3 = —abzbgby — abibgbg — ab1babig + bobab7 Qo + b1 bsbgQo — b1babgQo — b1 baQ1Q2

The number of negative zeros of equation (14) depends on the signs of ¢y, ¢1, 2 and c3. Descarte’s
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Rule of Signs is applied to study the number of negative real roots of the polynomialP(\1) com-

prising of the coefficients ¢y, ¢1, c» and c3 given by;
P(>\1)= Co>\3+C1>\2+C2>\+C3ZO (15)

Descarte’s rule of signs states that the number of negative real zeros of P(\) is either equal to
the variations in sign of P(—X) or less than this by an even number [15]. The possibilities of
negative real zeros of P()), is as summarized in Table 2. The maximum number of variations
of signs in P(—X) is 3, hence the characteristic polynomial (15) has three negative roots. Thus
P(—M\) = A — X3+ X2 — oA+ 3 =0 has negative roots.Therefore, given that cases 1-8 in

Table 1 are satisfied, model (2) is locally asymptotically stable if Rg > 1. g

TaBLE 2. The Zeros of the characteristic equation (14)

Cases | cp | c1 || c3| Ro> 1] Sign Change | No. of - Roots
1 +| |-+ | Ro>1 2 2,0
2 +| =+ |+ | Ro>1 2 2,0
3 —| =+ |—-]Ro>1 2 2,0
4 + |+ | -] —-|Ro>1 1 0
5 | = |+ |+ ] Ro>1 1 0
6 + |+ |+ ] =] Ro>1 1 0
7 — |+ ||+ | Ro>1 3 31
8 —| = |—-|—-]Ro>1 0 0

This implies that for a small pertubation of the E1, solutions of the mathematical model represented
by the system (2) always converge to Ej, whenever Ry > 1. Epidemiologically, it implies that if
a few HIV infected individuals are introduces in a fully susceptible population, the disease will

persist provided Ry > 1.

4. SENSITIVITY ANALYSIS

In mathematical modeling, Sensitivity refers to the degree to which a given input parameter
in a mathematical model influences its output. Sensitive parameters are thus those that cause a
significant impact on the disease transmission dynamics. Sensitivity analysis will aid in identify-
ing the parameters which greatly impact on the value of the basic reproductive number Ry, and
hence ought to be targeted when coming up with intervention strategies. The sensitivity of model

parameters is calculated using the normalized forward sensitivity index. The normalized forward
GRO w

X —, where w is the
ow Ro

sensitivity index of the basic reproductive number is given by S =
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parameter whose sensitivity is to be determined [7]. Ry is given by

For(31, Sglo
For(s, 5520

For a, SKe
Forys, 5520

Forys, 5530
For §, S5

For u, 550

(1—-¢1)(1 —¢2)B16 + (1 — ¢2)(1 —8)5:

Ro = Aty
+Ot(1—¢1)(1—¢2)526+(1—¢2)(1—5)52 (16)
(ct+y2 + ) (3 + 1) '
Bi(vs + 1)
Bi(vs+ 1) +afa

aB>
Bi(vs +u) +af2’
[Ba(c 4 v2 + p) — (B1(v3 + 1) + af2)]a
(ct+y2 + ) (Bi(vs + 1) + aB2)

(ay2 + 95 + wy2) Inja +v2 + wl.

—afr3
(B1(v3 + )2 + aBa(vz + 1)
—¢10
1—-90¢

[(a+y2 + w)(y3 + w)Br + ((v3 + w)B1 + af2)(a + v2 +¥3 + 2u)|u
(o472 + ) (s + ) ((Br(vz + 1) + aB2))

Based on the sensitivity indices in Table 3, the most sensitive parameter to the value of Ry is G,

TABLE 3. Sensitivity Indices for the Model Parameters

Parameter Description Sensitivity Index

0 Proportion of high risk sussceptibles —0.36986
b1 PreP effectiveness —0.041095
05 Condom effectiveness —0.11111
Y3 ART Failure —0.27182
B1 Mean contact rate with / 0.72345

B> Mean contact rate with Tp 0.27654

a Progression from / to Tp —0.40225
Yo Progression from / to A —0.05123
i Natural mortality rate —0.02969

the mean contact rate with undiagnosed infectives. This implies that in order to control the spread

of HIV in a high risk population, efforts should be geared towards reducing the number of those

who are undiagnosed by testing them and enrolling them on ART treatment. This in turn lowers

their infectivity as well as chances of progressing to the AIDS class.
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5. CoNcLUSION

In this study, a mathematical model is formulated, based on a system of ordinary differential
equations, incorporating the impact of dual protection and ART adherence in preventing the spread
of HIV among persons at high risk of infection.

Stability analysis of the model was done and depicted that when Ry < 1, the disease free
equilibrium is both locally and globally asymptotically stable. The Endemic Equilibrium of the
mathematical model exists and was shown to be locally asymptotically stable whenever Ry > 1,
implying that there is persistence of HIV infection in the population provided that Rg is greater
than unity. Sensitivity analysis was conducted, depicting that the most sensitive parameter is 31,
the mean contact rate with the un-diagnosed infectives. Therefore, in order to control the spread
of HIV among the high risk population, efforts ought to be channeled towards the undiagnosed
population by frequently testing and enrolling them on ART treatment

which guarantees low viral load within the infected individual, making them less infective. Thus
Dual protection and ART adherence are essential in the fight against the spread of HIV among the
high risk population.
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