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ABSTRACT. The paper estimates the Kolmogorov distance between the distribution of the normalized
maximum likelihood estimator of the positive drift parameter in the nonergodic Ornstein-Uhlenbeck

process and the standard Cauchy distribution and shows exponential error rate for large time limit.

1. Introduction

Estimating the rate in the Kolmogorov distance between two distributions has a long history in
probability and statistics. The estimate could be useful in finding confidence interval and in
hypothesis testing, see Bishwal [8,11]. In the iid. case, the Berry-Esseen bound for minimum
contrast estimators was obtained in Pfanzagl [28] improving that from Michel and Pfanzagl [24].
Borokov [14] obtained the rate of convergence for the invariance principle in the i.i.d. case. Hall and
Heyde [20] obtained rate of convergence in the central limit theorem for martingales using Skorohod
embedding. Uniform rate of weak convergence for the minimum contrast estimator in the Ornstein-
Uhlenbeck (O-U) process was studied in Bishwal [5]. The rates of convergence of the conditional
least squares estimator and an approximate maximum likelihood estimator when the O-U process
is observed at discrete time points in [0, T] has been studied in Bishwal and Bose [13](2001) in
the ergodic case. In a Bayesian framework, the rates of convergence of the posterior distributions
and the Bayes estimators has been studied in Bishwal [6] and Bishwal [10] for the continuous
observation and discrete observations respectively in the ergodic case. In finance, asset price may
behave in nonergodic manner, i.e., efficient market hypotheses may not hold, possibly be due to
social interaction among consumers among other reasons, see Horst and Wenzelburger [21]. We
study the nonergodic Ornstein-Uhlenbeck process in this paper and focus on the rate of convergence

of the Kolmogorov distance.
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Let (2, F, {Ft}t>0, P) be a stochastic basis on which is defined the Ornstein-Uhlenbeck process
{X¢t} satisfying the It6 stochastic differential equation

dX¢ = 0Xedt + dWe, £ >0, Xo =0 (1.1)

where {W;}+>0 is a standard Wiener process with respect to the filtration {F;}+>0 and 6 > 0
is the unknown parameter to be estimated on the basis of continuous observation of the process
{X¢t}t>0 on the time interval [0, T].

Let us denote the realization {X;, 0 <t < T} by XOT. Let PQT be the measure generated on the
space (Ct, Bt) of continuous functions on [0, T] with the associated Borel o-algebra Bt generated
under the supremum norm by the process XJ and P be the standard Wiener measure. It is well
known that when 6 is the true value of the parameter P, is absolutely continuous with respect to
POT and the Radon-Nikodym derivative (likelihood) of P9T with respect to POT based on XOT is given
by

C/IDQT - T 92 T )
Lr(6) = dPT(XO):exp{Ql Xtht_Q/ Xtdt} : (1.2)
0 0 0
Maximizing the log-likelihood with respect to 6 provides the maximum likelthood estimate (MLE)
T

XedX
oy = Jo XedXe. (13)

Jo X2dt

In this transient case, we show that this estimator converges to the Cauchy distribution with
an error rate O(e%T). Note that in the transient case, with random norming, specifically if one
normalizes the MLE by the square root of the observed Fisher information, then the MLE converges
to the normal distribution, see Feigin [16]. Maximum likelihood estimation in non-recurrent case
was studied in Dietz and Kutoyants [15]. Local asymptotic mixed normality for discretely observed

non-recurrent Ornstein-Uhlenbeck processes was studied in Shimizu [30].

.
XedWy  Z

éﬁ—@::%:i (1.4)
[y Xzdt T

where
T T
77 :—/ X:dW; and It :—/ X2dt. (1.5)
0 0
Hence
T e 07207+ (6729T492)1/2 Zr
g 01 = 0) = g2 = 26T 442 (1.6)
20 e 460 /T e 46 /T

In (1.6), the numerator of the normalized MLE is a normalized martingale which converges to
the standard normal variable and the denominator is its corresponding increasing process which
converges to a chi-square random variable as T — oo which is independent of the numerator.
Hence the ratio converges to a Cauchy distribution with parameters (0, 1).

Let us introduce two Wiener integrals:

t t
& ::/ e % dW,, and n; = / e aw,, t > 0. (1.7)
0 0
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and the respective limits & = lim7_4 fOT e 9sdw. = fooo e~ dW. which has N(0, 2%) distribu-
tion and 1 1= im7 0 € Tnr = lim7 00 e 07 [ eP5dWs = [ e~05dWs which has N(0, &)
distribution.

With these notations

T T T T
Zr ::/ Xtd\/\/t:/ ePtedW,  and It ::/ det:/ e?%t¢2dt,
0 0 0 0

o0t
dw,
0 —0 = Jo etedWs (1.8)
fO 629t£2dt
i(QT B 9) _ (6_29T4—92)1/2 IOT eet&th _ (6_29T492)1/2 fOT eet(fot e—QdeS)th
0 e—20T 402 foT e20t£2t e—20T 492 foT e29t(fot e~6sdW;)2dt
=T [T Ot qw. —6T
_ ng « f() t _ é;Tg > € nr —- Ag‘ > Bg_ (19)
20e—26T foT 2012t ¢ 200267 |1 ¢
We have
AGT—> 1 almost surely as T — oo, (1.10)
D N
BY = — as T — o0 1.11
where v20¢ = Ny, and Ny and N are independent standard normal random variables. Since
N »p
———=C(1)as T — o0 112
N (1) (1.12)
where C(1) is the standard Cauchy distribution, by Slutsky's theorem, we have
AL x BEB (1) as T — . (1.13)
Note that
¢r B¢ as T = oo, (1.14)

Using Borel-Cantelli lemma and stochastic Fubini theorem, it can be shown that £ — & almost

surely and in L2(Q2) as T — oo. By integration by parts we have
T T
e=20T | — e29T/ X2ds = eQGT/ e295¢2ds
0 0

£~2,— 6—297— T 65 Te—ZGT B 5%_ e—29T T 0s Te—29T
LS /Oe fades — S =TS /Oessdvvs— ()

This equality together with

T 2 T T 20T
1 —1-20T
E ([0 egsides) :/o e?SE(£2)ds = 2910 e?%5(1 — e72%%)ds = © (1.16)

462
by the CLT for stochastic integrals provides

T D 52
e29T/ X§ds—>% as T — 00 (1.17)
0
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2
- 207, B i
i.e., e I+ 0 as T — oo.
It can be shown that
2
e 20T | — g—e almost surely as T — oo. (1.18)

By 1t6 formula, we have

T T T T
Zr = / XodW, = j eS¢ W, — / Eodne = Ermy — T — / nsdés
0 0 0 0

-
— T / nee 05 dW,. (1.19)
0
Hence
-
e Tz =eT¢mr—eTT - eQT/ nse % dW. (1.20)
0
Direct calculation gives
—0T D 1
e'nr=n~N 0,% as T — oo (1.21)
and
E(én) = lim E(¢rnre ) = lim Te " =o0. (1.22)
T—o00 T—o0
Hence
efeTZngn as T — oco. (1.23)
0T

Hence the limit distribution of the pair (7, €Y' n7) is a Gaussian distribution of two indepen-

dent variables. Thus

eQTg—T g{ as T — o0 (1.24)

nr
where ( is the standard Cauchy variable with probability density function

Flx) = M x €R. (1.25)
and cdf
C(x) = % + % arctanx, x € R (1.26)
and characteristic function
/OO e™de(x) = e P (1.27)
Hence OOQT
%(er—e)gg (1.28)

We estimate the rate of convergence in this phenomenon. We need the following lemma in the

sequel.

Lemma 1.1 (Esseen’s Smoothing Lemma)
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Let F be a non-decreasing function and H be a differentiable function of bounded variation on the
real line with F(£o0) = G(£o0). Denote the corresponding Fourier-Stieltjes transforms by F and
@, respectively. Then for all A > 0,
A |FO) =600 I,

e — su x)|.
A A Seh

Proof: See Petrov [27] or Feller [18]. 0

sup () = G(x)| < - /

Let ®(-) denote the standard normal distribution function and C(-) denotes the standard Cauchy
distribution function. Throughout the paper C denotes a generic constant (perhaps depending on
9, but not on anything else).

We need the following well known inequality.

Lemma 1.2

—x? >
() - ) S 1000 < o ep(—)

for x > 0. As x — o0,

. exp( )
Vomx O
Proof: See Feller ([17], p.166). 0O

1—d(x)~
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2. Main Results

We start with the Dambis-Dubins-Schwarz (DDS) theorem, see Protter [29]. Since Z7 is a contin-
uous time martingale, due to time change (Skorohod embedding), Z+ = B, where B is a Brownian

motion independent of W, we have

2
E(exp(iuZr)) = E exp(— - I7). (2.1)
2
E(exp(iue 9"V2677)) = Eexp(—76_29T29/T), (2.2)
B
Or —0=—1T, (2.3)
I+
0T 0T —20T 492 1/2 B
L(OT —0) = e, o (e = ) Ty (2.4)
26 e 297—29/7’ e 29T492/7_
where
"y
e B/T
T e=20T20/+ (2:5)

Our main claim in the paper is to show that
| E(e'"T) — e7 1| < Clule™ /20T (2.6)

This is done through several lemmas. Once it is shown, let

F(x) = P(YT < x), (2.7)
1 1
C(x) = 5 + po arctanx, x € R, (2.8)
Take A = €. Then
1 24
igﬂg|"—_(x) —C(x)| < %J'f' 0T supC'(x) (2.9)
where
Jo= / P —co dx (2.10)
o IA|<efT Al ' '
Clearly
supC'(x) < oo
and
J< C/ e Mgy < £ /OO e M72gx = 0(ef). (2.11)
=T Jy <o =2
which would ultimately give
sup |F(x) = C(x)| = O(e™®T). (2.12)
x€R

First we start with Kolmogorov distance for Wiener chaos and its relative:


https://doi.org/10.28924/ada/ma.3.25

Eur. J. Math. Anal.

Lemma 2.1 We have the following rate of convergence for the double-stochastic integral or the
second Wiener chaos fOT eft ( Ot e*QSdWS) dW;

T t
(a) sup P{e9T (29629T/ et (/ eeSdWS) th) §x} —d(x)| < Ce T
x€R 0 0
T
(b) sup P{eeT (29e29T/ e29fg§dt—52) gx} —Pd(x)| < Cce T,
x€R 0

Proof. Observe that

T T t
ZT:/ xtth:/ eef(/ e‘eSdWS)th
0 0 0
T t
/ eft ( / eedeS) dW,
0 0

is second Wiener chaos. One can use the Stein-Malliavin method (see Nourdin and Peccati

The integral

( [25] [26]) and estimate the Kolmogorov distance for Z7. However, part (a) follows as a conse-
quence of Lemma 2.4(c) below along with Lemma 1.1 above. Part (b) follows as a consequence of

Lemma 2.2 below along with Lemma 1.1 above. 0

Note that £2 ~ x2. The next theorem gives an exponential estimate on the rate of convergence

to the chi-square distribution for energy /7 of the O-U process.

Theorem 2.1

sup | P {67297_29/7' <x}-P{£€< x} = o(e ).
xER

The above theorem is a consequence of the following lemma and the Esseen’s smoothing lemma
1.1

Lemma 2.2 For |u| < e9T¢, ¢ sufficiently small, we have

Eexp (iue ?T2017) — < C(Ju] + |u?)e™?T.

(1—2iu)2
Proof. From Liptser and Shiryayev [23], we have
o 0T 2y 1/2
E 2T2017) = — 2.12
oo w7 201r) = o0 (T ) | =g iy e (212
where
2 —20T np)1/2
v = (6% —2iue " 20) " (2.13)
The lemma is an easy consequence of this result. 0

Lemma 2.3 For every § > 0,

P{le 2T20l7 — €| > 6} < Ce 7672,
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Proof : It is clear that ;
X7 = / e =) gy,
0

Further, 1t6 formula (see Friedman [19]), we have

T T
/ T dW, = Wy — 6 / ?T=9)W. ds,
0 0

(2.14)

t t t t
& :/ e % dw, = e_gtWt—Q/ e % dW,, n; :/ e dW, = e9th+9/ ePS dW..
0

0 0 0
Note that
1—e 27 3(1 — e 207)2 20T — 1+ 7297
E(X3) = —— EX})=—"r— 2 E(l7) = .
By It6 formula, we have
X% T zr

=% "% 6
By Chebyshev inequality, we have

P{le2T20I7 — ¢?| > 6} < 6%5 e 20T 2617 — ¢2)?

2

1 T T
_ 672E 6_297—29/ e29t€%dt_£2 — ?E e—29T29/ e29t£§dt_£%_ _’_g%_ _&2
0 0
2 [ T
< 5 E|e29T29/ e29fg§dt—g%|2+E|£%—£2lz]
| 0
2 [ 20T ’ 20t #2 22 2 2
< g |Ele™To0 [ ear- @GP+ Eler - el + 48
< 2 -E|e—29T29 /T ePte2qr _ g202 4 e—29T] < Ce—0T§—2
- 52 | 0 t T v/ 20 -
since E|¢7 + €[2 < 2E|&7|? + 2E|€[? < co.
Since
2 > > Or 95| I 1d d 6_297—
E(&r — & —//ee r—s|  drds =
&r—¢) s NeT]
hence
, o—20T
E _ —

gives the L, convergence rate. Recall that

-
I+ = [O e®te24t,
E(¢ér —€)? = 0as T — oo,

E(¢:—€&5)? < C(t—s).
We have

T 2 T
26
E (201 —¢?)° = E (2ee—29T/0 et dt — 52) =E (e29T/0 et dt — 52)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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Further, by Toeplitz's lemma

T—o0

E(£€2) < oo which implies that P(¢ = 0) = 0. We have

T—oo

Because of the continuity of &;, for every t > 0,

T

.
z L<t<T

T T T
/ e®te2dt > / e®te2dt > EeeT inf €2 | almost surely.
0

Furthermore the continuity of &;, gives

lim ( inf 5%) = ¢2 almost surely.

T—oo \ L<t<T

-
Iim/ e?9t¢2dt = oo almost surely.
T—o0 0

By L'Hopital rule,

_ foT e29t§§dt . £2T ¢2
Tlinoo R Tlinoo 6 = 8 almost surely.
0r — 0 = fOT egtftth _ 5%—

B foT e20t¢2dt  2e—20T foT e20t¢2dt
0r — 6 — 0 almost surely.

2 _ope—20T foT e20t€§dt

o —0 =T —
2e—20T fo e20te2t

It is easy to verify that

T 2
E [g% — 2027 / e29fg§dt] < Ce 7.
0

This completes the proof of the lemma.

-
lim 29e29T/ e®te2dt = lim €2 = ¢2 almost surely.
0 T—o0

.
lim [296297—/ e?te2dt — £2T] =0 almost surely.
0

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)
(2.31)

(2.32)

(2.33)

O

The following lemma (Cameron-Martin Type Theorem) gives the bound on the joint characteristic

functions of the sufficient statistics defining the MLE:

Lemma 2.4 (a) Let ¢7(z1,220) == Eexp(znlr + 22X72—),Zl,22 € C. Then ¢7(z1,20) exists for

|zi| <6,1 =1,2for some § > 0 and is given by

2

ore o (7|

where v = (62 — 22;)/2 and we choose the principal branch of the square root.

(Y—0+22)e " + (y+6—22)e"T
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(b) Let Hr, == (e=2T462)"? Zr — (€207 462/ — £2) x. Then for |x| < 2(log e2T)1/2 and for
|u| < €T, where € is sufficiently small

2

E expliuHr,x) — exp(~ =) o

< Cexp(—)(Ju] + lul?)e™".

(c) For |u| < 1T, where €1 is sufficiently small, we have as T — oq,

|ul

‘Eexp {iu(e™®720) 27} - exp(—f) ?)(|u| + u?)e o7

< Cexp(—

Part (a) is from Bishwal [5].
We shall prove part (b) in details. Proof of part (c) is very similar to part (b) and will be omitted.

Proof : By It6 formula,

X2 T
Zr =0l + > 3
Note that
Eexp(iuHr ) = E exp [—iu (e=2T4g?) " Zp — iu (€27 462) I7 — €2) x]
X2 T
= FEexp [—iu (67297—492)1/2 {9/7 + 77— — 2} — it ((67297-492) I+ — 52) x]
= Eexp(zilt + X% + z3) = exp(z3)d7(21, 22)
where
. U | _ogT , 12\1/2 T 00T s o 1/2 . 2X
z1 = —iuBdT x, 2o = ——= (e 46 ) , 23=—0Tx OTx= (e 46 ) + -

2 2
Note that (z1,z2) satisfies the conditions of (a) by choosing € sufficiently small.  Let
o 7(u), 00 7 (),

az7(u) and as7(u) be functions which are of the orders O(|u|e=®7/2), O(|ul2e~f7/?),
O(Jul?e=39T/2) and O(|ul?e=9T/2) respectively. Note that for the given range of values of x
and v, the conditions on z; for part (a) of Lemma are satisfied. Note also that z» = a3 7(v).

Further, with
6T,x U26%x

Br(t):1+/u 0 + 562
2 3 252 '363
RSP V- N R S-S U G 0T W07 0T
0 (6 —2z) [1 o2 294—1—298—1- ] 9[1~|—/u9 + 02 + 53 +

= Ol +ay7(u) +az7(u) +as7(u)] =007(u) + as7(u) =0[1+ a7(uv)].
Thus vy =0 =17, v+ 0 =20+ o 7. Hence the above expectation equals

oo (23 LT ) [ 2667 (u) + oz.7 (1) ]”2
2 | Lanrexp{—0TBr(u) + aar(u)} + (20 + o1, 7(u)) exp{OTBr (u) + aa,7(u)}
[ 14+ o1,7(u) ]1/2
ay, 7 exp(xr(u)) + (14 ay,7(u)) exp(r(u))
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where
XT(U) = —QT,BT(U) + CK4'T(U) —2z3— 0T = —=20T + CILT(U) + t2OL1YT(U),
252
wr(u) = OTBr(u) + asr(u) —2z3 — 0’7 =0T [1 + iuégx + U2672',x] + agr(u) — ite®T o, — 08T

2
w2efT [ 462 \7 2x .
= o |\ewr| tew| mvHwear)

Hence, for the given range of values of u, x7(u) — ¥7(u) < —0e°T. Hence the above expectation

equals

t2 —1/2
eXD(—E)(l +ag7)Y? [0, 7 exp{—20e°T + ay 7 + a7} + (1 4+ a1 7(v)) exp{t?o1,7(u)}] /

2
u
— exp(—E) [1+orr)1+air(l+aiT) exp{—60e’T + a1 1 + o 7} exp(vPan ().

Lemma 2.4 (c) and Lemma 2.2 respectively give the Berry-Esseen rate for Z7 and /7 immediately

by using the Esseen’s lemma 1.1.

Corollary 2.1

1/2
@) sulpd (22 * 2 < —d(x)| < ce T
Xeﬂg 20T T <x x)| < Ce™ "',
462 \ 172 LT oT
Eha _e27 ) <xtb - < Ce™
(b) )s(gﬂg P (ezeT) (9/7 13 5 )_X d(x)| < Ce™ ™.

Remark Though this was basically shown in Lemma 2.1, here we obtain Kolmogorov distance for
a martingale and Kolmogorov distance for its quadratic variation through Cameron-Matin type
results which are generalization of Levy area formula. In Lemma 2.1, one could go directly to the
Stein-Malliavin way through Wiener chaos expansion which does not depend on any martingale
characteristics.

Before we prove the results on the Berry-Esseen bound on the Kolmogorov distance for the
MLE with random norming we need the following large deviation result for the MLE. This can
be obtained as a consequence of Lemma 3.1 of Bercu et al. [3] or Bercu and Richou [4] who use
the Gartner-Ellis's theorem and the contraction principle. However we give a direct proof using

Feller's approach.

Lemma 2.5

Proof : Observe that

20T 1/2 (eW Z
g (492) 67 — 6] >2(20T)Y2 L =P | —F——
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402 \1/? 1
P{'() 7 <3}

oy 1/2
P{ (jfer) Z7] > (W)W} —20(—(267)"/?)

26

I+
20T

IA

> (9T)1/2]» + P{

2 ,
W/T—f

+20(—(20T) V2 + P {

1
> =
3

492 \ /2 o 492 1
< sup|P (m) | Z7] > x } —2®(—x)| + 2d(—(20T)Y )+P”(29T) Ir —¢ 2}
x€R € e 2
492 1/2 492 1
< sup P{(em) |Z7| > x p — 2d(—x) +2<D(—(26T)1/2)+PH(629T) I+ — &2 22}
S

< Ce T 4+ C(eT20T) V2 4 C(e®T)y L < Ce?T.

The bounds for the first and the third terms come from Corollary 2.1 (a) and Lemma 2.3 respectively
and that for the middle term comes from Feller ( [17] p. 166). 0

We are now in a position to obtain the Berry-Esseen bound of the order O(e™®T) on the

Kolmogorov distance for the MLE.

Theorem 2.2

sup =0(e ).

sl { () 0r -0 <} ~cto

Proof : We shall consider two possibilities: (i) |x| > 2(8T)Y2 and (i) |x| < 2(6T)Y2.
(i) We shall give a proof for the case x > 2(8T)'/2. The proof for the case x < —2(6T)/? runs
similarly. Note that
eGT

o7
Pl(S) er-o<x}-coo| < p{(55) er-02 5} +en
But C(—x) < C(—2(8T)Y?) < Ce=2T. Moreover by Lemma 2.5, we have

P { (e;;) (61 —0) > 2(97)1/2} < Cce 2,

6T \ 1/2
P{(eze) (eT—e)gx}—C(x)

eGT I+
Let At Z:{( )|9T—9|§2(9T)1/2} and Bt = {697'>C0}

Hence

(D)
20
where 0 < ¢ < 2—19. By Lemma 2.5, we have
P(A$) < Ce 7. (2.34)

By Lemma 2.3, we have

20

26
eeT’T—52<2960—52} <P{

P(B%):P{ eTT/T—gQ

> €2 — 29c0} <Ce T (2.35)
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Let by be some positive number. For w € A7NBt and forall T > Ty with 4b0(29T0)1/2(e§—$0)1/2 <

Co, we have
eOT
(29) (61 —0) <x

6T
= I+ boeeT(QT — 9) < Ir—+ (629) 2boBx

0T

N (eeT)(eT—e)[/T+boe (07 — 0)] < x[IT + (e

20 20 ) 2b09X]

20
= (97’ — 9)/7’ + boT(QT — 9)2 < (6‘97—) Ix + 2b09X2
oT > 29
= ZT+(9T—9)/T+1)06 (97'—9) < Zt + /7-X+2b09X

= 0< 27+ ( 20 ) I7x + 2byfx>
since
I+ + boe®T (61 — 0) > €Ty + boeeT(QT _9)
> 4by(6T)Y? (29) —2by (9T)1/2( )_ Db (6T )12 (29) o

Hence, for w € A+ N BT,

e 20
(29)(9T—9)<X:>ZT+( )/TX-|-2b09X > 0.

On the other hand, for w € A7 N By and for all T > Ty with 4b9(26To)Y/2( 970) < ¢p, we have

(e;) (61 —6) > x

eGT
= Ir— boeGT(GT — 9) < I+ - (29) 2boBx

0T

oT
= (e )(eTewaoe (979>]>x[/r(e

>0 20 ) 2b09X]

26
= (97’ — 9)/7’ — boeGT(GT — 9)2 > (697—) Ix — 2b09X2
0T 2 29 2
= Zr+ (01 —0)l+ — boe” (61 —0)° > Z1 + ITx — 2bpOx

20
= 0>Zr+ ( ) ITx — 2bg0x>
since
I+ — boe®T (61 — 0) > €Ty — boe® (67 — 6)

> 4bo(6T)Y? (29) — 2bo(6T)Y/? (29) = 2bo(0T)/? (29) > 0.
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Hence, for w € Ar N Br,
26 5 T
O<ZT+(€0T)/TX—2bOQX :>(29 (QT—Q)SX
We use the squeezing method developed in Pfanzagl [28] for the i.i.d. case instead of the splitting
method of Michel and Pfanzagl [28]. Let us introduce the piecewise quadratic random functions

involving the martingale and quadratic variation part of 8+ — 6:
+ 26 2
g (x) =21+ (eTT)/TX + 2bgfx~.
Let us introduce the events

20
DF, = {ZT + (g7 )X & 2bofx* > o} .

Thus we have

oT
D;’XﬂATﬂBTgATﬁBTﬂ{(Ze) (6 —0) SX} - D;XOATQBT. (2.36)
This gives
oT
) (97'—9) SX}) < P(D?XOATQBT)

P(D;XmATmBT)gP(ATmBTm{(GQQ

so that

6T

'P (ATmBTm{(Ze) (61 — 6) gx}) —C(x)

< max {|P(D7, N Ar N Br) = C(x)|, |P(DF, N ArnBr)—C(x)|}
< max {|P(D7,) —C(x)|, |P(DF,) —C(x)|} + P(Ar N Br)°.

From (2.34) and (2.35),
P(Ar N B7)¢ < Ce 9T

for all T > Ty and |x| < 2(8T)Y/2. If it is shown that
|P{DT7, }—c(x)|<Ce" (2.37)

for all T > To and |x| < 2(8T)/2, then the theorem would follow from (2.34) — (2.37).
We shall prove (2.37) for D;C’X. The proof for D7 is analogous.
Note that
20 20 260
|P{D?—_X} *C(X)| = ‘P *(eeiT)ZT — (ee-[-/T 52) X< Xx+2 (ee-[-) b09X2} 7C(X)
26 26 20
el (5 ) 2 (G e ) -evffe oo (G o) o

= A1+A2.

IN

(2.38)

Lemma 2.4 (b) and Esseen’s Smoothing Lemma 1.1 immediately yield

A < CefT (2.39)
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On the other hand, for all T > Ty,
20 2 —1/2 =2
Ay < 2(—69T)b09x (2m) exp(—x-/2)

where

X —x| <2 (eeT) bofx~.
Since |x| < 2(6T)'/2, it follows that |X| > |x|/2 for all T > Ty and consequently

26
Ay < 2 (eeT) bobx2(2m) " H2x% exp(—x?/8) < Ce™?T. (2.40)

From (2.38) - (2.40), we obtain
|P{D%, }—C(x)| < Ce™®T.

This completes the proof of the theorem. 0

Concluding Remarks

(1) The bound in Theorem 2.2 is uniform over compact subsets of the parameter space ©.

(2) The bound in Theorem 2.2 is optimal and cannot be improved further.

(3) Note that in the critical case, i.e, when 8 = 0, the MLE has a distribution concentrated
on a half line, precisely the distribution of the ratio of a noncentral chisquare to the to the sum
of chisquares. Note that the behaviour of the O-U process depends on both the initial condition
Xo = X9 and the parameter space. Classically it has been assumed that X9 is either has a normal
distribution or a nonzero constant and 6§ < 0 which makes the process stationary with Gaussian
invariant distribution. If X0 = 0 is with 8 < 0, then the process is asymptotically stationary and
ergodic. In above two cases the model satisfies the LAN (local asymptotic normality) property.
With X% a nonzero constant and & > 0 the process is transient and satisfies the LAMN (local
asymptotic mixed normality) property. With 8 = O, the process is nonstationary and satisfies the
LABF (local asymptotic Brownian functional) property. For all 8 € R, the model satisfies the LABF
property, see Bishwal [9] for the definitions of these LAN, LAMN and LABF properties. Bishwal [9]
has shown that sequential sampling based on a stopping rule unifies the three properties and
makes them LAN.

(4) It remains to study the Kolmogorov distnace for Bayes estimator from both continuous and
siscrete observations and approximate maximum likelihood estimator from discrete observations in
the nonergodic case.

(5) Extension to multidimensional process and to multiparameter case remains to be investigated.

(6) It remains to investigate the nonuniform rates of convergence to Cauchy distribution which

are more useful.
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