On a Generalization of $(L^1_{\omega}, L^p_{\omega})$ -Multipliers

Yaovi A. Tissinam¹, Abudulaï Issa¹, Yaogan Mensah^{1,2,}*

¹*Department of Mathematics, University of Lomé, Togo asseketis@gmail.com, issaabudulai13@gmail.com, mensahyaogan2@gmail.com* 2 *ICMPA, University of Abomey-Calavi, Benin* [∗]*Correspondence: mensahyaogan2@gmail.com, ymensah@univ-lome.tg*

Abstract. This paper deals with a generalized aspect of multipliers for the pair (L^1_ω,L^p_ω) of Beurling spaces. Using the Fourier transform related to a Beurling weight, we give a characterization of the aforementioned multipliers. We also prove the identification of the space of the multipliers for the pair (L^1_ω, L^p_ω) with the Beurling space L^p_ω when $1 < p < \infty$.

1. **Introduction**

Multipliers are intensively studied by many researchers. They appear in several fields of mathematics and in various contexts, namely : mobile communication, signal processing, stochastic process, partial differential equation etc. From a theoretical point of view, we refer to the source $[9]$ for more details about multipliers for commutative Banach algebras.

Like in [\[4\]](#page-10-1), we are interested in the multipliers on a certain large class of Banach spaces related to a locally compact abelian group. Namely, multipliers of Beurling spaces are concerned. Some inter-
esting publications about multipliers associated with locally compact groups are [1,6,11,12,14,18]. esting publications about multipliers associated with locally compact groups are [\[1,](#page-10-2)[6,](#page-10-3)[11,](#page-10-4)[12,](#page-10-5)[14,](#page-11-0)[18\]](#page-11-1). In [\[4\]](#page-10-1), we study the multipliers on the weighted group algebra $\mathcal{L}^1_\omega(G)$ which is the Banach space $L^1_\omega(G)$ endowed with a generalized convolution product $*_\omega$ which depends on the weight ω . This generalized convolution product first appeared in [\[10\]](#page-10-6). The authors in [\[4\]](#page-10-1) characterized the multipliers on this weighted group algebra.
The present paper is the continuation of the study started in [4]. We consider a generalization of

The present paper is the continuation of the study started in [\[4\]](#page-10-1). We consider a generalization of the multipliers for the pair $(L^1_\omega(G), L^p_\omega(G))$. That is, the linear maps $\mathcal{T}: L^1_\omega(G) \longrightarrow L^p_\omega(G)$ that commute with a certain class of generalized translation operators denoted here by Γ^s_ω . If $\omega \equiv 1$, then we recover the classical concept of multipliers. Via the weight Fourier transform, we obtain, among other results, a characterization of the multipliers for the pair $(L^1_\omega(G), L^p_\omega(G)).$

Received: 14 Jul 2023.

Key words and phrases. weight, convolution, multiplier, group algebra, Fourier transform, measure.

The paper is organized as follows. In Section [2,](#page-1-0) the definition of Beurling spaces and some results from $[4,7,10]$ $[4,7,10]$ $[4,7,10]$ are recalled. In Section [3,](#page-3-0) we state our main results.

$2.$ Preliminants

2.1. **The Beurling spaces.** Let ^G be a group whose neutral element is denoted by ^e. A *Beurling weight* on G is a continuous fonction ω : $G \rightarrow (0, \infty)$ such that $\forall x, y \in G$,

$$
\omega(xy) \leq \omega(x)\omega(y),
$$

$$
\omega(x) \geq 1,
$$

$$
\omega(e) = 1.
$$

For instance, for each $\alpha \geq 0$, the function ω_{α} defined by

$$
\omega_{\alpha}(x)=(1+\|x\|)^{\alpha},
$$

where $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $||x|| =$ $\sqrt{\frac{n}{2}}$ $i=1$ x_i^2 , is a Beurling weight on $(\mathbb{R}^n, +)$.

Integration on G is taken with respect to a left Haar measure. Beurling spaces are defined to be be

$$
L^p_\omega(G) = \left\{ f: G \to \mathbb{C} : \int_G |f(x)|^p \omega(x) dx < \infty \right\}, 1 \leq p < +\infty.
$$

The case where $p = \infty$ is defined in an obvious way by essential boundedness. The mapping

$$
f \longrightarrow ||f||_{p,\omega} = \left(\int_G |f(x)|^p \omega(x) dx\right)^{\frac{1}{p}}
$$

is a norm on $L^p_\omega(G)$.

It is well-known in the mathematical litterature that $L^1_{\omega}(G)$ is a Banach algebra under the convolution product [∗] defined by

$$
(f * g)(x) = \int_G f(y)g(y^{-1}x)dy.
$$

The following sufficient condition for $L^p_\omega(G)$, $1 < p < \infty$, to be a Banach algebra under the convolution product $*$ can be found in [\[7\]](#page-10-7) : the space $L^p_\omega(G)$, $1 < p < \infty$ is Banach algebra under the convolution product $*$ if $\omega^{\frac{1}{1-p}} * \omega^{\frac{1}{1-p}} \leqslant \omega^{\frac{1}{1-p}}$. For a general background and history on Beurling spaces, we refer to [\[13,](#page-11-2)[15\]](#page-11-3).

2.2. **A Generalized convolution product.** In [\[10\]](#page-10-6), the author introduced a new convolution product on $L^1_\omega(G)$ which has the particularity to depend of the weight ω . That is,

$$
f *_{\omega} g(x) = \int_{G} f(y)g(y^{-1}x) \frac{\omega(y)\omega(y^{-1}x)}{\omega(x)} dy.
$$

If $\omega \equiv 1$, then one recovers the usual convolution

$$
(f * g)(x) = \int_G f(y)g(y^{-1}x)dy.
$$

Hence, the convolution product $*_\omega$ is a generalization of the usual convolution product. It was shown that $L^1_\omega(G)$ is a Banach algebra under this new convolution product $[10]$. We denote by $\mathcal{L}^1_\omega(G)$ this new Banach algebra ; in other words $\mathcal{L}^1_\omega(G) = (L^1_\omega(G), \|\cdot\|_{1,\omega}, *_\omega)$.

For $s \in G$, define the operator Γ^s_ω by

$$
\Gamma_{\omega}^s f(x) = \frac{\tau_s M_{\omega} f(x)}{\omega(x)}, \ f \in L_{\omega}^1(G),
$$

where M_{ω} is the multiplication operator defined by

$$
(M_{\omega}f)(x)=\omega(x)f(x)
$$

and τ_s is the translation operator defined by

$$
(\tau_s f)(x) = f(s^{-1}x).
$$

The operator Γ_{ω}^{s} appears first in [\[4\]](#page-10-1) for the study of the multipliers for the algebra $\mathcal{L}^{1}_{\omega}(G)$. A linear map $\mathcal{T}:\mathcal{L}^1_\omega(G)\to\mathcal{L}^1_\omega(G)$ is called a multiplier if $\mathcal T$ commutes with the operators $\mathsf{\Gamma}^s_\omega$ for all $s \in G$. Since the operator Γ^s_ω is a generalization of the translation operator τ_s , the latter notion of multiplier covers the classical one related to commutation with translations.

The natural next step is to investigate the multipliers for the pair $(L^1_\omega(G), L^p_\omega(G))$. This is the main purpose of the present article.

We denote by $\mathcal{M}^1_{\omega}(G)$ the Banach space of all complex bounded regular Borel measures μ on G such that

$$
\|\mu\|_{\omega} = \int_{G} \omega(x) d|\mu|(x) < \infty. \tag{1}
$$

We write $M^1(G)$ in the case where $\omega \equiv 1$. For $\mu, \nu \in M^1_{\omega}(G)$, define $\mu *_{\omega} \nu$ by

$$
\mu *_{\omega} \nu(f) = \int_{G} \int_{G} f(xy) \frac{\omega(x) \omega(y)}{\omega(xy)} d\mu(x) d\nu(y), \ f \in \mathcal{C}_{c}(G, \omega^{-1})
$$

where $\mathcal{C}_{c}(G,\omega^{-1})$ is the set of complex functions f defined on G such that $f\omega^{-1}$ is of compact support. Also, define

$$
\mu *_{\omega} f(x) = \int_{G} f(y^{-1}x) \frac{\omega(y)\omega(y^{-1}x)}{\omega(x)} d\mu(y)
$$

for $f \in L^1_\omega(G)$ and $\mu \in M^1_\omega(G)$. Then, the Banach space $M^1_\omega(G)$ is a unital Banach algebra with respect to the convolution product $*_\omega$ and $L^1_\omega(G)$ is a closed ideal of $M^1_\omega(G)$ [\[10,](#page-10-6) Theorem 5.1].

2.3. **Some useful facts.** Let G be a locally compact abelian group with Pontryagin dual group \widehat{G} . We denote by $\widehat{M^1(G)}$ the collection of all the Fourier-Stieltjes transforms of elements of $M^1(G)$. That is,

$$
\widehat{M^1(G)} = \{\widehat{\mu} \,:\, \mu \in M^1(G)\}
$$

where $\hat{\mu}$ is defined by

$$
\widehat{\mu}(\gamma) = \int_G \overline{\gamma(x)} d\mu(x), \gamma \in \widehat{G}.
$$

For a function $f \in L^1_\omega(G)$, the Fourier transform of f , denoted $\mathcal F f$ or $\widehat f$, is defined by

$$
(\mathcal{F}f)(\gamma) := \widehat{f}(\gamma) = \int_G f(x)\overline{\gamma(x)}dx
$$

The following theorems will play an important role.

Theorem 2.1 ($\overline{3}$ or $\overline{17}$). Let G be a locally compact abelian group and let φ be a complex function *on* ^Gb*. Then, the following assertions are equivalent.*

- (1) $\varphi \in \widehat{M^1(G)}$ *and* $\|\varphi\|_{\infty} \leqslant C$ *.*
- (2) φ *is continuous and there exists a constant* $C > 0$ *such that*

$$
\left|\sum_{i=1}^n c_i \varphi(\gamma_i)\right| < C \left\|\sum_{i=1}^n c_i \gamma_i(\cdot)\right\|_{\infty} \tag{2}
$$

for all positive integer n and all choices of $c_i \in \mathbb{C}$ *and* $\gamma_i \in \widehat{G}$, $i = 1, 2, \cdots, n$.

Moreover, if $\varphi = \widehat{\mu}$ *, then* $\|\mu\|$ *is the smallest constant* C *for which* [\(2\)](#page-3-1) *holds.*

Theorem 2.2. *([\[9,](#page-10-0) page 252]) Let* G *be a locally compact abelian group. Then, for each compact* $K \subset \widehat{G}$ and $\varepsilon > 0$, given an open set U containing K, there exists a function $f \in L^1(G)$ such that $0 \leqslant \widehat{f}(\gamma) \leqslant 1$ *if* $\gamma \in \widehat{G}$, $\widehat{f}(\gamma) = 1$ *if* $\gamma \in K$, $\widehat{f}(\gamma) = 0$ *if* $\gamma \notin U$ and $||f|| \leqslant \varepsilon + 1$ *. In particular,* given any open set $U \subset \widehat{G}$ with compact closure, it is possible to find $f \in L^1(G)$ such that $\widehat{f}(\gamma) = 1$ *if* $\gamma \in U$.

Theorem 2.3. ([\[5,](#page-10-9) Theorem 3.2]) Let G be a locally compact group. Let $f \in L^p_\omega(G)$, $1 \leqslant p < \infty$. *Then,* ∀s ∈ G*,*

$$
[\omega(s)]^{\frac{1-\rho}{\rho}}\|f\|_{p,\omega}\leqslant \|\Gamma_{\omega}^s f\|_{p,\omega}\leqslant [\omega(s^{-1})]^{\frac{\rho-1}{\rho}}\|f\|_{p,\omega}.
$$
 (3)

3. Multipliers for the pair $(L^1_\omega(G), L^p_\omega(G))$

In this section, we study a generalization of the concept of multipliers. Here, the multipliers are defined with respect to the generalized translation operators Γ_{ω}^{s} . Throughout this section, we assume that G is a locally compact abelian group. A look at Theorem [2.3](#page-3-2) shows that $f \in L^p_\omega(G)$ if and only if $\Gamma_{\omega}^{s}f \in L_{\omega}^{p}(G)$. That is, the spaces $L_{\omega}^{p}(G)$ are stable under the action of the operators Γ^s_ω . Therefore, we are able to define a concept of multiplier in the framework of this study.

Definition 3.1. A linear operator $T: L^1_\omega(G) \longrightarrow L^p_\omega(G)$ is said to be a multiplier if T commutes with all the operators Γ^s_ω , $s \in G$ *. That is,*

$$
\forall s \in G, T\Gamma_{\omega}^{s} = \Gamma_{\omega}^{s}T.
$$

We denote by $\mathcal{M}^{1,p}_\omega(G)$ the set of such multipliers. We denote by $\|T\|$ the operator norm of $\mathcal{T} \in \mathcal{M}^{1,p}_{\omega}(G).$

We will use the fact that for $1 < p < \infty$, the following identification holds [\[7\]](#page-10-7):

$$
(L^p_\omega(G))' = L^q_w(G)
$$

with $\frac{1}{p} + \frac{1}{q}$ $\frac{1}{q} = 1$ and $w = \omega^{-\frac{q}{p}}$. From that, one may deduce that for $1 < p < \infty$, the space $L^p_\omega(G)$ is a reflexive space.

For $f \in L^1_\omega(G)$, define the Fourier transform of f by

$$
\mathcal{F}_{\omega}(f)(\gamma)=\int_{G}f(x)\overline{\gamma(x)}\omega(x)dx, \, \gamma\in\widehat{G}.
$$

In [\[4\]](#page-10-1), the following convolution result was proved.

$$
\forall f, g \in L^1_\omega(G), \ \mathcal{F}_\omega(f *_{\omega} g) = \mathcal{F}_\omega(f) \mathcal{F}_\omega(g).
$$

Set

$$
\mathcal{F}_{\omega}(L_{\omega}^{1}(G)) = \left\{ \mathcal{F}_{\omega}(f) : f \in L_{\omega}^{1}(G) \right\}.
$$

Let us remark that functions in $\mathcal{F}_{\omega}(L^1_{\omega}(G))$ are continuous and vanished at infinity by the Riemann-Lebesgue theorem. We fit out the space $\mathcal{F}_{\omega}(L^1_{\omega}(G))$ with the norm defined by

$$
\|\mathcal{F}_{\omega}(f)\|=\|f\|_{1,\omega}, f\in L^1_{\omega}(G).
$$

Then, we have the following result.

Theorem 3.2. *The space* $\mathcal{F}_{\omega}(L_{\omega}^{1}(G))$ *is a Banach algebra for the pointwise multiplication.*

Proof. Let $(\mathcal{F}_{\omega}(f_n))$ be a Cauchy sequence in $\mathcal{F}_{\omega}(L^1_{\omega}(G))$. Let $p, q \in \mathbb{N}$. The equality

$$
\|\mathcal{F}_{\omega}(f_p)-\mathcal{F}_{\omega}(f_q)\|=\|f_p-f_q\|_{1,\omega}
$$

and the fact that $(L^1_\omega(G), \|\cdot\|_{1,\omega})$ is a Banach space show that there exists $f \in L^1_\omega(G)$ such that (f_n) converges to f in $L^1_\omega(G)$. Now, $\|\mathcal{F}_\omega(f_n) - \mathcal{F}_\omega(f)\| = \|f_n - f\|_{1,\omega}$. Thus, $(\mathcal{F}_\omega(f_n))$ converges to $(\mathcal{F}_{\omega}(f))$ in $\mathcal{F}_{\omega}(L^1_{\omega}(G))$. Thus, the space $\mathcal{F}_{\omega}(L^1_{\omega}(G))$ is a Banach space. Moreover,

$$
\|\mathcal{F}_{\omega}(f)\mathcal{F}_{\omega}(g)\| = \|\mathcal{F}_{\omega}(f *_{\omega} g)\|
$$

$$
= \|f *_{\omega} g\|_{1,\omega}
$$

$$
\leq \|f\|_{1,\omega} \|g\|_{1,\omega} = \|\mathcal{F}_{\omega}(f)\| \|\mathcal{F}_{\omega}(g)\|.
$$

Thus, the space $(\mathcal{F}_{\omega}(L^1_{\omega}(G))), \cdot, \lVert \cdot \rVert_{1,\omega})$ is a Banach algebra.

For
$$
f \in L^p_\omega(G)
$$
 and $h \in L^q_w(G)$ with $\frac{1}{p} + \frac{1}{q} = 1$, we set

$$
\langle f, h \rangle_\omega = \int_G f(x)h(x^{-1})\omega(x)dx.
$$

Theorem 3.3. Let G be a locally compact abelian group. Let $\mathcal{T} : L^1_\omega(\overline{G}) \longrightarrow L^p_\omega(\overline{G})$ be a bounded linear transformation. Then, $\mathcal{T} \in \mathcal{M}^{1,p}_\omega(G)$ if and only if there exists a unique element φ such that $Tg = \varphi *_{\omega} g$ for all $g \in L^1_{\omega}(G)$, where $\varphi \in M^1_{\omega}(G)$ if $p = 1$ and $\varphi \in L^p_{\omega}(G)$ if $1 < p < \infty$.

Proof. (1) Suppose $p = 1$. Let $T \in \mathcal{M}^{1,1}_{\omega}(G)$. In [\[4,](#page-10-1) Proposition 5.4], it was shown that $\mathcal{T} \in \mathcal{M}^{1,1}_{\omega}(G)$ if and only if there exists a unique function \mathcal{B} defined on \widehat{G} such that $\mathcal{F}_{\omega}(\mathcal{T}f) = \mathcal{BF}_{\omega}(f)$ for all $f \in L_{\omega}^{1}(G)$. Clearly, $\mathcal{BF}_{\omega}(f) \in \mathcal{F}_{\omega}(L_{\omega}^{1}(G))$. Therefore, the function $\mathcal{BF}_{\omega}(f)$ is continuous for all $f \in L_{\omega}^{1}(G)$ (the Fourier transform of a function is a continuous function). Moreover, for each open set in \widehat{G} with compact closure, there exists a function $f \in L^1_\omega(G)$ such that $\mathcal{F}_\omega(f)$ is constant on U [\[9](#page-10-0)[, F](#page-3-3).7e]. Thus, $\mathcal B$ is continuous on $\widehat G$.

Let $\varepsilon > 0$ and let $\gamma_1, \gamma_2, ..., \gamma_n \in \widehat{G}$. Via Theorem 2.2, we can choose $g \in L^1(G)$ such that $\|\mathcal{F}(g)\| = \|g\|_1 < 1 + \varepsilon$ and $\mathcal{F}(g)(\gamma_i) = 1$, $i = 1, 2, 3, \dots, n$. Now, set $f = \frac{g}{\omega}$ ω . Then, $f\in L^1_{\omega}(G),\ \|\mathcal F_{\omega}(f)\|=\|f\|_{1,\omega}< 1+\varepsilon$ and $\mathcal F_{\omega}(f)(\gamma_i)=1,\ i=1,2,3,......,n.$

For $z_i \in \mathbb{C}$, $i = 1, 2, ..., n$, one has

$$
\left| \sum_{i=1}^{n} z_{i} \mathcal{B}(\gamma_{i}) \right| = \left| \sum_{i=1}^{n} z_{i} \mathcal{F}_{\omega}(f)(\gamma_{i}) \right| = \left| \int_{G} \left[\sum_{i=1}^{n} z_{i} \gamma_{i}(x) \right] f(x) \omega(x) dx \right|
$$

\$\leq \left\| f \right\|_{1,\omega} \left\| \sum_{i=1}^{n} z_{i} \overline{\gamma_{i}} \right\|_{\infty}\$
\$\leq (1 + \varepsilon) \left\| \sum_{i=1}^{n} z_{i} \overline{\gamma_{i}} \right\|_{\infty} .

Since ε is chosen arbitrarily, it follows that

$$
\left|\sum_{i=1}^n z_i \mathcal{B}(\gamma_i)\right| < \left\|\sum_{i=1}^n z_i \overline{\gamma_i}\right\|_{\infty}.
$$

We conclude via Theorem [2.1](#page-3-4) (with $C = 1$) that there exists a unique bounded measure μ such that $\mathcal{B}=\mathcal{F}(\mu).$ Now, if we set $\varphi=\omega^{-1}\mu$, then $\varphi\in\mathit{M}^{1}_{\omega}(G)$ and $\mathcal{B}=\mathcal{F}_{\omega}(\varphi).$ Therefore,

$$
\mathcal{F}_{\omega}(\mathcal{T}f)=\mathcal{F}_{\omega}(\varphi)\mathcal{F}_{\omega}(f)=\mathcal{F}_{\omega}(\varphi *_{\omega} f).
$$

Since the Fourier transform is injective, it follows that $T f = \varphi *_{\omega} f$.

(2) Assume that $1 < p < \infty$. Let $T \in \mathcal{M}^{1,p}_{\omega}(G)$. The weighted group algebra $(L^1_{\omega}(G), \|\cdot\|)$ \parallel _{1,ω}, $*_{\omega}$) has a bounded approximate identity [\[10,](#page-10-6) Theorem 2.2]. Let $\{v_n\}$ be a bounded approximate identity for $(L^1_\omega(G), \|\cdot\|_{1,\omega}, *_\omega)$. Let $g \in L^1_\omega(G)$. Then,

$$
\begin{array}{rcl}\n\|Tg - T v_n *_{\omega} g\|_{p,\omega} & = & \|Tg - T(v_n *_{\omega} g)\|_{p,\omega} \\
& \leq & \|T\| \|g - v_n *_{\omega} g\|_{1,\omega}.\n\end{array}
$$

Since $||g - v_n *_\omega g||_{1,\omega}$ tends to 0 whenever n goes to ∞ , then $(T v_n *_\omega g)_n$ converges to Tg in $L^p_\omega(G)$.

Moreover, $||Tv_n||_{p,\omega} \le ||T|| ||v_n||_{1,\omega} = ||T||$. Therefore, $\{Tv_n\}$ lies in a norm bounded subset of $L^p_\omega(G) = (\mathcal{L}^q_\omega(G))^{\prime}$ $\frac{1}{2}$. So, by Alaoglu's Theorem ($\frac{1}{2}$, page 299] or $\frac{1}{2}$, Theorem D.4.3.]) and the reflexivity of $L^p_\omega(G)$, we see that there exists a subnet $\{\tau v_m\}$ of $\{\tau v_n\}$ and $\varphi \in L^p_\omega(G)$ such that $\{Tv_m\}$ converges to φ in the weak*-topology. That is, $\lim_m \langle Tv_m, u \rangle_\omega = \langle \varphi, u \rangle_\omega$ for all $u \in L^q_w(G)$. Then, for $h, g \in \mathcal{C}_c(G)$, we have

$$
\langle Th, g \rangle_{\omega} = \lim_{m} \langle Tv_m *_{\omega} h, g \rangle_{\omega}
$$

=
$$
\lim_{m} \langle Tv_m, (h *_{\omega} \frac{g}{\omega})\omega \rangle_{\omega}
$$

=
$$
\langle \varphi, (h *_{\omega} \frac{g}{\omega})\omega \rangle_{\omega}
$$

=
$$
\langle \varphi *_{\omega} h, g \rangle_{\omega}.
$$

However, $C_c(G)$ is norm dense in $L^q_w(G)$. Therefore, $Th = \varphi *_{\omega} h$ for each $h \in C_c(G)$. Moreover, $\mathcal{C}_{c}(G)$ is norm dense in $L_{\omega}^{1}(G)$. Thus, $Th = \varphi *_{\omega} h$ for all $h \in L_{\omega}^{1}(G)$.

(3) Conversely, let $1 \leq p < \infty$. Assume that there exists a measure $\mu \in M^1_\omega(G)$ or a function $\varphi \in L^p_\omega(G)$ such that $Th = \varphi *_{\omega} h$ for all $h \in L^1_\omega(G)$. Then,

$$
(T\Gamma_{\omega}^{s})h = T(\Gamma_{\omega}^{s}h)
$$

= $\varphi *_{\omega} \Gamma_{\omega}^{s}h$
= $\Gamma_{\omega}^{s}(\varphi *_{\omega} h)$
= $\Gamma_{\omega}^{s}(Th) = (\Gamma_{\omega}^{s}T)h.$

Thus, $T \in \mathcal{M}^{1,p}_\omega(G)$.

(4) Concerning the uniqueness statement, let us consider φ and ψ be such that $Th = \varphi *_{\omega} h =$ $\psi *_{\omega}$ h for all $h \in L^1_{\omega}(G)$. Then, using the Fourier transform, we obtain $\mathcal{F}_{\omega}(\varphi)\mathcal{F}_{\omega}(h) =$ $\mathcal{F}_{\omega}(\psi)\mathcal{F}_{\omega}(h)$. So, $\mathcal{F}_{\omega}(\varphi) = \mathcal{F}_{\omega}(\psi)$. Finally, $\varphi = \psi$ by the injectivity of the Fourier transform.

 ${\sf Theorem~3.4}.$ Let G be a locally compact abelian group. Then, ${\mathcal M}^{1,1}_{\omega}(G)$ is isometrically isomorphic to $M^1_\omega(G)$.

Proof. We have seen in Theorem [3.3](#page-5-0) that $T \in M_{\omega}^{1,1}(G)$ if and only if there exists a unique measure $\mu\in M^1_\omega(G)$ such that $\mathcal{T}f=\mu\ast_\omega f$ for all $f\in L^1_\omega(G).$ Then, the mapping $\mathcal{T}\longmapsto\mu$ defines a bijection from $\mathcal{M}^{1,1}_\omega(\mathsf{G})$) onto $M^1_\omega(\mathsf{G})$. Moreover,

$$
\begin{array}{rcl}\n\|Tf\|_{1,\omega} & = & \|\mu *_{\omega} f\|_{1,\omega} \\
& = & \displaystyle \int_G \left| \int_G f(y^{-1}x) \frac{\omega(y^{-1}x)\omega(y)}{\omega(x)} d\mu(y) \right| \omega(x) dx \\
& \leq & \displaystyle \int_G \int_G \left| f(y^{-1}x) \right| \frac{\omega(y^{-1}x)\omega(y)}{\omega(x)} \omega(x) d|\mu|(y) dx\n\end{array}
$$

 \Box

 \leqslant $||f||_{1,\omega}||\mu||_{\omega}$.

Then, $||T||_{1,\omega} \leq ||\mu||_{\omega}$.

In the converse, for $\gamma_1, \cdots, \gamma_n \in \widehat{G}$, $z_1, \cdots, z_n \in \mathbb{C}$, and $\varepsilon > 0$, let us choose $f \in L^1_{\omega}(G)$ such that $\|\mathcal{F}_{\omega}(f)\| = \|f\|_{1,\omega} < 1 + \varepsilon$ and $\mathcal{F}_{\omega}(f)(\gamma_i) = 1, i = 1, 2, 3, \dots, n$. Then,

$$
\left| \sum_{i=1}^{n} z_{i} \mathcal{F}_{\omega}(\mu)(\gamma_{i}) \right| = \left| \sum_{i=1}^{n} z_{i} \mathcal{F}_{\omega}(\mu)(\gamma_{i}) \mathcal{F}_{\omega}(f)(\gamma_{i}) \right|
$$

\n
$$
= \left| \sum_{i=1}^{n} z_{i} \mathcal{F}_{\omega}(\mu *_{\omega} f)(\gamma_{i}) \right|
$$

\n
$$
= \left| \sum_{i=1}^{n} z_{i} \mathcal{F}_{\omega}(Tf)(\gamma_{i}) \right|
$$

\n
$$
\leq \|T\|(1+\varepsilon) \left\| \sum_{i=1}^{n} z_{i} \overline{\gamma_{i}} \right\|_{\infty}.
$$

Since ε is arbitrary, then $\|T\|\geqslant \|\mu\|_\omega$ by the use of Theorem [2.1](#page-3-4) applied with $\mathcal F_\omega$ instead of $\mathcal F$. \Box

Theorem 3.5. Let G be a locally compact abelian group. Let $1 \leqslant p < \infty$. If $f \in L^p_\omega(G)$, then the $\mathsf{mapping} \mathsf{ s } \longmapsto \mathsf{\Gamma}^s_\omega f$ is continuous from G into $L^p_\omega(G)$ *.*

Proof. The set of complex continuous functions on G with compact support $C_c(G)$ is dense in $L^p_\omega(G)$ under the norm $\|\cdot\|_{p,\omega}$. Let $\varepsilon > 0$. Consider $g \in C_c(G)$ and set $C_1 = \text{supp}(g)$. Let us choose a compact neighborhood C_2 of the neutral element e . Set $C = C_1 \cup C_2 \cup (C_1 C_2)$. We have for $s \in C_2$,

$$
\begin{array}{rcl}\n\|\Gamma_\omega^s g - g\|_{p,\omega}^p &=& \displaystyle\int_C |\Gamma_\omega^s g(x) - g(x)|^p \omega(x) dx \\
&\leqslant & \displaystyle\int_C |g(s^{-1}x)\omega(s^{-1}x) - g(x)\omega(x)|^p dx.\n\end{array}
$$

The mapping $x \mapsto (g\omega)(x)$ is uniformly continuous on G. Thus, there exists a neighborhood U of e which we may assume to be contained in C_2 , such that

$$
\forall s \in U, \, |(g\omega)(s^{-1}x) - (g\omega)(x)|^p < \frac{\varepsilon^p}{|C|}
$$

where $|C|$ is the measure of the compact set C. Then, for $s \in U$, we have

$$
\|\Gamma_{\omega}^s g-g\|_{p,\omega}^p\leqslant \int_C |(g\omega)(s^{-1}x)-(g\omega)(x)|^p\,dx<\frac{\varepsilon|C|}{|C|}=\varepsilon.
$$

We will show the claim for $f \in L^p_\omega(G)$. Let K be a compact neighborhood of e . Since $\mathcal{C}_c(G)$ is dense in $L^p_\omega(G)$, then there exists $g \in \mathcal{C}_c(G)$ such that

$$
||f-g||_{p,\omega}<\frac{\varepsilon}{3}.
$$

There exists a compact neighborhood V of e which we may assume to be contained in K , such that $\|\Gamma_{\omega}^{s}g-g\|_{p,\omega}<\frac{\varepsilon}{3}$ $\frac{3}{3}$ for all $s \in V$. Then, for $s \in V$, we have

$$
\|\Gamma_{\omega}^{s}f - f\|_{p,\omega} \leq \|\Gamma_{\omega}^{s}f - \Gamma_{\omega}^{s}g\|_{p,\omega} + \|\Gamma_{\omega}^{s}g - g\|_{p,\omega} + \|f - g\|_{p,\omega}
$$

$$
< \frac{1}{\omega(s)} \int_{G} |(f - g)(t)|^{p} \omega(st)dt + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}
$$

$$
\leq \frac{1}{\omega(s)} \int_{G} |(f - g)(t)|^{p} \omega(s) \omega(t)dt + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}
$$

$$
< \int_{G} |(f - g)(t)|^{p} \omega(t)dt + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \|f - g\|_{p,\omega} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.
$$

Theorem 3.6. Let G be a locally compact abelian group. Let $f \in L^p_\omega(G)$, $1 \leqslant p < \infty$. Let $\varepsilon > 0$. *Then, there exists a positive function* $g \in C_c(G)$ *such that* $||g||_{1,\omega} = 1$ *and* $||f *_{\omega} g - f||_{p,\omega} \leq \varepsilon$ *.*

Proof. Let $f \in L^p_\omega(G)$ and $\varepsilon > 0$. According to Theorem [3.5,](#page-7-0) the mapping $s \mapsto \Gamma^s_\omega f$ is continuous at the neutral element e of G. Then, there exists a compact neighborhood K of e such that

$$
\|\Gamma_{\omega}^s f - f\|_{p,\omega} \leq \varepsilon, \,\forall s \in K.
$$

Consider a positive function g such that $\mathrm{supp}(g)\subset \mathsf{\mathcal{K}}$ and $\int_G g(\mathsf{y})\omega(\mathsf{y})d\mathsf{y}=1$ (that is $\|g\|_{1,\omega}=1$). Then, $|(f *_{\omega} g)(x) - f(x)| \leqslant$ G $|\Gamma_{\omega}^{s} f(x) - f(x)| g(s) \omega(s) ds$. Using the Hölder's inequality with respect to the measure $g(s) \omega(s) ds$, one has

$$
\begin{array}{lcl} \left| (f \ast_{\omega} g)(x) - f(x) \right| & \leqslant & \left(\int_{G} \left| \Gamma_{\omega}^{s} f(x) - f(x) \right|^{p} g(s) \omega(s) ds \right)^{\frac{1}{p}} \left(\int_{G} g(s) \omega(s) ds \right)^{\frac{1}{q}} \\ & \leqslant & \left(\int_{G} \left| \Gamma_{\omega}^{s} f(x) - f(x) \right|^{p} g(s) \omega(s) ds \right)^{\frac{1}{p}}, \end{array}
$$

where q is such that $\displaystyle{\frac{1}{p}+\frac{1}{q}}$ $\frac{1}{q} = 1$. Then,

$$
\|f *_{\omega} g - f\|_{p,\omega}^{p} = \int_{G} |(f *_{\omega} g)(x) - f(x)|^{p} \omega(x) dx
$$

\n
$$
\leqslant \iint_{G \times G} |\Gamma_{\omega}^{s} f(x) - f(x)|^{p} g(s) \omega(s) ds \omega(x) dx
$$

\n
$$
\leqslant \int_{G} \|\Gamma_{\omega}^{s} f - f\|_{p,\omega}^{p} g(s) \omega(s) ds
$$

\n
$$
= \|\Gamma_{\omega}^{s} f - f\|_{p,\omega}^{p} \int_{G} g(s) \omega(s) ds = \|\Gamma_{\omega}^{s} f - f\|_{p,\omega}^{p} \leqslant \varepsilon^{p}.
$$

\nThus, $\|f *_{\omega} g - f\|_{p,\omega} \leqslant \varepsilon$.

Theorem 3.7. Let G be a locally compact abelian group. If $\mathcal{T} \in \mathcal{M}^{1,p}_\omega(G)$, then $\|Tf\|_p \leqslant \|T\| \|f\|_1.$ In other words, $\mathcal{T}: L^1_\omega(G) \longrightarrow L^\rho_\omega(G)$ is a bounded operator.

Proof. Let $\varepsilon > 0$. Via Theorem [3.6,](#page-8-0) there exists a positive function g in $C_c(G)$ such that Z $\int\limits_G g(t)\omega(t)dt=1$ and $\|g\ast_\omega Tf - Tf\|_p\leqslant \varepsilon$ because $\|{\cdot}\|_p\leqslant \|{\cdot}\|_{p,\omega}.$ We have,

$$
||g *_{\omega} Tf - Tf||_{p} \ge ||Tf||_{p} - ||g *_{\omega} Tf||_{p}.
$$

Therefore,

$$
||Tf||_p \le ||g *_{\omega} Tf||_p + \varepsilon
$$

= $||Tg *_{\omega} f||_p + \varepsilon$
 $\le ||Tg||_p ||f||_1 + \varepsilon$
 $\le ||Tg||_{p,\omega} ||f||_1 + \varepsilon$
 $\le ||T|| ||||_{1,\omega} ||f||_1 + \varepsilon$
= $||T|| ||f||_1 + \varepsilon$.

Since the latter inequality is true for arbitrary $\varepsilon > 0$, then we obtain $||Tf||_p \le ||T|| ||f||_1$.

For a function f in $L^p_\omega(G)$, we define the convolution operator \mathcal{T}_f by

$$
T_f g = f *_{\omega} g.
$$

Theorem 3.8. Let G be a locally compact abelian group. Let $1 < p < \infty$. Let f be a function in $L_{\omega}^{p}(G)$ *. Then,* $||T_{f}|| = ||f||_{p,\omega}$ *.*

Proof. Let $f \in L^p_\omega(G)$ and let $\varepsilon > 0$. From Theorem [3.6,](#page-8-0) there exits a positive function g such that Z $\int\limits_G g(t)\omega(t)dt = 1$ and $\|f \ast_\omega g - f\|_{p,\omega} \leqslant \varepsilon$. Then, $||f||$ \leq ε + $||f \cdot \varepsilon||$ ε + $||T_{\varepsilon}u||$

$$
\begin{array}{lcl}\n\|f\|_{p,\omega} & \leqslant & \varepsilon + \|f \ast_{\omega} g\|_{p,\omega} = \varepsilon + \|f_{f}g\|_{p,\omega} \\
& \leqslant & \varepsilon + \|T_{f}\| \|g\|_{1,\omega} = \varepsilon + \|T_{f}\|.\n\end{array}
$$

Thus $||f||_{p,\omega} \le ||T_f||$.

Let us prove the inverse inequality. Let $g \in L^1_\omega(G)$. Applying the Hölder's inequality with respect to the measure $g(y) \omega(y) dy$, one has

$$
\begin{array}{rcl}\n\|f * g\|_{p,\omega}^p & = & \displaystyle\int_G |g *_{\omega} f|^p \omega(x) dx \\
& = & \displaystyle\int_G \left| \int_G g(y) \Gamma_{\omega}^y f(x) \omega(y) \right|^p \omega(x) dx \\
& \leqslant & \displaystyle\int_G \left[\int_G |\Gamma_{\omega}^y f(x)|^p |g(y)| \omega(y) dy \right] \left[\int_G |g(y)| \omega(y) dy \right]^{\frac{p}{q}} \omega(x) dx \\
& \leqslant & \displaystyle\int_G (|f|^p *_{\omega} |g|) \omega(x) dx \left[\int_G |g(y)| \omega(y) dy \right]^{\frac{p}{q}} \\
& \leqslant & \displaystyle\| |f|^p *_{\omega} |g| \|_{1,\omega} \|g\|_{1,\omega}^{\frac{p}{q}} \leqslant \|f\|_{p,\omega}^p \|g\|_{1,\omega} \|g\|_{1,\omega}^{\frac{p}{q}} = \|f\|_{p,\omega}^p \|g\|_{1,\omega}^p.\n\end{array}
$$

Then, $||T_f g||_{p,\omega}^p \le ||f||_{p,\omega}^p ||g||_{1,\omega}^p$. Thus, $||T_f|| \le ||f||_{p,\omega}$.

As a consequence of Theorem [3.3](#page-5-0) and Theorem [3.8,](#page-9-0) we have the following result.

Corollary 3.9. Let G be a locally compact abelian group. Let $1 < p < \infty$. Then, the multipliers space $\mathcal{M}^{1,p}_\omega(\mathsf{G})$ and the Beurling space $\mathsf{L}^p_\omega(\mathsf{G})$ are isometricaly identified by the mapping T : $f \longmapsto T_f.$

Concederent

In this paper, we obtain a characterization of multipliers for the pair $(L_{\omega}^1, L_{\omega}^p)$ using the Fourier transform related to a Beurling weight. We also obtain the identification of the space of such multipliers with the Beurling space L^p_ω when $1 < p < \infty$. It would be interesting in the future to consider the case of the pair (L^p_ω, L^q_ω) in this framework of the weight dependent convolution.

Competing Interests

The authors declare that no competing interests exist.

References

- [1] R. Akylzhanov, M. Ruzhansky, $L_p - L_q$ multipliers on locally compact groups, J. Funct. Anal. 278 (3) (2020) 108324. <https://doi.org/10.1016/j.jfa.2019.108324>
- [2] A. Bourouihiya, Beurling weighted spaces, product-convolution operators and the tensor product of frames, PhD thesis, University of Maryland,USA, 2006. [http://www.norbertwiener.umd.edu/Research/lectures/2006/](http://www.norbertwiener.umd.edu/Research/lectures/2006/ABourouihiya_Thesis.pdf) [ABourouihiya_Thesis.pdf](http://www.norbertwiener.umd.edu/Research/lectures/2006/ABourouihiya_Thesis.pdf)
- [3] G.I. Gaudry, Multipliers of weighted Lebesgue and measure spaces, Proc. London Math. Soc. 19 (3) (1969) 327-340. <https://doi.org/10.1112/plms/s3-19.2.327>
- [4] A. Issa, Y. Mensah, Multipliers on weighted group algebras, Gulf J. Math. 8(2) (2020) 35-45. [https://doi.org/](https://doi.org/10.56947/gjom.v8i2.283) [10.56947/gjom.v8i2.283](https://doi.org/10.56947/gjom.v8i2.283)
- [5] A. Issa, Y. Mensah, On Beurling spaces provided with a weight dependent convolution, Funct. Anal. 1 (2022) ID 6. <https://fac-seams.org/journal/index.php/fa/issue/view/1>
- [6] A. Issa, Y. Mensah, Multipliers for Gelfand pairs, Palest. J. Math. 10(1) (2021) 151-159. [https://pjm.ppu.edu/](https://pjm.ppu.edu/paper/801-multipliers-gelfand-pairs) [paper/801-multipliers-gelfand-pairs](https://pjm.ppu.edu/paper/801-multipliers-gelfand-pairs)
- [7] A. El Kinani, A. Roukbi, A. Benazzouz, Structure d'algèbre de Banach sur l'espace à poids $L^p_\omega(G)$, Le Mathematiche. vol. LXIV Fasc. I (2009) 179-193. [https://lematematiche.dmi.unict.it/index.php/lematematiche/](https://lematematiche.dmi.unict.it/index.php/lematematiche/article/view/253) [article/view/253](https://lematematiche.dmi.unict.it/index.php/lematematiche/article/view/253)
- [8] Yu. Kuznetsova, C. Molitor-Braun, Harmonic analysis of weighted L^p -algebras, Expo. Math. 30 (2012) 124-153. <https://doi.org/10.1016/j.exmath.2012.01.002>
- [9] R. Larsen, An introduction to the theory of multipliers, Springer-Verlag, 1971.
- $[10]$ A. Mahmoodi, A new convolution on Beurling algebras, Math. Sci. 3 (9) (2009) 63–82. [https://www.sid.ir/](https://www.sid.ir/paper/322483/en) [paper/322483/en](https://www.sid.ir/paper/322483/en)
- [11] S. Naik, K. Rajbangshi, Operators and multipliers on weighted Bergman spaces, Afr. Mat. 30 (2019) 269-277. <https://doi.org/10.1007/s13370-018-0645-6>
- [12] S. Öztop, Multipliers on some weighted L^p -spaces, Internat. J. Math. and Math. Sci. 23 (9) (2000) 651-656. [https:](https://doi.org/10.1155/S016117120000096X) [//doi.org/10.1155/S016117120000096X](https://doi.org/10.1155/S016117120000096X)
- [13] T. W. Palmer, Banah algebras and the general theory of [∗]-algebras, Volume 1, Algebras and Banach Algebras, Cambridge University Press, 1994.
- [14] R. Radha, N. S. Kumar, Weyl transform and Weyl multipliers associated with locally compact abelian groups, J. Pseudo-Differ. Oper. Appl. 9 (2018) 229-245. <https://doi.org/10.1007/s11868-017-0213-0>
- [15] H. Reiter, J. D. Stegeman, Classical harmonic analysis and locally compact groups, London Math. Soc., Monographs, 22, Clarendon Press, Oxford, 2009.
- [16] H. I. Royden, P. M. Fitzpatrick, Real Analysis, (Fourth Edition), China Machine Press, 2010.
- [17] W. Rudin, Fourier analysis on groups, New York, Interscience Publishers, Inc., 1962.
- [18] V. S. Shulman, I. G. Todorov, L. Turowska, Sets of multiplicity and closable multipliers on group algebras, J. Funct. Anal. 268 (6) (2015) 1454-1508. <https://doi.org/10.1016/j.jfa.2014.11.019>
- [19] T. Strohmer, Pseudodifferential operators and Banach algebras in mobile communications, Appl. Comput. Harmon. Anal. 20 (2006) 237-249. <https://doi.org/10.1016/j.acha.2005.06.003>