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ABSTRACT. This paper introduces a new iterative algorithm, called the Modified Viscosity lterative
algorithm, designed to solve problems related to Variational Inclusion and Fixed point in real Hilbert
spaces. The algorithm is specifically tailored to handle Multivalued Quasi-Nonexpansive and Demi-
contractive operators. The convergence properties of the algorithm are analyzed and established,
ensuring its effectiveness in finding solutions for complex mathematical problems in the field of opti-

mization and equilibrium.

1. INTRODUCTION

Variational inclusion and fixed point problems involving multivalued quasi nonexpansive and
demicontractive operators play a crucial role in the field of mathematics, particularly in real Hilbert
spaces.

The study of variational inclusion and fixed point problems originated from the theory of opti-
mization and nonlinear analysis, and in the mid—20%" century, mathematicians began investigating
problems involving finding points that satisfy certain inclusion and fixed point conditions. Over time,
research in this area expanded and became an essential part of functional analysis and optimiza-
tion theory. They are widely-used in applications in diverse fields such as engineering, economics,
physics, and computer science. They provide a framework to model and solve various real-world
problems, including equilibrium problems, optimization problems, and variational inequalities.

Fixed point problems, on the other hand, deal with finding points that remain unchanged under
the action of an operator. The concept of fixed points has profound implications in mathematics

and its applications. A wide range of problems in analysis, differential equations, and optimization
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theory can be reduced to fixed point problems. They serve as powerful tools to prove the exis-
tence and uniqueness of solutions, compute approximations, and establish convergence properties
of iterative algorithms. Whilst multivalued quasi nonexpansive operators play a pivotal role in vari-
ational inclusion and fixed point problems. These operators possess certain properties that ensure
the stability and convergence of iterative algorithms. They have applications in image processing,
signal estimation, and constrained optimization, among others.

Moreover, fixed point theory for multivalued mappings has also contributed to the development
of related areas of research, such as operator theory, topological degree theory, and convex anal-
ysis. By investigating the properties and behavior of fixed points in multivalued mappings, math-
ematicians have gained a deeper understanding of these fields and have been able to establish
connections and develop new techniques.(See, [30], [10,11], [2], [7], [33], [9] and [26]).

Demicontractive operators, on the other hand, exhibit properties of both contractive and nonex-
pansive operators. They are broadly used in the study of variational inequalities and play a crucial
role in convex analysis and optimization theory. They provide a bridge between nonlinear and
linear problems, enabling the development of efficient numerical methods for solving variational
problems arising in diverse areas.

Viscosity iterative algorithms have been extensively studied in recent years for finding common
fixed points of single-valued nonexpansive mappings and solving variational inequality problems.
These investigations have built upon the concepts of viscosity solutions introduced by various
researchers. (see e.g [0], [25], [5], [29], [23], [19], [28]).

Throughout this paper, we denote H to be real Hilbert space with the inner product (., .) induced
by the norm ||.||. Let K, to be a nonempty, closed and convex subset of H.

An operator A : H — H is said to be Lipschitz if there exists a constant L > 0 such that
[Ax = Ay|| < Lllx —y|.Vx,y € H (1.1)
A : H — H is said to be strongly positive if there exists a constant kK > 0 such that
(Ax,x) > k||x|>, Vxe€H (1.2)
A : H — H is said to be k—strongly monotone if there exists a constant k € (0, 1) such that
(Ax— Ay, x —y)y > kllx —y|?. Vx,yeH (1.3)

Definition 1.1. A multivalued mapping
(1) T:D(T) C H— CB(D) is called L—Lipschitzian if there exists L > 0, such that

H(Tx, Ty) < L|x—yl|.Vx,y € D(T)

and T is contraction if L € (0,1) and noneaxpansive if L = 1.
(2) T is called quasi-nonexpansive if H(Tx, Tp) <|x—p|, VxeD(T),pe Fix(T)


https://doi.org/10.28924/ada/ma.4.2

Eur. J. Math. Anal.

3) T : D(T) € H — CB(D) is said to be k—stritly pseudo-contractive, if there exists
k € (0, 1) such that for all x,y € D(T), the following holds;

2
(HTx.Ty))" < Ix=yIP + K10 = T)x = (1 = Ty,

If Kk =1, the map T is said to be pseudocontractive.
(4) [26] T : D(T) € E — 2F is said to be demicontractive if Fix(T) # @ and for all
p € Fix(T),x € D(T) there exists k € (0, 1) such that

2
(H(Tx, Tp)) < |x = pl? + kd(x, Tx).
If Kk =1, the map T is said to be hemicontractive.

Let (X, d) be a metric space, K be a nonempty subset of X and T : K — 2% be a multivalued
mapping. An element x € K is called a fixed point of T if x € Tx. The fixed point set of T is
denoted by Fix(T):={x € D(T): x € Tx} where D(T) :={x € X : Tx # 0}. It is easy to see
that single-valued mapping is a particular case of multivalued mapping.

Let D be a nonempty suset of a normed linear space E. The set D is called proximinal (see [13])

if for each ¥ € E, there exists u € D such that
d(x,u) = inf{|lx—y[:y € D},Vx,y € E (1.4)

where d(x,y) = ||x — y|| for all x,y € E. Every closed, nonempty and convex set of real Hilbert

space is proximinal. The family of nonempty closed bounded subsets, nonempty compact subsets,

and nonempty proximinal bounded subsets be donated as CB(D), K(D) and P(D) respectively.
Let A, B € CB(D). Then the Hausdorff metric in H is defined by

H(A, B) = max{sup d(a, B), sup d(b,A)}. (1.5)
acA beB

Let A : D(A) C H — 2" be a multivalued operator. Then A is monotone if (x, u), (v, v) € D(A)
such that

G(A) :={x,u):x € D(A),u € Ax} (1.6)

A monotone mapping A : H — 2H is said to be maximal if its graph G(A) is not properly contained
in the graph of any other monotone mapping.

A mapping A : H — H is said to be av—inverse strongly if there exits a constant a > 0 such that
(Ax — Ay, x — y)y > al|Ax — Ay|]?, V¥x,y € H (1.7)

1
Remark 1.2. It can be seen that every a—inverse strongly monotone mapping is a—Llpschltz

monotone.
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Let A: H — H be a single-valued nonlinear mapping and I : H — 2M be a set-valued mapping.

Then the variational inclusion problem is as follows: Find x € H, such that
w € M(x) + A(x) (1.8)

where w is the zero vector in H. We denote the solution of the problem (1.8) by S(M,A). If w = A
then, problem (1.8) becomes the inclusion problem by Rockafellar [16].Further readings on Zeros of
inclusion problem (See [17], [18], [19], [8], [12])

Let a set value mapping M : H — 2" be maximal monotone. We define a resolvent operator JK/'

generated by [T and X as follows
I = (I = xM)"L(x),Vx € H (1.9)

where X is a positive number. It is easily to see that the resolvent operator J;\\/' is single - valued
nonexpensive and 1—inverse strongly monotone , and moreover, a solution of the problem (1.8) is
a fixed point of the operator M(/ —AA), VA > 0( See [4]).

Let T : H— P(H) be multivalued map and Py : H — CB(H) be defined by

Prix)={y € Tx: |y — x| =d(x,Tx)} (1.10)

See examples of a multivalued mapping T with Fix(T) # 0, Tp = {q} for all g € Tp which Pr
is a demicontractive-type but not a k—strictly pseudocontractive-type mapping in Mendy et al [?]
To prove that a multivalued mapping T with Fix(T) # 0 and Tp = {q} forall g € Tp is a
demicontractive-type but not a k-strictly pseudocontractive-type mapping, we need to demonstrate

the following three steps:

Step 1.3. Show that T is demicontractive-type.
To prove that T is demicontractive-type, we need to show that for all p € Fix(T) and x € D(T),
there exists k € (0, 1) such that

(H(Tx, Tp))2 < |Ix — plI? + kd(x, Tx)2.

Since Tp = {q} for all ¢ € Tp, we have Tp = {p} for all p € Fix(T). Thus, for any x € D(T),
Tx = {¢} for some ¢ € Fix(T).

Now, consider the case when x = ¢. In this case, we have H(Tx,Tp) = H(T¢, Tp) =
H({®},{p}) = 0. Therefore, the inequality holds for any k € (0, 1).

Step 1.4. Show that T is not k-strictly pseudocontractive-type.
To prove that T is not k-strictly pseudocontractive-type, we need to show that there does not

exist a constant k € (0, 1) such that

2
(H(Tx, Tp)) < k[|x = p||? + kd(x, Tx)?
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for all p € Fix(T) and x € D(T).
From step 1.3, we know that H(Tx, Tp) =0 for any p € Fix(T) and x € D(T). Therefore, the

inequality reduces to
0 < Klix = pl?

for all p € Fix(T) and x € D(T). However, this inequality cannot hold for all x # p since it
1

implies k > =, which contradicts the requirement that k € (0,1).
Step 1.5. Show that Pr is a demicontractive-type.

Let Pr denote the projection operator associated with multivalued mapping T. Since Tp = {q}
for all g € Tp, Pr is the single-valued mapping that assigns each p € Fix(T) to itself.

Consider p, x € Fix(T), with x # p. Then Tx = Tp and ||x — p|| > 0. Furthermore, d(x, Tx) =
d(p, Tp) =0 since x, p € Fix(T).

Using these values, let's rearrange the original inequality:

2 2 2
(HTx.Tp))™ < lIx = pII? + kd(x, TX)

0<||x— p||2 + kd(x, Tx)z.

Since ||x—p|| > 0, the inequality can only hold if k = 0. However, k € (0, 1) by definition, so Pr

cannot satisfy the inequality for any k € (0, 1). Hence, Pr is not a k-strictly pseudocontractive-

type mapping.

A popular method for solving problem (1.8) is the well-known forward-backward splitting method

introduced by Passty [14] and Lions and Mercier [27]The method is formulated as
Xpi1 = (I = XaM)72(I = X, A)x, A, > 0. (1.11)

under the condition that Dom(M) C Dom(A). It was known in [31], that weak convergence of
(1.11) requires quite restrictive assumptions on A and 1, such that the inverse of A is strongly
monotone or 1 is Lipschitz continuous and monotone and the operator (A+M) is strongly monotone
on Dom(B). Tseng in [20] and Gibali and Thong in [24] extended and improved results of G.H-
G.Chen and RT. Rockafellar [31].

Most recently, Sow [28] introduced and studied a new iterative algorithm and prove convergence
theorems for variation inclusion problem (1.8) and fixed point problem involving multivalued demi-

contractive and quasi-nonexpansive mappings in Hilbert spaces. They defined the sequence {¢,}
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as follows i
n = (1= XpA)xn,

Yn=06n0n+ (1 —0p)vn, vy € Ty,
] (1.12)
Zn = 5/7)/17 + (1 _ﬁn)unx un € T2ynv

| Xn+1 = Pr(on¥f(xn) + (1 — s B)zn)
and prove that under certain conditions, the sequence {x,} converges strongly to a unique fixed
point that solved the variational inequality.

It is our purpose in this paper to construct a new iteration process, that modifies that of Sow [28]
and prove that the corresponding sequence {x,} converges strongly to a common point of an
inclusion problem and fixed point of a family of multivalued demicontractive and quasi-nonexpansive
mappings in Hilbert spaces without any compactness. Our theorems generalize and extend that of

Sow [28], and many other results in this directions.

2. PRELIMINARIES

The following lemmas will play a crucial role in the sequel.
Let K be a nonempty, closed convex subset of H. The nearest point projection from H to K

denoted by Pk, assigns to each 9 € H the unique point of K, Pk such that
[Ix = Pex|l < llx =y,
for all y € K, and for every x € H,
(x — Pgx,y — Pkx) <0, VyekK (2.1

Lemma 2.1. [27] LetT1: H — 2" be a maximal monotone mapping, and A : H — H be Lipschitz

and continuous monotone mapping. Then (M + A) : H — 2 is a maximal monotone mapping.

Lemma 2.2. [28] Let H be real Hilbert space and \ : H — H be an a—inverse strongly monotone

mapping. Then, (I — 6N\) is nonexpansive mapping for all , ™ € H and 6 € [0, 2a] such that
I(1 = 6A)x — (I = 6AY|* < |Ix — y[I” +6(6 — 2a) || Ax — Ay|? (2.2)

Lemma 2.3. [24] Assume that {a,} is a sequence of nonnegative real numbers such that ap4+1 =
(1 — bp)an + o, for all n > 0, where {ap} is a sequence in (0,1) and {o,} is a sequence in R
such that

L e N on

) ;bn = 00, i) n||_>moosup b <O0.

Then |lim a, =0
n—oo


https://doi.org/10.28924/ada/ma.4.2

Eur. J. Math. Anal.

Lemma 2.4. (Wang [1]). Let H be a real Hilbert space. Let K be a nonempty closed convex subset
of H. A: H — H be k— strongly monotone and L— Lipschitzian operator with k > 0 and L > 0.

2k L2 1
Assume that 0 <n < — and T = 'r)(k — —n) Then for each t € (O, min (1, —) ) we have
L2 2 T
(I = tnA)x = (I = tnA)y| < (I = tT)lIx —y[. Vx,y €H (2.3)

Lemma 2.5. [29] Let H be a real Hilbert space. Then for every x,y € H, and every A € (0, 1),
the following holds:

D: lx = yI? < IxIP + 20y, x +y)

I I+ (1= M)yl < Xx? + (1= NIy lP = (1= MAlx =y

3. MaIN REsuLTs

In this section, we study the convergence properties of the iterative algorithm which is based on

viscosity algorithm and forward - backward splitting Method. We now prove the following theorem.

Theorem 3.1. Let H be a real Hilbert space and K be a nonempty, closed convex subset of
H. Let A : K — H be an a—inverse strongly monotone operator and let B : H — H be an
k—strongly monotone and L—Lipschitzian operator. Let f : K — H be an b—Lipschitzian mapping
and M : H — 2" be a maximal monotone mapping such that the domain of M is included in K.
Let T1,To : K — CB(K) be a multivalued B— demicontractive mapping and T3 : K — CB(K)
be a multivalued quasi-nonexpansive mapping. Assume that 0 < 1 < %,O < b < T, where
T = 'r)(k — L;n) and | —T1,1 — T, and | — Tz are demiclosed at origin, such that Q :=
Fix(T1) N Fix(T2) N Fix(T3) N S(M, A) # 0 and Tiq = Toq = T3qg = {q},Vq € Q. For given

xo € K, let {x,} be generated by the algorithm:

~

6n = AL = XpA)Xp;
Ynzenén‘i’(l_en)vnv Vo € T16p;
N Zn=Bnyn + (1 *,Bn)uny Un € Toynp; (31)

tn:'YnZn+(1_’Yn)Wn: Wy € T32p;

L Xn+1 = Px(anyf(xn) + (I — nonB)ty)
where {Bn}, {vn}, {0}, {tn}, {An} and {a,} are real sequence in (0, 1) satisfying the following

conditions

i): lim a,=0 ZO‘” < 00, An € [a, b] € (0, min{1,2a})
n=0

n—oo
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ii): lim inf(1-B8,)(8,~B) >0 and lim inf(1~6,)(6, —B) >0, (Bn. 6,) € (6,1)

ii): limp—eo inf(1 = v5)vn) >0
Then, the sequences defined in (3.1), that is {x,} and {0,} converge strongly to unique solution
x* € €, which also solve the following variational inequality:

(MBx* —yf(x*),x*—q) <0, VgeQ (3:2)

Proof. From the choice of 7 and 7y from [?], (n® — %) is strongly monotone, then the variational
inequality (3.2) has a unique solution. We will first show that there is only one solution.
Lets assume that by contradiction that there exist two points x*, y* € 2 which are two solution

of the given inequality, and x* # y*, then we have

(nBx* —yf(x*),x* —y*) <0 (3.3)
and
(nBy” —f(y*),y" —x") <0 (34)
Therefore from (3.3) and (3.4), we have
(nBy™ —nBx" +yf(x*) —¥f(y*),y" —x") <0 (35

Now from the assumption that

L2n L2n
L2%n
< ”(a‘7)<“”
&S T<an
Sothat 0 <y < T<an
(NBy* —mBx* +f(x*) —yf(y*).y* —x*) = (nBy" —nBx*, y* —x*)

— (") = af(x"). ¥y —x%)
= (nBy* —nBx*, y* —x¥)
— AFYT) = FO) Iy — x|

anx* = y*|I> = ypllx* — y*|?

v

= (am—yo)llx* — y*II?

and this is a contradiction to (3.5), and hence x* = y*, which is required. Again, we note that the
operator Pg[/ + (ayf — maB)] is a contradiction. Now for any fixed point ag € (0, min {1, %})
and Vx,y € H, we have, by lemma (2.4), and letting ® = [/ + (agyf — NB)]x and © =
[l + (aoyf — nogB)ly, we have
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[Pc® — PO < I[l + (a0 — maoB)]x — ([I + (coyf — naoB)]y) ||

< agY|[f(x) = FW)II + I(/ = naoB)x — (I — naoB)y]|
< apvpllx =yl + (I —aT)llx -y
< (I =ao(T —vp)lIx = ¥l

Thus, by Banach contraction principle, the mapping Px[/ + (ayf — naB)] has a fixed point, say
X = Px[l + (ayf —maB)] and as such, from (2.1), it is similar in value to the variational inequality

below

(NBX —f(X),X —q) <0,Vg€Q

Now we continue with the proof of theorem (3.1)
Let g € Q with the fact that J>\r'n is 1—inverse strongly monotone,and from [?], we have the

following
16, — all* < llxn — all?
Therefore from (3.6), we have
16n = all < lIxn — 4l (3.6)
From lemma (2.5), with (3.1), and, for the fact that T1q = {q}, T1 is B—demicontrative, we have

lyn — CI||2 = 10,060 —q) + (1 —05)(vy — Q)HZ
Onl|0n — Cl||2 + (1 =0n)||va — C]||2 — (1 —6n)0nllvn — 5n||2

< 9n||5n - QH2 + (1 - en)H(Tlén, TIQ)2 - (1 - en)enHVn - 5!7”2
S 9n||5n - QHQ + (1 - en)[Hén - q“2 +6d(5nv Tlén)z] - (1 - en)enHVn - 6n||2
< I87 — al”> = (1 = 6,) (65 — B) IV — 8l

(3.7)

Thus, we have
1o = all* < 1160 = all”> = (1 = 64)(65 — B)llve — 64l
Since 6, € (B, 1), we have
lyn = qli* < l16n — qll?

Again from lemma (2.5), with (3.1), and, for the fact that Toq = {q}, T» is B—demicontrative, we

have
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1z —all® = 11Bayn— @) + (1= Bn)(un — q)IIP
= Ballyn — all* + (1 = Bn)llun — all” = (1 = Ba)Balltn — yull?
Ballyn — all? + (1 = Ba)H(Tayn, T20)* — (1 — Ba)Ballun — yall?
< Ballyn — all* + (1= Bn)lllyn — all® + Bd (v, Toyn)?] — (1 = Bn)Balltn — yall?
< lyn = all* = (1= Ba)(Bn — B)lltn — yall? (3.8)

IN

Thus, we have
120 = alI* < llyn = gl = (1 = Ba)(Bn — B)|un — yall®
Since B, € (B, 1), we have
122 = alI” < llyn — all?

Now, using the fact that T3 = g, we have the following estimates

Ita—all = llvnzn + (1 —=v)wn — 4l
< Yollzn = gl + (1 = yn)l[wn — 4|
< Ynllzo = all + (1 = vn)H(T32, T39)
< Yollzo = all + (1 = ¥n)llzn — gl
< zo =4l
(3.9)
Hence, we can see that
Itn = all < llzo = qll < llyn —all <160 = qll < [Ixn — 4| (3.10)

Using (3.1), inequality (3.10) and lemma (2.4)

X1 —all < (onvf(xn) + (I = nasB)ty) — 4l
< eny(F(xn) = F(@)Il + (1 = Ta)lts = @)l + allvf(q) — naBl|
< onylf () = (@)l + (1 = Ta)llxa — g)l| + allvf(q) — naBl|
< onbyllxn = gl + (1 = Ta)|xp — @)l + allvf(g) — naB|
< (I —=a(r = by)lxe — @)l +allvf(g) — naB|
< max { i, — g AL =TBAY

Therefore, by induction, it is easy to see that

vf(q) —nBgq
vt = all < ma { o — g YL TBANY g
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Hence {x,}, {f(xn)} and {Bx,} are bounded.

Secondly, we now have the following estimates. From (3.1) and lemma (2.5), we have

Xns1 = all® < llan(yf(xn) — nBa) + (I — na,B)(t, — q)|I°
< aqllvf(xn) — mBall” + (1 — Tan)?|t — ql?
+  20n(1 = To)|lvf(xn) — nBgl[[|tn — 4|
< aqllvf(xn) — mBal” + (1 — Tan)?||zs — q)?
+ 20p(1 = Tan)|[vf (xn) — mBall||ts — ql|
< v (xa) = mBall* + (1 — Tan)?[lyn — alf?
— (1= 7an)?(1 =) (Bn = B)llun — yall®
+ 20p(1 = Tan) v (x0) — mBall||ts — ql|
< aqllvf(xn) — mBal” + (1 — Tan)?||8, — q]?

— (1= 7an)*(1 = 60)(0r — B) Ve — bnl?

— (1= 7an)*(1 = Bn)(Bn — B)llun — yall?
20i(1 — Tap) |7f (xn) — B[t — ql|

< o2|lvF(xn) — mBall® + (1 — 7o)X — ql?

— (1= 7ap)*(1 = 60)(0r — B) Ve — 6nll?

— (1= 7an)*(1 = Ba)(Bn — B)llun — yall?

20n(1 — Tap) |7 (xn) — mBallllxa — ql|

%0 = qll* + callvf (xn) — nBall* — an(27 — T2n)[1x0 — alf?

— (1= 70n)?(1 = 6n)(6n — B)lva — 8l

— (1= 7an)*(1 = Ba)(Bn — B)llun — yall®

+ 2a,(1 = 7a,) [ (x,) — 1Ballllx, — g

Therefore

(1= 70,2 (1= 6)(60 = B) Ve = 8all® + (1 =B2)(Bn = B)ltn = yall?]
< ”Xn — QHQ - ||Xn+1 - q||2 - O5/7(27— - T2OL,7)||X,, — C7H2
+ 2a,(1 — Top)|[vf (xn) — nBall|lxn — 4l
+ a?|lyf(x)) — nBql?


https://doi.org/10.28924/ada/ma.4.2

Eur. J. Math. Anal. 10.28924/ada/ma.4.2 12

Due to the boundedness of {f(x,)} and {x,}, and for some constant M > 0, we have

(1= 70| (1 = 80)(On = B)lIva = 8all® + (1 =Ba)(Bo = B)llun = 30l
< ”Xn - Cl||2 - ||Xn+1 - CI||2 + OLnM (3-11)

We now show that x, — x. We then consider two cases.

Case 1: Assuming that the sequence {||x,—q||} is monotonically decreasing. Then {||x,—q||}

must be a convergent sequence. Therefore, we have
lim (1% — al> = 1 — ql] =0, (3.12)

This implies that from (3.11), that

nimm(l—en)(en—5)||vn—5n||2 =0 (3.13)
and
im (1= Bn)(Bn = B)lun — yall* =0 (3.14)

Since Ii_}m inf(1 —6,)(6, —B) > 0 and Ii_}m inf(1 — Bn)(Bn — B) > 0, with the fact that
n—oo n—oo
Vp € T10, and u, € Toy,, it follows that

lim d(0n, T10,) =0 (3.15)
n—o0
and
lim d(yn, Toys) =0 (3.16)
n—oo
observing that
IYn = dnll = 1|0n0n + (1 —0n)vy — 04|

||9n6n + (1 - Gn)Vn - 6[7 + 9[’1617 - 9[’16[’1”
= (1 —=06n)[lvn — 6nll

IN

IV — &nll
(3.17)

Taking the limits and from (3.13), we can see that

lim [[yn — 6nll =0
n—00
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lzo = yall = 11Bnyn+ (1 —=Bn)un — yall
= ||BnYn+(1_,6n)Un_YH +Bnyn_5n)/n|l
= (1 —=Bn)llun — yall

lun — yall

IN

(3.18)

Again, from (3.14), we can see that

lim ||z, — ynl| =0
n—oo
lzo = 0nll = llza — Y0+ yn —dall
< Nlza = yall + llyn — 6all

Hence lim ||z, —d,]| =0
n—o0

Now from lemma (2.2), lemma (2.4) and (3.1), we have the following

IN

Xn+1 — qll? lan(YF (xn) — MBa) + (I — nanB)(tn — q)|I?

apllvf(x) — Bl + (1 — Ta)?|[tn — ql|?

IN

2a,(1 — 1) ||vf(xa) — mBalll[ty — 4|
o2 [vf (xn) — mBI? + (1 — Tan)?(|6n — qlI?

IN +

205(1 — Tan) ¥ (xa) — nBalll[ts — q|
o2 (xn) = mB|12 + (1 — Tan)? | AL (L — AA)x, — BE(L — AA) g2

IN -+

200(1 = T, |1YF (xn) — nBall |t — g
o2 vF () = mBI + (1= 7ea)?[ 10 — qll + a(b — 201) | Ax, — Aq?]

IN -+

2a,(1 — Tap)||[7f(xa) — mBql|l|xs — ql|

IN

a%”’yf(xn) - 77B||2 + |Ixn — C/||2 —oap(21 — 'rzan)HXn - CI||2
— (1 —71a)%a(2a — b)||Ax, — Aq||? (3.19)

+

20p(1 = Tan) [vF (xn) — mBalll[xn — 4

Therefore, from (3.19),and with a constant D > 0, we have

(1 - Ta)?a(20 — b)[|[Axy — Aql® < lxn = )I* = lIxn+1 — )1 + D
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Since, |i_>m a, = 0, and from the inequality (3.12), with the fact that {x,} is bounded, we
n—oo

have

Since J;l\\f is 1—inverse strongly monotone,and ||t,—ql|| < ||[6,—q

Itn — all®

IN

IN +

This gives us

lim [|Ax, — Ag|* =0 (3.20)
n—oo

, we have the following

I (1= o) — BE( = AaA) gl

(th — q, (I = XpA)xn — (I = XpA)q)

1

2

1

2

(1 = XnA)Xxy — (I = %nA)qllz

It = all? = 10 = AA)xr = (1 = AeA)G = (tn — 9)I?]

I

1o = all® + llta — all* = lIxn — tn

2hnlts = 4, Axy — Ag) = X2 Ax, — A)q)|I°]

[xn — q||2 — [[xn — tn||2 +2Xn{xn — q, Axy — Aq) — >‘r21||AXn - AQHQ

tn — q||2 < lIxn — q||2 — [[xn — tn”z + 2Xn{th — g, Axy — Aq) — >‘r27||AXn - ACI||2 (3.21)

Therefore

X1 — all?

INIA

N+ 4+ AN+

+ o+

llotn(YF (xn) — nBq) + (1 — nanB)(tn — )7

allvf(xn) — mBJ* + (1 — Tan)?|Its — gl

205(1 = o) |[7f (xn) — mBqlll|tn — g

o2vF () = BI + (1 = 7an)?| 130 — a2 = Il — tal

2t = 9. Axy — Aq) = N3I|Ax, — Aq?]

2ap(1 — Tan)||7f (xn) — nBallllxn — 4l

anllvf(xn) = mBI? + (1 = Tan)?(1x0 — qll* = (1 = Tan)?|Ixn — tall?
220(1 = Tan)?(ty — q, Axy — Ag) — X2(1 — Ta,)?||Ax, — Ag|?

2an(1 = Tan) v (xa) — nBallllxs — 4l (3.22)
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Thus, from (3.25), we have

(1—7an)?lxn— tal> < allvf(xa) — nB|I* + [Ix0 — qlI* = X041 — all (3.23)
— apT(2—Tas)|Ixy — QHQ +2Xp(1 — Tan)2<tn —q,Ax, — Ag)

A%(l - Tan)2||AXn - Aq||2 + 2001 — Tan) |7 (xa) — nBallllxa — ql|

Therefor, since a, — 0 as n — oo with inequalities (3.12) and (3.20), we have
n—o0

From (3.10) and lemma (2.5) with the fact that T3 is quasi-nonexpansive, we have the

following estimate

Ita—al?> = |¥nza+ (1 —vn)wn — qlf?
= Yollzo — ql? + (1 = ) Iwn — gl> = (1 — Vo) VnllWi — 2|2
= Yallzn — ql? + (1 = ¥n)H(T32n, T30)? = (1 = ¥n)¥nl Wn — Zn|1?
= Yallza — ql? + (L = ¥n)llzo — alI* = (1 = Ya)Vall Wi — 2|2
< X = gl = (1 = ¥n)¥nll W — 247 (3.24)
Therefore
IXns1 = all® < llan(yf(xn) —nBq) + (I — na,B)(t, — q)|?

< oY (xa) = mB|? + (1 — Tan)?(|t, — ql|?

+ 20p(1 = Tan)|[vf (xn) — mBall||ts — ql|

< QBlvF(xn) = nBI2 + (1 — an)?| s = gl

= (1= W) Wallwn = 2] + 2a(1 = )Y (x0) = mBall 1t —

< oy (xa) = mB|I? + (1 — Ta)?|1x, — gl

- (1- To‘n)Q(l — Yn)YnllWn — ZnH2 + 20,(1 — Ta)|lvf (xn) — nBqlllt, — ql|

Hence, we have the following
(1= 700)*(1 = ¥)Vnlwn — zalI> < apllvf(xn) — mB|I? — Tan(2 — Tan) [[xa — ql?

+ lxn — Q||2 — || Xn+1 — CI||2

+ 2a,(1 — To)|[vf (xp) — mBall|lt, — 4|
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Therefor, since o, — 0 as n — oo with inequalities (3.12) and (3.20), we have
(1 - Tan)2(1 - ’Yn)’YnHWn - Zn||2 <0

From this we have

lim (1 —=92)VallWn — Za[> = 0 (3.25)
n—oo
Since lim inf((1 —y,)vn) >0
n—oo
lim |lw, —z,|| =0 (3.26)
n—oo
Again, with w € T3z,
lim d(zn, Tszn) = 0 (3.27)
n—o0

Moreover, since H is reflexive and {x,} is bounded, we then prove that IiT sup(nBx* —
n—-+00

Y (Xx*), x* — x,) < 0. We let the subsequence {xp,} of {x,} to converge weakly to x** in

K, and

lim (nBx* —4f(x*), x* —xp) = |lim (nBx™ —yf(x*), x* — xp,)

n——+oo n—-+oo

Again, since /| =Ty, /=Ty and | — T3 satisfies the demiclosed principle and from (3.32), (3.16)
and (3.27), we obtain x** € Fix(T1)NFix(T2)NFix(T3). We now show that x** € S(M, A).
Since A is a—inverse strongly monotone, and Lipschitz continuous mapping. Then From
lemma (2.1), it follows that (M + A) is maximal monotone.

Let (v,g) € G(M + A), that is g — Av € M(v). Since §,, = J>R\£; (Xn;) — An,AXp,), we

1
have Xp, — ApXn, € (I + Xp,M)d,,, that is A—(X,,[ — 0n, — An,AXp,) € M(0p,). By maximal
nl

monotonocity of (M + A), gives

1
7(an - 5n- - >\n/AXn/-) 2 0

(u—5n,,g—Au—>\n /

and, therefore
1
<V - 5,7,, g> > <’/ - 5n,v Av — T(Xn, - 6n, - >\n,AXn,)>
n;

1
= (V=60 AV = Ady, + Aby, + 5 (x0, — O, — AnAxp))
n;

1
> (v —"0p, Av — AXxy,) + (v — 0p,, A—(x,,,, — 0ny)
nj
It then follows from [|6, — xs|| — O, ||Ad, — Ax,|| — O and 0, — x™ weakly that

nILm (Vv —0n,,9) = (v —x™, g) and hence x™ € S(I, A). Therefore, x** € Q,
On the other hand, for the fact that x* solves the variational inequality (3.30).
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lim sup(nBx* —4f(x*),x" —xp) = lim sup(mBx™ —yf(x*),x" — xp)
n—-+oo n—-+o0o

= (nBx®* —yf(x"),x" —x™) <0

(3.28)
Lastly, we now prove that nIi_)moo lIx, — x*|| =0, that is x, =& x* as n— oo.
o1 = x* |2 < llenyf (xa) + (1 = nasB) ty — x*||?
< lan(YF () = YF(x*)) + (1 = nasB)ty — x*1?
+ 20 (MBx" —yf(X*), X" = Xn+1)
< [enlFGon) — FON + 10— meaB) (80— )|
+ 2ap(MBX” — yf(x), X" = Xp41)
< [ourbling =711+ (@ = ran) g —x°1]
+ 2a,(nBx* —yf(x*), x* — Xxpt+1)
< [ anr—a5)] n — X1+ 20 (B — 967, X" — 0]
< [1 - anlr = 90)llxe = X712 + 20n (MBX” = YF(x7). X" = Xp1)
Thus, from lemma (2.3), it follows that ¥, — ¥* as n — oo, where b, = ap(7 —

ab), ap =[x, — x*||? and 0, = 20, (MBx* — Yf(x*), x* — Xpt1)

Case 2: Suppose that the sequence {Hxn - x*||} is monotonically increasing. Set W, :=

IX» — x*||? and 7 := N — N be a mapping for all n > ngy (for some ng sufficient large), by

Tp = max{k € N: k < n, W, <W,,1}. Then, T is a nondecreasing sequence, such that

Tp —» 00 as N — 00 and W,y < WT(,,)H} for all n > ng. Now, from (3.11), we have

(1= aryT)[ (1 = 82)(8n = B)lvr(n) = Sr() P+ (1= Ba)(Bo = Bty = Yo 2]
S QQT(H)M
(3.29)
nﬂ):r_]ooT(l_O‘T(n))[(l_e‘r(n))(e‘r(n)_B)”V‘r(n)_6T(n)H2+(1_B‘r(n))(ﬁ‘r(n) _5)HUT(n)_YT(n)”2] =0
Since (ﬁT(n), 97—(,,)) €(B,1) and niﬂgoinf’)q—(n)(l - ’YT(H)) > 0, we have
n“—>moo HUT(n) - y‘r(n)” =0 and n“—>moo HVT(n) - 5’r(n)” =0

With Vr(n) € Tl(s.,-(n) and Ur(p) € Tgy.,-(n), it follows that

nli—>moo d 6.,-(,,), T16.,-(n)) =0 and nli—>moo d(y.,-(n), TQyT(n)) =0
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Following the same argument in case 1, we conclude that

lim  sup(mBx™ —yf(x*), X" — Xr(py41) <0

T(n)—+o0
Therefore, for all n > ng,and from 3.29, we have

0< HX‘r(n)—‘rl - X*Hz - HXT(n) - X*||2 < O“r(n)[_O‘n(T - ryb)HX'r(n) - X*)”z

+ 20‘7’(n) <?7|3X* - ’Yf(X*), Xr(n)+1 — X*>

2 . i} .
B () i — )

Then we have lim |xq(,) — x*||? = 0. Therefore lim Wo (= lim Wy, =0.
n—00 n—o0 n—o00

HXT(n) - X*||2 <

Furthermore, for all n > ng, we have W,y < Wy (1 if n# 7(n) (that is n > 7(n),
because W; > W, 4, for T(h+1)<;<n
Hence, 0 < W, () < max {WT(,,), WT(n)+1} = W;(,)41. Therefore, W, — 0, as n—

oo and this implies that x, — x* as n — oo. This complete the proof.

O

Now using theorem (3.1), and multivalued mappings are nonexpansive mappings with convex

values without demiclosed assumptions in the following theorem.

Theorem 3.2. Let H be a real Hilbert space and K be a nonempty, closed convex subset of H. Let
A : K — H be an a—inverse strongly monotone operator and let B : H — H be an k—strongly
monotone and L—Lipschitzian operator. Let f : K — H be an b—Lipschitzian mapping and
M : H — 2" be a maximal monotone mapping such that the domain of M is included in K. Let
T1,Tr : K = CB(K) be a multivalued B— demicontractive mapping and T3 : K — CB(K) be a
multivalued quasi-nonexpansive mapping such that Q :== Fix(T1)NFix(T2)NFix(T3)NS(M,A) # 0
and T1q = Toq = T3q9 = {q},Vq € Q. For given xo € K, let {x,} be generated by the algorithm:

[ 60 = (1 = XaA)x;

Yn:9n6n+(1_9n)vny Vp € T10p;

A

Zn = Bnyn + (1 _ﬁn)uny Un € Toyn; (330)

th = YnzZn + (1 - ’Yn)Wn: Wp € T3y,

L Xn+1 = P (apyf(xn) + (I — napB)ty)

where {Bn}, {vn},{0n} {\n} and {a} are real sequence in (0, 1) satisfying the following condi-

tions
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i): nli_}mooan:O Zan<oo
) lim inf(1—B,)(B,— ) >0 and lim inf(1—0,)(6,—B) > 0. (Bs.60) € (5. 1)
iii): limp—oo inf(1 —y5)vn) >0

2

2k L
Assume that 0 < n < T2 0 <vb< T, where T = n(k — 777) and the sequences defined in

(3.30), that is {x,} and {0,} converge strongly to unique solution x* € 2, which also solve the

following variational inequality:
(nBx* —yf(x*),x* —q) <0, VgeQ (3.31)

Proof. Since every multivalued nonexpansive mapping is quasi-nonexpansive and demicontractive,
then, the proof follows Theorem 3.10
O

Now using the same argument of the proof in theorem (3.1) in theorem (3.3), we achieved the
desired results. In theorem (3.3), we let 71 = Pr;, T2 = Pr, and T3 = Pr, without the assumptions
that T1g = Tog = T3 = {q}, Vg € Q

Theorem 3.3. Let H be a real Hilbert space and K be a nonempty, closed convex subset of H. Let
A : K — H be an a—inverse strongly monotone operator and let B : H — H be an k—strongly
monotone and L—Lipschitzian operator. Let f : K — H be an b—Lipschitzian mapping and
M : H — 2" be a maximal monotone mapping such that the domain of M is included in K. Let
T1,Tr : K — CB(K) be a multivalued B— demicontractive mapping and T3 : K — CB(K) be a
multivalued quasi-nonexpansive mapping such that Q .= Fix(T1)NFix(T2)NFix(T3)NS(M, A) #
0. For given xo € K, let {x,} be generated by the algorithm:

op = JIAM;(/ — MA)xp;
Yn:9n6n+(1_9n)vny Vp € T10p;
1 Zn = Bayn + (1 _ﬁn)uny Un € Toyn; (332)

th = YnzZn + (1 - ’Yn)Wn: Wp € T3y,

L Xn+1 = P (apyf(xn) + (I — napB)ty)

where {Bn}, {Yn}, {0n}. {\n} and {a} are real sequence in (0, 1) satisfying the following condi-

tions

(e, ¢]
i) lmoa,=0 Y ap<oo
n=0

n—oo
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ii): lim inf(1—6,)(B,—B) >0 and  lim inf(1—6,)(8,—B) >0, (By.6) € (8.1)

iii): limpy_e0 inf(1 = v,)vn) > 0
2k L2n

Assume that 0 < n < 5.0 <7b<T, WherET:n(k—T), and | —Pr,, | — Py, and |- Pr,

are demiclosed at origin. Hence, the sequences defined in (3.32), that is {x,} and {6,} converge

strongly to unique solution x* € S, which also solve the following variational inequality:

(MBx* —yf(x*),x*—q) <0, VgeQ (3.33)

4. CONCLUSION

The modified general viscosity iterative process presented in this research offers a powerful tool
for solving variational inclusion and fixed point problems involving and and fixed point problem with
respectively set-valued maximal monotone mapping and inverse strongly monotone and multivalued
quasi-nonexpansive and demicontractive operators. Our Theorem presents a new and a modified
algorithm for solving simultaneously variational inclusion problem and fixed point problem with
respectively set-valued maximal monotone mapping and inverse strongly monotone and multival-
ued demicontractive and quasi-nonexpansive mappings. The result we show here improves and
extends the corresponding results of some authors and many other recent results using forward-
backward splitting method and general iterative algorithm that gives a strong convergence to a

unique solution.
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