©2022 Ada Academica
Eur. J. Math. Anal. 2 (2022) 2

doi:
On Geometric Constants for Discrete Morrey Spaces
Adam Adam, Hendra Gunawan®
Analysis and Geometry Group, Faculty of Mathematics and Natural Sciences,
Bandung Institute of Technology, Bandung 40132, Indonesia
adam_adam@students.itb.ac.id, hgunawan@math.itb.ac.id
*Correspondence: hgunawan@math.itb.ac.id
ABSTRACT. In this paper we prove that the n-th Von Neumann-Jordan constant and the n-th James
constant for discrete Morrey spaces £5 where 1 < p < g < oo are both equal to n. This result
tells us that the discrete Morrey spaces are not uniformly non-£1, and hence they are not uniformly
n-convex.
1. INTRODUCTION
Let n > 2 be a non-negative integer and (X, || -||) be a Banach space. The n-th Von Neumann-

Jordan constant for X [6] is defined by

Y illm £ £k
201y iy lluillx
and the n-th James constant for X [7] is defined by

C/(\/HJ)(X):SUD{ :u,-;éO,/':l,2,...,n]»

Note that in the definition of C,(V”J)(X), the sum ) is taken over all possible combinations of +
signs. Similarly, in the definition of CS”) (X), the minimum is taken over all possible combinations
of £ signs, while the supremum is taken over all u;’s in the unit sphere Sx = {uv € X : ||u|| = 1}.
These constants measure some sort of convexity of a Banach space.

We say that X is uniformly n-convex [2] if for every € € (0, n] there exists a § € (0, 1) such that
for every uy, up, ..., uy € Sx with ||ug & up £ - -+ £ uy|| > € for all combinations of =+ signs except
for ||ug + o + -+ + up

, we have
luy + w2 + -+ upll < n(1 = 0).
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Meanwhile, we say that X is uniformly non-£% [1,5,8] if there exists a § € (0, 1) such that for every

ui, s, ..., up € Sx we have
min ||ug £ up £ -+ £ up|| < n(1=9).

Note that for n = 2, uniformly non-£} spaces are known as uniformly nonsquare spaces, while for
n = 3 they are known as uniformly non-octahedral spaces. One may verify that if X is uniformly
n-convex, then X is uniformly non-£} [2].

Now a few remarks about the two constants, and their associations with the uniformly non-£%

and uniformly n-convex properties.

o 1< C,(VHJ)(X) < n and C,(\,nJ)(X) =1 if and only if X is a Hilbert space [6].

e 1< C(X) < n 1 dim(X) = oo, then /A < C{(X) < n. Moreover, if X is a Hilbert
space, then CS”)(X) =/n[7]

e X is uniformly non-£} if and only if C,(\,”J)(X) < n[6].

e X is uniformly non-£} if and only if CS”)(X) < n|7].

The last two statements tell us that if C,(\,"J)(X) =nor CSH)(X) = n, then X is not uniformly non-£%
and hence not uniformly n-convex.
In this paper, we shall compute the value of the two constants for discrete Morrey spaces. Let

w:=NuU{0}and m= (my, m, ..., my) € Z9. Define
5rn,N = {k € Zd : Hk - mHoo < N}

where N € w and ||m||ec = max{|m;| : 1 </ < d}. Denote by |Sp, | the cardinality of S, y for
m € Z9 and N € w. Then we have |S,,, y| = (2N + 1)“.
Now let 1 < p < g < co. Define £ = £5(Z9) to be the discrete Morrey space as introduced

in [3], which consists of all sequences x : Z¢ — R with

1
p

1_1
g = swo ISmal (3 ) <o
mGZd,NEUJ kesm/\/

where x := (xx) with k € Z9. One may observe that these discrete Morrey spaces are Banach
spaces [3]. Note, in particular, that for p = g, we have £ = £9.

From [4] we already know that Cp,(£f) = C,(£5) = 2 for 1 < p < g < oo, which implies
that £5 are not uniformly nonsquares for those p's and ¢'s. In this paper, we shall show that
C,(\,HJ)(ZZ) = Cﬁn)(ZZ = nfor 1 < p < g < oo, which leads us to the conclusion that £ are
not uniformly non-£} for those p's and g's, which is sharper than the existing result. (If X is not

uniformly non-£%, then X is not uniformly non-£-_,, provided that n > 3.)
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2. MaIN REsuLTs

The value of the n-th Von Neumann-Jordan constant and the n-th James constant for discrete
Morrey spaces are stated in the following theorems. To understand the idea of the proof, we first

present the result for n = 3.
Theorem 2.1. For 1 < p < g < oo, we have C,(\,g’J)(ZZ(Zd)) = CS3)(£’Z(ZC’)) =3.

Proof To prove the theorem, it suffices for us to find x(1), x(?), x(3) € £5 such that

> X £ xB) £ XxB)|7,
a _

3 .
223 g XDl

for the Von Neumann-Jordan constant, and
min [|xV + x® + X(3)||e’; =3

for the James constant.

Case 1: d = 1. Let j € Z be a nonnegative, even integer such that j > 435 — 1, or equivalently
G4nih <4t

Construct x(V, x(2) x(3) € ¢8(7Z) as follows:

o x(1) = (xﬁl))kez is defined by

X(l) . 1, k:O,_j, 2_/, 3_/,
=
0, otherwise;

o x(@ = (xﬁz))kez is defined by

1, k=0,/,
X =31 k=2/3)
0, otherwise;
o x(3) = (XIE3))/<€Z is defined by
1, k=002
) =1-1, k=3

0, otherwise.
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The three sequences are in the unit sphere of £5(Z). Indeed, for the first sequence, we have

1
1_1 P
W = sup (St )

mezZ,New KESm

1
1_1 P
= sup Sl p( > IXﬁl)l”)

mezZn[0,3j], NEZN[0,3//2] Kes

. 1_1 1 . 1_1_1 . 1_1 1
:maX{l,(j+1)q p2p,(2j+1)q D3P’(3j—|-]_)q p4p}_

Since (3j + 1)%_% < (2j+ 1)%_% < (+ 1)%_% < 4_%, we get ||X(1)||eg = 1. Similarly, one may
observe that ||X(2)||eg = ||X(3)||eg =1

Next, we observe that

3, k=0,

1, k=/,2j
X,El) + X,EQ) + X,E3) = 3

-1, k=3

0, otherwise;

3, k =/,

1, k=0,3j,
x,El) + X,Ez) - X,E3) = A

-1, k=2j

0, otherwise;

3, k =2j,

1, k=0,3j,
X,El) — X/E2) + xﬁg) = 3

-1, k=

0, otherwise;

3, k = 3/,

1, k=74 2j
DD )

-1, k=0,

0, otherwise.

We first compute that
XD +x) £ xO||,p = max{3, (j+1)77# (37 +1)7, (2j+1)7# (37 +2)7, (3 + 1)7#(3° +3)7 }.
Notice that

1 1
P

1
« GHDIE 1P < (242)7 < (37)r =3

-

1_1 1

. 1 . 1_1 1 3P+2 E
o (2j+1)a p(3P +2)p < (j+1)a (3P +2)5 < (T) <3
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o  (FHL)ITHEH3)F < (DT 3 < (22)7 <3

=

Hence, we obtain []x(1) + x(?) +X(3)||e'2, =3.

Similarly, we have

T

XD £ x@ & x|, = sup Sola o [ S P £xP £ xPP)" =3
7 mezn[0,3j],NeZN[0,3//2]

for every combination of £ signs.
Y. ||X(1)ix(2)ix(3)H2

22 ZI:l HX(’)ng

Consequently, = 3 and min|[xM) £ x@ + X(3)||ep = 3, so we come to the

conclusion that
Ch) (85(2) = €57 (25(7)) =3

Case 2: d > 1. Letj € Z be a nonnegative, even integer such that j > 46’<qu> — 1, which is

equivalent to
G+1)76 %) <47

We then construct x(1), x(), x(3) € ¢(79) as follows:

(1) _

(X( ))kezd is defined by

X, =
0, otherwise;

o x(2) = (X,Ez))kezd is defined by

1, k=1(0,0,..., 0),(,0,..., 0),
X, =1-1, k=1(25,0,..., 0),(3,0,..., 0),
0, otherwise;

o xB) = (X,E3))kezd is defined by

1, k=1(0,0,..., 0),(24,0,..., 0),
) =1-1, k=(,0,...,0).(340,...,0),
0, otherwise.
As in the case where d = 1, one may observe that

1
1_1
KOl = s [Snali 3 WP’

mGZd,NEUJ kesm,N
— max{1, (j + D@25, (2j + 1)E)35, (3] + 1) )4}
—1.
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We also get |\X(2)||eg = HX(3)”25 = 1. Moreover, through similar observation as in the 1-dimensional

case, we have

I £ x®) £ X3 =3
for every possible combinations of £ signs. It thus follows that
CS3)(£§(Z")) = sup{min [|x; = x> & x3([pz : X1, X0, X3 € Spp} =3

and
Y o x 0 £ xs]l%
eq

3
22) i ||Xi||e2

Cﬁf}(f‘é(zd))zsup{ :x,-;éo,/=1,2,3} =3

O

We now state the general result for n > 3. (The proof is also valid for n = 2, which amounts to
the work of [3])

Theorem 2.2. For1 < p < g < oo, we have C,(\,"J) (e5(z9)) = CS”)(KZ(Z")) =n.

Proof. As for n = 3, we shall consider the case where d = 1 first, and then the case where d > 1
later.

Case 1: d = 1. Let j € Z be a nonnegative, even integer such that j > 2("71)(?%) — 1, which is
equivalent to

(G+1)a s < =5

We construct x() e E’C’, e€Zfori=1,2,..., n as follows:

o x(1) = (xél))kez is defined by

1, kesH
0, otherwise,
where

S =40,4,20,3), ... (2" = 1)}

o x = (x) ez for 2 < i < nis defined by

1, ke Sg’),
Xii): -1, kes(_')l,
0, otherwise,

with the following rules: Write P = {0,,2j, ..., (2"*1 — 1)/} as

P=PPuPu.-uP,
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where Pl(/) consists of the first %7—:11 terms of P, PQ(i) consists of the next %7—:11 terms of P,
and so on. Then Sgi) and 59)1 are given by
s =pPPupPPu---uPy,
SO =pPPUPIU-uPY,

For example, for i = 2, x(2) = (xlgz))kez is defined by

1, kes?,
X =1-1 kes?,
0, otherwise,

where

S CIEE (i 1)}

Note that the largest absolute value of the terms of x() in the above construction will be
equal to 1 for each i =1,..., n. Next, since the number of possible combinations of &£ signs in
x4+ x2) 4 ... 4 x(M {5 27=1 the above construction will giveus 14+ 14---+1=n as the
largest absolute value of x(1) 4+ x(2) £ ... 4 x(") for every combination of + signs. This means that,
if x(U £ x® ... £ x(M = (x) ez, then max Ixk| = n.

Let us now compute the norms. For x(l), we have

1

(1) o 1_1 (1) p) P
X p = sup Sm’/\/ q P E X

cw KESm N

1_1
= sup |Sm.n| @ P( > IXﬁl)l”)

meZN[0,(2n—1—1);], NEZN[0,(271—1);/2]

. 111 1.1 1 n—1 . 1.1 -1
=max{1l,(j+1)e »2r,(2j+1)a »3p,..., (2" =1)j+1)a 2% }.

Foreachr=1,2,..., 271 — 1, we have (rj+ 1)%7% <+ 1)%7% and (r + 1)% < 2%, so that

~~
-y
_|._
=
N—
Qlm
|
T
—~
=~
+
=
N—
T
IN
<
_|._
—
N—
Qe
|
T
N
|
N
N
|
°|
N
°|
I
[y

Hence we obtain ||X(1)||eg = 1. Similarly, one may verify that

@y = g =+ = g = 1.
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Next, we shall compute the norms of x(1) £ x() ... £x( Write x(U +x@ ... 4 x(" = (x)kez

where
'al, k=0,
a, k =J,
as, k =2,
Xk = 3
an-1, k= (2"t —1)j
0, otherwise,
with a1 = nand |aj| <nfori=2,3,..., (2”*1)1'. Accordingly, we have

1
XD +x® 4 x| = sup |5m,N|é—i( > |xk|P)p
/ meZ,New k€SN

1
1 1 P
_ sup Sl ( 5 w)

mezZn[0,(2-1—1)], NEZN[0,(27~1—1);/2] Keso

. 1_1 1 11 1
:max{n,(1+1)q p(nP 4 a8)p, (2/ +1)a »(nP + a5 + a&5)»,

3

2n71

(@ )+ ) R (P4 Y )
=2

T =

Since (rj + 1)%_% <({U+ 1)%_% foreach r=1,2,..., 2n=1 _ 1 we obtain

. 11 o 11 Lo
(rj+1)a P(np—i—Za,’-’)P <(G+1)9 p(np+Zaf’)P
i=2 i=2
(1) r+1

<270 (P+) )
i=2

(n—

1) 1
> (P4 nP+---+nP)p
r 41 times

T

<2

_(n-1) 1 1
=277 (r+1)r(nP)»

It thus follows that
||X(1) +x@ 4y X(n)He" = n.
q

As we have remarked earlier, the largest absolute value of x(1) 4+ x(2) £ ... 4 x(") is equal to

n for every combination of & signs. Moreover, it is clear that for k ¢ {0,2/, ..., (2”_1 — 1)/}, the
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k-th term of x(1) £ x(2) 4 ... £ x(") is equal to 0. Hence, we obtain

XD £ x@ 4. 4 x| = sup |Sm,,\,|%’% Z |X,E1) j:xlgz) £ j:x,gn)|p)
7 meZ,New KES N

=

= sup |Sm,,\,|é_% Z |x£1)j:x,((2)j:---jzx,gn)|p)p =n.
meZn[0,(2n—1—1),],NeZn[0,(2"~1-1),/2] KESm

Consequently, we get

(1) 4 52 4 ... 4 x(M2 _
Yo x xS £ x ||Z,5_2n 1,2

2m=1y Ly Ixille - 2nin

=n

and

min [|xM £ x® + ...+ X(n)HZg =n,

whence
c\epz)) = cwe(z)) = n.

Case 2: d > 1. Here we choose j € Z to be a nonnegative, even integer such that j >

203G — 1 o, equivalently,

G+1)%G ) <275

Then, using the sequences
X0 = (M ez € (Z), i=1.....n,
in the case where d = 1, we now define x(/) := (X,Ej))kezd S ZZ(Zd) fori=1,..., n, where

(i _
0 _ ) k= (k,0,0...,0)
=
0, otherwise.
We shall then obtain
) (ep(z)) = ) (e2(2)) = n,

as desired. ]
Corollary 2.2.1. For 1 < p < q < oo, the space £4 is not uniformly non-£1.

Corollary 2.2.2. For 1 < p < q < oo, the space £5 is not uniformly n-convex.
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