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ABSTRACT. We consider infinite dimensional extension of affine models as super Levy processes sat-
isfying a nonlinear SPDE. We obtain the asymptotics of the conditional least squares estimators.

Finally we obtain the Berry-Esseen inequality.

1. Introduction and Preliminaries

Parameter estimation in finite dimensional diffusions is now classical. Bishwal [7] studied a new
estimating function for discretely sampled diffusions. Bishwal [8] studied asymptotic theory of like-
lihood method and Bayesian method for drift estimation of finite dimensional stochastic differential
equations. Bishwal [12] studied applications of Levy processes in stochastic volatility models in
finance. Bishwal [13] studied parameter estimation for SPDEs driven by cylindrical stable pro-
cesses. Bishwal [0] studied the Bernstein-von Mises theorem and spectral asymptotics of Bayes
estimators for parabolic SPDEs when the number of Fourier coefficients becomes large. In this
case, the measures generated by the process for different parameters are sinqular. Bishwal [11]
studied Bernstein-von Mises theorem and small noise Bayesian asymptotics for parabolic stochas-
tic partial differential equations. Bishwal [10] studied hypothesis testing for fractional stochastic
partial differential equations with applications to neurophysiology and finance.

Consider the nonlinear SPDE

dX(t, x) = %AX(t,x)dt—l—\/X(t,x)dW(t,x) (1.1)

where W(t, x) a cylindrical Brownian motion. Konno and Shiga [26] studied the existence and
weak uniqueness of the above equation as a martingale problem for the associated super-Brownian
motion. The pathwise uniqueness of nonnegative solution still remains open. The main difficulty
comes from the unbounded drift coefficient and non-Lipschitz diffusion coefficient. Wang et al. [39]

studied a comparison theorem and showed that the solution of the nonlinear SPDE is distribution
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function valued. They also established pathwise uniqueness. As application they obtained well-
posedness of martingale problems for two classes of measure-valued diffusions: interacting super-
Brownian motions and interacting Fleming-Viot processes. He et al. [21] obtained pathwise unique
solution to nonlinear SPDE with super Levy process, which is a combination of space-time Gaussian
white noises and Poisson random measures which is a generalization of work of Xiong [40] where
the result for a super-Brownian motion with binary branching mechanism was obtained. Using
an extended Yamada-Watanabe argument, Xiong [40] established strong existence and uniqueness
of the solution to the SPDE. Super-Brownian motion (SBM), also called the Dawson-Watanabe
process introduced by Dawson and Watanabe is a measure valued process arising as the limit of
empirical measure process of a branching particle system. SBM satisfies a martingale problem.
When the state space is R, SBM has a density w.r.t. Lebesgue measure and this density valued
process X(t, x) satisfies the above SPDE. When the space R is s single point, the SPDE becomes
an SDE which is CIR diffusion d X; = +/X;dW; whose uniqueness is established using the Yamada-
Watanabe argument. Xiong and Yang (2019) studied existence and pathwise uniqueness to an
SPDE with Hélder continuous coefficient driven by a-stable colored noise. The existence of the
solution is shown by considering the weak limit of a sequence of SDE system which is obtained by
replacing the Laplacian operator in the SPDE by its discrete version. The pathwise uniqueness is
shown by using a backward doubly stochastic differential equation to take care of the Laplacian.
In the case of d = 1, the pathwise uniqueness of a nonnegative solution to the corresponding
equation was established by Yang and Zhou [42] for 1 < a < /5 — 1 and pathwise uniqueness for
VE—1<a<?2isstil open.

The existence and pathwise uniqueness of solutions to the SDEs with non-Lipschitz coefficient
driven by spectrally positive Levy processes were studied in Fu and Li [20].

Consider the SPDE with multiplicative noise:
dul(t, x) = (Ao + 0A1) P (t, x)dt + MuP(t, x)dZ(t,x), t >0, x € [0,1] (1.2)

where M is a known nonlinear operator.

Priola et al. [32] obtained exponential convergence to the invariant measure, in the total variation
norm, for solutions to SDEs driven by a-stable noises in finite and infinite dimensions using two
approaches: Lyapounov’s function approach by Harris and Doeblin’s coupling argument. In both
approaches irreducibility and uniform strong Feller property play crucial role.

Equation (1.2) is called diagonalizable if Ap, Ay and M have point spectrum and a common
system of eigenfunction {h;,j > 1}. Denote by pi, vx and i, the eigenvalues of the operators

Ap, A1 and M respectively. Then
Wt x) =) ujeh;. (1.3)
j=1

We consider fractional stable CIR model as example.
Using fractional Levy process as the driving term, maximum quasi-likelihood estimation in frac-

tional Levy stochastic volatility model was studied in Bishwal [9].
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Fractional Levy Process (FLP) is defined as
1 H—1/2 H—1/2
Myt = ———< t—-s —(=s dLs, teR 1.4
= e Ll o L (14)

where {L;, t € R} is a Levy process on R with E(L;) =0, E(L?) < co.
Here are some properties of the fractional Levy process:
1) the covariance of the process is given by
E(L3)
2[(2H + 1) sin(mH)

cov(Mp,e, Mp,s) = (127 + |s|?7 — [t — s[*"]. (1.5)

2) My is not a martingale. For a large class of Levy processes, My is neither a semimartingale.
3)My is Holder continuous of any order 3 less than H — % 4) My has stationary increments. 5)
My is symmetric. 6) L is self-similar, but My is not self-similar. 7) My has infinite total variation
on compacts.

Thus FLP is a generalization and a natural counterpart of FBM. Fractional stable motion is a

special case of FLP.

2. Conditional Least Squares Estimation

Let H be a real separable Hilbert space with inner product (-) and norm | - |. By £L(#) we denote
the Banach space of bounded linear operators from # into H endowed with the operator norm
|- llz¢z)- We fix an orthonormal basis (e,) in H. Through the basis (e;) we will often identify H

in /2. More generally, for a given sequence p = (p,) of real numbers we set

/3 ={(xp) € R*: Zx,%p% < o0}
n>1

where R® = RN, The space /3 becomes a separable Hilbert space with the inner product: (x,y) =
2 i1 XnYnp2 for x = (xn),y = (yn) € /3. Let us fix 6p, the unknown true value of the parameter 6.
Let (2, F, P) be a complete probability space and Z(t, x) be a process on this space with values
in the Schwarz space of distributions D’(G) such that for ¢, 9 € C5°(G), ||¢||221(G) (W(t,-), o(+))
is a one dimensional stable process.

This process is usually referred to as the cylindrical a-stable process (C.S.P.), a € (0,2). We

assume that there exists a complete orthonormal system {h;}?2, in Lo(G)) such that for every
i=1,2,..., hi € Z§?(G) N C>=(G) and

/\gh,‘ = ,6,‘(9)h,‘, and ,Cgh/ = M/(@)h,‘ forall 0 € ©

where Ly is a closed self adjoint extension of A?, Ay := (k(68) — Lg)'/?™ k(6) is a constant
and the spectrum of the operator Ag consists of eigenvalues {3;(6)}°, of finite multiplicities and
i = 627 + k(6).
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A Levy process (Z;¢) with values in H is an H-valued process defined on some stochastic basis
(2, F, (Ft)t>0. P) having stationary independent increments, cadlag trajectories such that Zg = 0,
P-a.s. One has that

E[e/{%t*)] = exp(—t(s)), s € H
where ¥ : ‘H — C is Sazonov continuous, negative definite function such that 1(0) = 0. The

function 7 is called the exponent of (Z;).

The exponent ¢ can be expressed by the infinite dimensional Levy-Khintchine formula

P(s) = (Qs s) —i{a,s) — [H (e"<5vy> —1- 1i<_|‘_§'|§|>2 v(dy), seH

where Q is the non-negative trace class operator on H, a € H and v is the Levy measure or the
jump intensity measure associated to (Z¢).

Cylindrical a-stable process (C.S.P.) is a Levy process taking values in the Hilbert space H = /3,
with a properly chosen weight p.

Consider the linear SPDE

dXt = 0AXdt +dZy, x€H

C.S.P. Z(t) is a cylindrical a-stable process, a € (0,2) which can be expanded in the series
Z(t) = Zq,z,-(t)h,-, t>0
i=1

where {Z;(t)}%2, are independent, real valued, one dimensional, normalized, symmetric, a-stable
processes and ()72, is a given sequence of, possibly unbounded, positive numbers, and h; is a

fixed orthonormal basis in H. The latter series converges P-a.s. in H™% for a > d/2. Indeed
1Z@®)IEq 27,222 e =) 265>
i=1

and the later series converges P-a.s.
Forany jeN,t >0,
E[e/%(Oh) = e=tIhl

Stable one-dimensional density: A one-dimensional, normalized, symmetric a-stable distribution
e, @ € (0,2] has characteristic function
fa(s) =e % s e R.

The density of uy with respect to Lebesque measure will be denoted by p,. This even function
is known in closed form only if & = 1 or 2. The precise asymptotic behavior of the density
Pa, ¢ € (0,2) is as follows:

For any a € (0, 2), there exists C4 such that

Ca
Pa(X) ~ wail 95 X — 00.
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Stable measures on Hilbert space: A random variable £ on H is called a-stable (o € (0, 2]) if for
any n there exists a vector a, € H such that for any independent copies &1,&>2, ..., &, of & the
random variable n=Y(&; + &5, ... +&,) — a, has the same distribution as &. A Borel probability
measure 4 on H is said to be a-stable if it is the distribution of a stable random variable with
vales in H.

Consider the SPDE with multiplicative noise:
dul(t, x) = (Ao + 0A1) P (t, x)dt + MuP(t, x)dZ(t,x), t >0, x € [0,1] (2.1)

where M is a known nonlinear operator and Z(t, x) is a cylindrical subfractional Levy process.
Equation (2.1) is called diagonalizable if Ap, Ay and M have point spectrum and a common

system of eigenfunction {h;,j > 1}. Denote by pi, vx and pu, the eigenvalues of the operators

Ao, A1 and M respectively. Then t9(t, x) = > 21 Ujeh;.

Consider SPDE model with multiplicative noise and mean reversion, where the j-th Fourier

coefficient is the stable Cox-Ingersoll-Ross (SCIR) model:

duje = (a—Oue)dt +oull®dZ;,, j>1 (2.2)

where a is the mean reverting level and 8 is mean reverting speed. Recall that for o = 2, for every
J =1, the process Z;; is a standard Brownian motion, this is the famous Cox-Ingersoll-Ross (CIR)
model used for modeling interest rate, which is also used a stochastic volatility process in Heston
model. Note that there are Brownian CIR models with additive compound Poisson type jumps.
When 1 < a <2, Z;; is stable process with Levy measure
Vo(dz) = o[rl({iif)};il'

The discontinuous SCIR model captures the heavy tailed property in the sense of infinite variance.

(2.3)

There is empirical evidence from high frequency data available in support of application of pure
jump models in financial modeling.

The SCIR model has the unique stationary distribution o with Laplace transform given by

LM(A):/:Oe—m(dx):exp{—foA e } x> 0. (2.4)

af + oaza19
Now we focus on the fundamental semimartingale behind the CIR model. Define
ki 1= 2HT(3/2 — H)T(H +1/2), kn(t, 5) == ki (s(t — 5))2 ",

2HI(3 — 2H)M(H + 1) 1o t
NH ‘= F(3/2— H) 2 ve=vl = nH1f2 2Homy 3:/0 k(t, s)dM{'.

For using Girsanov theorem for Brownian motion, since a Radon-Nikodym derivative process is al-

ways a martingale, a central problem is how to construct an appropriate martingale which generates
the same filtration, up to sets of measure zero, as the non-semimartingale called the fundamental
martingale.

Extending Norros et al. (1999) it can be shown that M% is a martingale, called the funda-

mental martingale whose quadratic variation (M"); is v/’. Moreover, the natural filtration of the
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martingale M coincides with the natural filtration of the FLP M" since M}’ := [} K(t,s)d M}
holds for H € (1/2,1) where Ky(t,s) := H2H — 1)[; rH_%(r - s)H_%dr, 0 <s<tandfor
H = 1/2, the convention Ky, =1 is used.

Define Q;(t) := divt fot ky(t,s)ui(s)ds. It is easy to see that
Qi(t) = % {t2H—1Z,-(t) + fot rzH_le,-(s)} . Define the process Z; = (Z;(t),t € [0, T]) by
Zi(t) = [ ku(t, s)dui(s).

Extending Kleptsyna and Le Breton (2002), we have:
(i) Z; is the fundamental semimartingale associated with the process u;.
(i) Z; is a (Ft) -semimartingale with the decomposition Z;(t) = w;(6) fot Qi(s)dvs + B MY
(ii) u; admits the representation v;(t) = fot Ky (t,s)dZi(s). (iv) The natural filtration (Z;(t)) of
Z; and (U;(t)) of u; coincide.

We describe our observations now. Note that for equally spaced data (homoscedastic case)
Vi — Vi, = nt (2)T T Ke2H — (k—1)272H), k=1,2,--- ..
For H=0.5, vt, — v, , = 77,;1 (1)2_2H [k2=2H — (k —1)272H] = % k=1,2,..., n. We have

n

d (! d (!
Qi(t) = / kH(t,s)u,(s)ds:KHll s H(E — )V H yi(s)ds
dve Jo dve Jo

_ 1 d T _
_ KHl'f]thH 1dt/0 51/2 H(t—5)1/2 HLI,'(S)dS

t
_ _ d _ _
— K/Hl'nthH 1/0 a51/2 H(t—5)1/2 HLI,'(S)dS

t
= KﬁlnthH_lj st/27H(t — s)71/2=Hyi(s)ds.
0

The process Q; depends continuously on u; and therefore, the discrete observations of u; does not
allow one to obtain the discrete observations of Q;. The process Q; can be approximated by

n—1

ai(n) = kton?H 1 ZJUQ*H(” — )72 ).
j=0
It is easy to show that g;j(n) — Q;(t) almost surely as n — oo, see Tudor and Viens (2007).
Define a new partition 0 <n <n<n <---<fym =t k=12---,n Define

myg
- _ 1/2—H —1/2—
ai(t) = kgt Y 2, = )T () (= ), k=12, 0.
j=1
It is easy to show that g;(tx) — Q;(t) almost surely as my — oo for each k =1,2,---, n. We use
this approximate observation in the calculation of our estimators.
Applying It6's formula, for t > r > 0, we obtain
t t
g =e g, + a/ e t=s)gs + a/ e‘e(t_s)qjllédej,s, j>1. (2.5)
r r

Let the process be observed at {kh, k =0,1, ..., n} from a single realization {qj t > 0} for fixed

h. For simplicity, we take h = 1. This equation can be considered as a first order autoregressive
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(AR(1)) equation

Gk =P +YGk-1+ €k, J 21 (2.6)
where y =e % p=af"1(1—7) and
K
k=0 / e Mkg 7 k=1, > 1 27)
k—1 '
For B € B(R"), let
n n
S2n(B) =) Gu-r€ls(Gk-16kl). S1n(B) =) @i 1l8(qu-1). j>1. (2.8)
k=1 k=1
It is easy to see that
€k = Qk — E(QlFr—1), k=1, =1 (2.9)

is a sequence of martingale differences for every fixed J.
Let S1jp = 51,n(0,00), Szjn:=52,n(0,00) and recall that v = e ",
Then

Bin—6= S24n (2.10)
S1,j,n
where 8, is the conditional least squares estimator (CLSE) which minimizes
n n n
Y €= [k — E(@ulF-1)? =) gk — p— YGjk-1]> (2.11)
k=1 k=1 k=1

and are given by
o ke Dik—1 21 Gk — N i1 Gik—1Gjk

’y’ fry
S (ko1 Gk—1)2 —NY_jq qu,kfl
1< 1
Pin=" > Gk Yo D k-1,
k=1 k=1
~ A A ﬁnén
ijn = — |ogfyj,,,, din = ﬁ
n

Let (S1,S2) have the characteristic function given by

. . o¢ & . .
Elexp{iA1S1 + iX2So}] :=exp {_62F(a)/ E (1 - exp{/>\1y2 + />\2y(°‘+1)/°‘\/jvl})
- 0

=201y je—0(atl)/ay  \ (atl)/ay, d
x E |exp i —7 + s 2y )2 4 (2.12)
1— 26 (1 _ ee(a+1))1/a ya+1
and .
Vig = a/k 1 e k=) g=0(s—ktl)/agyz.  k=1,2, j>1 (2.13)

which are i.i.d. with the same distribution as
-0 _q 1/a
o 67 Zj 1
(x—1)0 ’
which is reqularly varying with index a. The limit distribution is normal only in the Gaussian case

o= 2.
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Following Li and Ma [28] it can be shown that for every fixed J, if we have 1 < a < (1++/5)/2,

then we have as n — oo
(d72S1jn C,7152,j,n)2>(51, S») on R?

where d, = n¥/® and ¢, = nletl)/a® — d,(,aﬂ)/a.
For the stable SPDE model, we have the following result on the consistency and the limit dis-
tribution of the CLSE:

Theorem 2.1 If we have 1 < a < (1 ++/5)/2, then for every fixed j > 1

a)
éj,n —P0as n— oo.
b)
1/a
2
1 2 A D g 52
ple=D/et@g,  — ) — (sz) S—las n— oo.

c) If in addition, lim;_, !uj} = 00, then for every fixed n > 1,
éj,n—>P9 as j — oo

and
lvi| (0 —0) >P o (n_("‘_l)/"‘Z)l/a % as j — oo.

1
where S; and S are defined in (2.12).

Remarks

1) The limit distribution in the case (1 ++/5)/2 < a < 2 is still open.

2) The process (X;) is exponentially ergodic and hence strongly mixing.

3) For the Gaussian case (a = 2), the limit results are based on ergodic theory and martingale
convergence theorem. For the non-Gaussian case (1 < a < 2), limit results are obtained by the
theory of reqular variation and convergence of point processes.

4) Let 0 < ov < 2 and let Z; be a one dimensional a-stable process with Levy measure v(dz).
Then as n — oo, nP(n~Y2Z, € ) =V tu(.).

We consider the Stable Cox-Ingersoll-Ross Model as an example. Xiong and Yang [41] studied

existence and strong uniqueness of the following SPDE:
dui(t) = (0vi + pr)u(t)dt + ok (i (1) /¥ dZi(t), k> 1.

The existence of the solution in the case of space-time white noise is shown by considering the
weak limit of a sequence of SDE systems which is obtained by replacing the Laplacian operator
in the SPDE by its discrete version. The weak uniqueness follows from the uniqueness of solution
to the martingale problem for the associated super-Brownian motion. In the case of a-stable noise

the existence and pathwise uniqueness of the solution is studied in Xiong and Yang [41].
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3. Interacting Particle Systems

First consider the fractional Cox-Ingersoll-Ross (FCIR) model
dY; = a(b—Y;)dt + o+/YedW/! (3.1)

where W/ is a fractional Brownian motion with Hurst parameter H > 1/2.

Then by Proposition 5.7 of Buchmann and Kluppelberg [15], we have
Ye = f(Xe) (3.2)

where
dX; = a(b—Xt)dt—i—thH, Xo = f’l(Yo), te[0,T] (3.3)

and f(x) = sgn(x)o?x?/4.
Let b=0, o0 =1 and a > 0. Then X; is described by the Ornstein-Uhlenbeck SDE

dX: = —aXedt + dWH, Xo = F71(Yp). (3.4)
For H = 0.5, let us consider maximum likelihood estimator (MLE) for the simple mean-field model
dX;(t) = aX;(t)dt — BXj(D) = Xn(£))dt + dWi(1), X;(0) = x(0), j=1.2,+ . n (35)

where X,(t)) = n~! Zf:l Xi(t), B # a, and o # 0. The middle term on the right side of (3.5)
can be viewed as an interaction among the subsystems which create a tendency for the subsystems
to relax towards the center of gravity of the ensemble. Thus the system provides a simple example
of a cooperative interaction. Mean-field type models have applications in physics, biology and
economics, see Dawson [19]. The case B8 = 0 corresponds to sampling independent replications of
Ornstein-Uhlenbeck processes on [0, T]. Our parameter here is 8 = (a, 3).

1

Suppose 3", x;(0) — 1o almost surely and 1 >y XJ-Q(O) — y2+12 almost surely as n — oo.

Then the estimator 8” —F 6 as n — oo and \/n(8" — 6) =P N(0,17*(T)) as n — oo

where
0= sy o)
with
e2Aa—B)T _ 1 T V2(e2@BT _ 1)

2
A(T) = %(eMT—lHB(T), B = =7 2a-p " 20-p

The case B = 0 corresponds to sampling independent replications of the same process given below:

dX;(t) = aX;(t)dt + dW,(t), j=1,2,---.n (3.6)
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In the classical case when B = 0, the MLE is given by
T
an > 1 Jo Xi(£)dX;(t)
= = .
> i1 Jo (Xi(0))2dt

Sampling n independent Ornstein-Uhlenbeck processes on [0, T] and letting n — oo give weak

consistency and asymptotic normality of the MLE: @” —" a and v/n(@"—a) —P N(0, ﬁ)
0
as n — oo. See also Bishwal (2010) for independent sampling case.
For H > 0.5, let us consider maximum likelihood estimator (MLE) for the fractional mean-field

model
dX;(t) = aX;(£)dt — BX,(£) — Kn(£))dt + dWH(2), X,(0) = x(0), j=1.2,.n (3.7)
where X,(t)) = n~tY_1L) X(t), B# a, and a # 0.

The case B = 0 corresponds to sampling independent replications of the same process given

below:
dX(t) = aX;(t)dt + dW/(t), j=1,2,---,n (3.8)
First consider the FCIR model
dY;(t) = a(b = Y;(t))dt + oy /Y;()dW/ (t), j=1,2,---.n (3.9)

where WJ-H(t) is a fractional Brownian motion with Hurst parameter H > 1/2.

Then by Proposition 5.7 of Buchmann and Kluppelberg [15], we have
Yi(8) = SX(1)) (3.10)
where
dX;(t) = a(b — X;(t))dt + dWH (1), X;(0) = S7X(%(0)), t€[0,T], j=1,2,---,n (3.11)

and S(x) = sgn(x)o?x2/4. Here S is the state space transform.
Let b=0, 0 =1 and a > 0. Then X(t) is described by the Ornstein-Uhlenbeck SDEs

dX;(t) = —aX;(t)dt + dW/ (1), X;(0) = SH(Y;(0)), j=1,2,---.n (3.12)

Consider the model of n interacting particles of fractional diffusions satisfying the 1t6 stochastic

differential equations

p
dX,(8) = Y Bm(X(8) + oy (X(O)AWI(B), j=1,2,-- ., (313)

=1
where X(t) = (X1(t), Xo(t), -, Xu(t)) and (V\/J-H(t); t>0), j=12---,n are independent
fractional Wiener processes. Here 8)(-) € L2([0,T],dt), /=1, ..., p are unknown functions to be
estimated based on observation of the process X in the time interval [0, T]. Let 6 = (64,62, ..., 6p)

and uj(x) = (uj1(x), wjz(x), ..., Kjp(x))’. The processes Xj(t),j = 1,2,---,n are observed on
[0, T].
The functions j,0j; j=1,2,---,nare assumed to be known such that the system has a unique

solution.
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We need the following assumption and results to prove the main results.

(AO) Suppose that bj; = uj,(s)afl(s);j =1,2---,n1=12...,p are measurable and adapted

processes satisfying
1 [°
- Z/O bii(S)bjm(s)ds — cim(t) a.s. as n — oo
j=1

I,m=1,2..., p where ¢,(t) are finite and continuous nonrandom functions of t € [0, T]. The

and /(0) = 0.

In the exchangeable case, (A0) follows from McKean-Vlasov Law of Large Numbers. In particular,
(AO) will be satisfied when pj(X) = /. Xj and 0;(X) = o(X;) which corresponds to the independent
replicated sampling on [0, T]. See Oelschlager [29].

We also need the following version of Rebolledo’s Central Limit Theorem for Martingales, see
Rebolledo [34]:

Theorem 3.1 Let My, n € Z. be a sequence of locally square integrable martingales with M,(0) =
0. Suppose the following condition holds: ngtE{lAMn(s)|2l(|AMn(5)| > €)} — 0 for all
t€[0,T], €>0; and (Mp,)(t) — c(t) as. for all t € [0, T], where c(t) is a continuous increasing
function with c(0) = 0. Then M, =P M, a continuous Gaussian martingale with zero mean and
covariance function K(s,t) = c(sAt),s, t € [0, T] where AMs = Ms — Ms_ denotes the jump of
M at the point s.

The model is given by

p
dXj(t) =Y 6i(X(1)) + o;(X(0)aW/ (1), j=1,2,--- . n (3.14)

I=1
where X(t) = (X1(t), Xo(t), -, Xn(t)) and (V\/J-H(t); t>0), j=12---,n are independent
fractional Wiener processes. Here 6 = (641,62, ..., 6p) is the unknown parameter. The functions
Wi, 0j,J=1,..., ml=1,..., p are assumed to be known such that there exists a unique solution

X(t) to the above SDE.

Our aim is to estimate the parameter 6 based on n particles gi(-), g2(+), -, gn(:) of g(t) on

[0, T]. We denote this data by g™7.
The Radon-Nikodym derivative (likelthood) is given by
T .
No(qT) == G (q"T) = exp{ P10 71 fo mi(a(t)a;?(a(t))dq;(t)

3.15
R DIND NI v uj/(q(t))af2(q(t))ujm(q(t))dt} : (319

4. Approximate Maximum Likelihood Estimation
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The approximate maximum likelihood estimator is defined as

6" = arg max No(g™T).

Extending Kasonga [24], using McKean-Vlasov Law of Large Numbers and Rebolledo’s Central

Limit Theorem for Martingales, we obtain the consistency and asymptotic normality of the approx-

imate maximum likelihood estimator 8" which is given below:

Theorem 4.1 Under (A0), we have a) " —F 6 as n — cc.
b) v/n(0" — 6) =P N(0,17X(T)) as n — oo where I(T) is the Fisher information.

5. Berry-Esseen Inequality
In this section we consider the case H = 0.5 and o = 2, i.e., the standard Brownian motion case.

dX;(t) = £(6, X (1)) + o;(X(£))dW;(t), X;(0) = XP, j=1,2,---,n

We assume the following conditions for j =1,2,---, n:

(A1) 158,01 < a(O)(L +1x)),  15(8.x) — 58.0)] < a(O)}x — .

(A2) 158, %) — (6, ) < bi(x)|6 — ¢ for all 6,¢ € ©,x,y € R
where supgeg |aj(0)] = a < oo, E|bj(XJQ)|r < oo for any integer r.

(A3) The diffusion process X is stationary and ergodic with invariant measure v, i.e, for any g,
with E[g;(-)] < oo, + =121 9i(Xy) = Eu[g(Xo)] as. as n— oo and h — 0.

(A4) supysg E[X;(t)]" < oo for all r > 0.

(A5) E|7§-(9,XJQ) - 73(90,XJQ)|2 =0 iff 6 = 6p.

(AB) f; is twice continuously differentiable function in x for all 6.

(A7) f;(-,x) and all its derivatives are three times continuously differentiable with respect to 6
for all x € R. Moreover, these derivatives upto third order with respect to 6 are of polynomial
growth in x uniformly in 6.

The Fisher information is given by 0 < /(0) := ffooo(ﬁ’(é,x))2du(x) < oo and for any 6 > 0, or
any compact © C ©,

inf_sup  Eg,|f/(6, Xo) — f{ (60, X;(0))]> > 0.
80€© |9—0g|>5

(A8) The Malliavin covariance of the process is nondegenerate.

Let fi = uj/oj, j=1,2,---,n. The model is given by

p
aXx(t) = ZQ/,U«J'/(X(t)) + 0, (X(t))dW;(t), j=1,2,---,n.
=1
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The Radon-Nikodym derivative (likelihood) is given by

LOXIT) 1= G(XNT) = exp { 20, 0 5, o win(X(£)o 2(X(£)dXs(t)
P T 0m s J i (X(£)0 2 (X ()i (X (£))dt}

We observe the process {X;} at times 0 = tog < t; < -ty = T with t; — tj_; = % =hi=
1,2---,n. We assume equispaced sampling for simplicity with T being fixed, m — co and n — oc.

The dataset is n particles X1(-), X2(+), -+, Xp(-) of X(t) on [0,T]. The approximate log-
likelihood based on observations X;(t1), Xj(t2), ..., Xi(tn), j=1,2,--- ,nwith t; =iT/m=ih

is defined as

Knm(8) = 211013 71 210y llljl(X(tifl))o'f2(X(tifl))(Xj(ti) - Xj(ti—1)
— 3y Y g 000k Y 2 (X (tim1)) o A (X (1)) (X (8i-1)) (8 — tica).

We start with some preliminary lemmas. The first lemma is from Michel and Pfanzagl (1971)

which will be needed to prove our main results.

Lemma 5.1 Let £, ¢ and n be any three random variables on a probability space (2, F, P) with
P(n > 0) = 1. Then, for any € > 0, we have

(a) sgﬂglP{£+{ <x}p—o(x)] < Sgﬂg\P{é <x} = @)+ P(C > €) + e

w>w$ﬂis@—¢wnSw@meﬁ—¢wn+mm—u>@+e

The strong rate of convergence of particle approximations of McKean-Vlasov SDEs with Lipschitz
coefficients is O(n~1/2) where n is the number of particles. This rate is driven by the statistical
error. The bias is of the order O(n™!). Talay and Tubaro [37] showed that for smooth coefficients
the the weak error is O(h). Bencheikh and Jourdain [2] showed that weak error between a SDE
with nonlinear in the sense of McKean given by moments and its approximation by the Euler
discretization with time step h of a system of n interacting particles is O(n~! + h).

From Talay and Tubaro [37] and Bencheikh and Jourdain [2], we have

Lemma 5.2 Let fj = pu;/0;. Then
T .
sup [E[fi(X{)] — E[(XPM < C—, j= 1.
ten m

The following lemma follows from Yoshida [43, 44].

Lemma 5.3 Let /,(0) := ﬁ Zf:l OT MJZ-(G, X¢)dt. Then under the conditions (A1)-(A8),

sup E[1,(8) —1]> < Cn~ %,
6ce
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The following lemma follows from Theorem 1 in Yoshida [44].

Lemma 5.4 Let M, .= n}(Q ) er-'zl fOT 1j(00, Xt)dWs. Then under the conditions (A1)-(A8),
0

sup [Py, {M, < x} — ®(x)| < Cn~ /2,
x€ER
In this section, our main result is the following theorem.

Theorem 5.5 Under the conditions (A1)—(A8), we have

igﬂg‘PQO {\/W(Qm,n — ) < X} - <D(X)‘ =0 (n_m\/ T) :

m

Proof By Taylor expansion, we have
K;n,n(@m,n) = K;n,n(eo) + (Om,n — QO)K;;,n(ém,n)

where |9_m,n - 9! < |0m,n — Bol. Since K}, ,(6m.n) = 0, hence we have

1 / 1 n m / ) :
n1(80) (8m,n — 60) = — o mo®) s L b X AWy,
m,n - 1

”/(QO)K%,H(G_m,n) a mzjnzl Zlmzl /-‘LJ/'/(ém,n,thfl)At,' o Vin.n
Note that
1 nm 1 n m
Vin.n = (B Xe )AL = 1@ Xe )2At,
m,n n/(eo) ; ;l‘l’j ( m,n t,_l) n/(@o) J_Zl — /J'J( m,n t,_l)

Let limVj,, = Vi, in Lo as = — 0. Similar to Lemma 5.3, it can be shown that E(V, — 1)2 <

m

Cn~! (see also Pardoux and Veretennikov (2001) and Yoshida (2011)). It can be shown that
E(Vinn— Vp)? < C% (see Altmeyer and Chorowski (2018)). Hence

E(Vinn = 12 = El(Vin — Vo) + (Vg = D < C(n"\/ ).
Further by Lemma 5.1 (b), we have
sup | Ps {+/n1(0)(6mn — 0) < x} — o(x)|
x€ER
Py { 3”7'" < x} — d(x)

= sup
xeR m,n

= suﬂg [P {Umn < x} —O(X)| + Po{|Vinn—1| > €} +¢
S

R AVAE vl
C(n \/;)—i—e C(n \/E)—i-e.

IN
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since by Lemma 5.1 (a), Lemma 5.2 and Lemma 5.4, we have

sup [Py {Um.n < x} — d(x)|
xER

SUI@'PG{Mn < X} - CD(X)| + P9{|Um,n - Mn| > E} + €
X€

IN

Cn Y2 4 € 2E|Upmp— Ma® + ¢

IN

-
< CntPye?C—+e.
m

1/2

Choosing € = n™/~, we have the result. 0

Remarks We considered fractional Levy process driving term in this paper whose increments
are stationary. Using fractional Levy process as the driving term which include jumps, maximum
quasi-likelihood estimation in fractional Levy stochastic volatility model was studied in Bishwal [9].
Recently, sub-fractional Brownian (sub-FBM) motion which is a centered Gaussian process with

covariance function
1
Ch(s, t) =s2H 4 ¢2H — 5 [(s+t)* +[s—t]*"], s,t>0

for 0 < H < 1 introduced by Bojdecki, Gorostiza and Talarczyk [14] has received some attention
recently in finite dimensional models. The interesting feature of this process is that this process
has some of the main properties of FBM, but the increments of the process are nonstationary,
more weakly correlated on non-overlapping time intervals than that of FBM, and its covariance
decays polynomially at a higher rate as the distance between the intervals tends to infinity. It
would be interesting to see extension of this paper to sub-FBM case. We generalize sub-fBM to
Sub-fractional Levy process (sub-FLP).
Sub-fractional Levy process (SFLP) is defined as

1 H-1/2 H-1/2
SHt = ———< t— — (= dMs, teR
we = g S 9

where Mg, t € R is a Levy process on R with E(M;) = 0, E(M?) < oo and without Brownian
component. SFLP has the following properties:

1) The covariance of the process is given by

E[L(1)%]

_ 2H | 42H
Cov(SH,t, SHs) =sT" +1°7 + 2[(2H + 1) sin(mH)

[t + 1P — [t = s[?"].

2) Sy is not a martingale. For a large class of Levy processes, Sy is neither a semimartingale
nor a Markov process. 3) Sy is Hélder continuous of any order 3 less than H — % 4) Sy has
nonstationary increments. 5) Sy is symmetric. 6) Sy is self similar. 7) Sy has infinite total

variation on compacts.
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It would be interesting to investigate estimation in SPDE driven by subfractional Levy processes

which incorporate both jumps and long memory apart from nonstationarity.
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