A New Study on Generalized Reverse Derivations of Semi-prime Ring

Muhammad Naeem Abbas ${ }^{1, *}$, Mukhtar Ahmad ${ }^{1, *}$, Abdul Rauf Khan², Ather Qayyum ${ }^{3}$, Siti Suzlin Supadi ${ }^{3}$
${ }^{1}$ Department of Mathematics, Khawaja Fareed University of Engineering and Information Technology Rahim Yar Khan, Pakistan
itxmemuktar@gmail.com, naeemabbas995@gmail.com
${ }^{2}$ Department of Mathematics, Ghazi University, D.G.Khan, Pakistan
arkhan@gudgk.edu.pk
${ }^{3}$ Institute of Mathematical Sciences, Universiti Malaya, Malaysia dratherqayyum@um.edu.my,suzlin@um.edu.my
*Correspondence: naeemabbas995@gmail.com, itxmemuktar@gmail.com

Abstract. The aim of this paper is to extend the ideas from Generalized reverse derivation to Generalized (α, β)-reverse derivations on Semi-prime ring. We prove that, if $0 \neq d$ be reverse derivation in R and a Generalized (α, β)-reverse derivation g, then g is β-strong commutative preserved. Next we can prove that R is commutative.

1. Introduction

The study of centralizing mapping of semi-prime rings given by Bell and Martindale [3]. Bell and Martindale [3] proved that $\left[d\left(u_{1}\right), u_{1}\right]_{\alpha, \beta}=0 \forall u_{1} \in B$, where $0 \neq d$ a derivation of R and R is semi-prime ring, then commutativity holds in R. Bell and Daif were studied the commutativity in prime and semi-prime rings that bind endomorphism or a derivation that preserves a β-strong commutativity on a non-zero ideal right in [2]. Further, Ali and Shah [1] extend some consequences for generalized derivation of Bell and Martindale [3]. Bresar established that, if $B \neq 0$ is left ideal in R a prime ring, and two mappings d_{1} and d_{2} are (α, β)-derivations in R satisfies $\left(d_{1} \alpha(a)-\beta(a) d_{2}\right) \in Z(R)$, for each $a \in B$, so commutativity holds in R [5]. Some properties are studied by Vukman in [12] and [4]. M. Samman and N. AL Yamani [8] studied reverse derivation on semi prime rings. They proved that the mapping $d: R \rightarrow R$ is central derivation iff it is reverse derivation and also that $d \neq 0$ a reverse derivation in semi-prime ring R, then the commutativity exists in R resently Mukhtar Ahmad et.al[9]. Later, the idea of revers derivation and some properties

Key words and phrases. Semi-prime ring; ideal; r-generalized reverse derivation; derivation; reverse derivation; r-generalized derivation and reverse derivation.
of reverse derivation were studied by Bresar and Vukman [4]. The aim of this paper is extention the notion of generalized reverse derivation to generalized (α, β)-reverse derivation resently Mukhtar Ahmad et.al[10]. A mapping $G: R \rightarrow R$ which associate with (α, β)-reverse derivation D is said to be a generalized (α, β)-reverse derivation if, $G\left(u_{1} v_{1}\right)=G\left(v_{1}\right) \alpha\left(u_{1}\right)+\beta\left(v_{1}\right) D\left(u_{1}\right)$ resently R . M. Kashif et.al[11].

2. Preliminaries

Throughout this paper,
Definition 2.1. Let R is ring and it is considered as a semi-prime ring iff for any $u_{1} ; u_{1} \neq 0$ such that $u_{1} R u_{1}=0$ implies $u_{1}=0$.

Definition 2.2. The additive mapping $d_{1}: R \rightarrow R$ is known as (α, β)-derivation, if $d_{1}\left(u_{1} v_{1}\right)=$ $d_{1}\left(u_{1}\right) \alpha\left(v_{1}\right)+\beta\left(u_{1}\right) d_{1}\left(v_{1}\right)$ hold $\forall u_{1}, v_{1} \in R$, where α and β are automorphism.

Definition 2.3. The mapping $d_{1}: R \rightarrow R$ is called a (α, β)-reverse derivation if $d_{1}\left(u_{1} v_{1}\right)=$ $d_{1}\left(v_{1}\right) \alpha\left(u_{1}\right)+\beta\left(v_{1}\right) d_{1}\left(u_{1}\right)$ holds $\forall u_{1}, v_{1} \in R$, where α and β are automorphism.

Definition 2.4. An additive mapping $H: R \rightarrow R$ be a right (left) generalized (α, β)-reverse derivation if there is a derivation d from R to R such that $H\left(u_{1} v_{1}\right)=H\left(v_{1}\right) \alpha\left(u_{1}\right)+\beta\left(v_{1}\right) d\left(u_{1}\right)\left(H\left(u_{1} v_{1}\right)=\right.$ $d\left(v_{1}\right) \alpha\left(u_{1}\right)+\beta\left(v_{1}\right) H\left(u_{1}\right)$ for all $u_{1}, v_{1} \in R$. H be a generalized reverse (α, β) of R associated with (α, β) derivation.

Definition 2.5. Some identities holds for every $u_{1}, v_{1}, w_{1} \in R\left[u_{1}, v_{1} w_{1}\right]=v_{1}\left[u_{1}, w_{1}\right]+\left[u_{1}, v_{1}\right] w_{1}$ $\left[u_{1} v_{1}, w_{1}\right]=\left[u_{1}, w_{1}\right] v_{1}+u_{1}\left[v_{1}, w_{1}\right]$ $\left[u_{1} v_{1}, w_{1}\right]_{\alpha, \beta}=u_{1}\left[v_{1}, w_{1}\right]_{\alpha, \beta}+\left[u_{1}, \beta\left(w_{1}\right)\right] v_{1}=u_{1}\left[v_{1}, \alpha\left(w_{1}\right)\right]+\left[u_{1}, w_{1}\right]_{\alpha, \beta} v_{1}$ $\left[u_{1}, v_{1} w_{1}\right]_{\alpha, \beta}=\beta\left(v_{1}\right)\left[u_{1}, w_{1}\right]_{\alpha, \beta}+\left[u_{1}, v_{1}\right]_{\alpha, \beta} \alpha\left(w_{1}\right)$

Definition 2.6. The derivation H would be commuting, if $0=\left[v_{1}, H\left(u_{1}\right)\right], \forall u_{1}, v_{1} \in R$.
Definition 2.7. The strong commutativity preserving is defined as $\left[g\left(u_{1}\right), g\left(v_{1}\right)\right]=\left[u_{1}, v_{1}\right]$ for all $u_{1}, v_{1} \in R$, where $g: R \rightarrow R$ is a mapping on R.

Lemma 2.8. Let $u_{1} \neq 0$ in Z (center of ring), if $u_{1}, v_{1} \in Z$, then $v_{1} \in Z$.
Lemma 2.9. Let $g: R \rightarrow R$ be an additive map and on a left ideal B of R, g is centralizing, then $g\left(u_{1}\right) \in R \forall u_{1} \in B \cup Z$.

Lemma 2.10. Let $0 \neq B$ be an ideal of a semi-prime ring R. If the set $[B, B]$ centralizes Z in R, then B centralizes Z.
2.1. Point-Wise Operation. Theorem 2.11. Suppose $0 \neq d$ from R to R a derivation in a semiprime ring R. Let generalized (α, β)-reverse derivation g on a left ideal $B \neq 0$ of R. Then g satisfies $\left[g\left(w_{1}\right), g\left(v_{1}\right)\right]=\beta\left(\left[w_{1}, v_{1}\right]\right)$ for all $v_{1}, w_{1} \in B$ (that is, g is β-strong commutativity preserved), when g is a homomorphism on B.

Proof. Since g is generalized (α, β)-reverse derivation and homomorphism on B, such that $g\left(u_{1} v_{1}\right)=g\left(u_{1}\right) g\left(v_{1}\right) \forall u_{1}, v_{1} \in B$.

This implies
$g\left(u_{1} v_{1}\right)=g\left(u_{1}\right) g\left(v_{1}\right)=g\left(v_{1}\right) \alpha\left(u_{1}\right)+\beta\left(v_{1}\right) d\left(u_{1}\right)$, for all $u_{1}, v_{1} \in B$.
We replace v_{1} by $v_{1} w_{1}$ where $w_{1} \in B$, in equation (1), we obtain
$g\left(u_{1}\right) g\left(v_{1} w_{1}\right)=g\left(v_{1} w_{1}\right) \alpha\left(u_{1}\right)+\beta\left(v_{1} w_{1}\right) d\left(u_{1}\right)$
this gives

$$
g\left(u_{1}\right) g\left(v_{1} w_{1}\right)=g\left(u_{1} v_{1} w_{1}\right)=g\left(v_{1}\right) g\left(w_{1}\right) \alpha\left(u_{1}\right)+\beta\left(v_{1} w_{1}\right) d\left(u_{1}\right),
$$

$$
\begin{equation*}
\text { for all } u_{1}, v_{1} \in B \tag{2}
\end{equation*}
$$

As g is homomorphism, so we get
$g\left(u_{1}\right) g\left(v_{1} w_{1}\right)=g\left(u_{1}\right) g\left(v_{1}\right) g\left(w_{1}\right)=g\left(u_{1} v_{1}\right) g\left(w_{1}\right)$
this equalized to
$g\left(u_{1} v_{1}\right) g\left(w_{1}\right)=\left(g\left(v_{1}\right) \alpha\left(u_{1}\right)+\beta\left(v_{1}\right) d\left(u_{1}\right)\right) g\left(w_{1}\right)$
this relates to
$g\left(u_{1} v_{1}\right) g\left(w_{1}\right)=g\left(v_{1}\right) \alpha\left(u_{1}\right) g\left(w_{1}\right)+\beta\left(v_{1}\right) d\left(u_{1}\right) g\left(w_{1}\right)$
By the equation (2), we get
$g\left(u_{1} v_{1}\right) g\left(w_{1}\right)=g\left(v_{1}\right) g\left(w_{1}\right) \alpha\left(u_{1}\right)+\beta\left(v_{1}\right) d\left(u_{1}\right) g\left(w_{1}\right)$, for all $u_{1}, v_{1} \in B$.
From equation (2) and equation (3), we obtain
$\beta\left(v_{1}\right) d\left(u_{1}\right) g\left(w_{1}\right)=\beta\left(v_{1}\right) d\left(u_{1}\right) \beta\left(w_{1}\right)$
this implies
$\beta\left(v_{1}\right) d\left(u_{1}\right)\left(g\left(w_{1}\right)-\beta\left(w_{1}\right)\right)=0$, for all $u_{1}, v_{1} \in B$.
Put $w_{1}=\left[w_{1}, v_{1}\right]$ in equation (4), we have
$\beta\left(v_{1}\right) d\left(u_{1}\right)\left(g\left(\left[w_{1}, v_{1}\right]\right)-\beta\left(\left[w_{1}, v_{1}\right]\right)\right)=0$,
we arrives to
$d\left(u_{1}\right) \beta\left(v_{1}\right)\left(g\left(\left[w_{1}, v_{1}\right]\right)-\beta\left(\left[w_{1}, v_{1}\right]\right)\right)=0$.
By replacing $\beta\left(v_{1}\right)$ by $\left(g\left(\left[w_{1}, v_{1}\right]\right)-\beta\left(\left[w_{1}, v_{1}\right]\right)\right) \alpha(r) d\left(u_{1}\right)$, we obtain
$d\left(u_{1}\right)\left(g\left(\left[w_{1}, v_{1}\right]\right)-\beta\left(\left[w_{1}, v_{1}\right]\right)\right) \alpha(r) d\left(u_{1}\right)\left(g\left(\left[w_{1}, v_{1}\right]\right)-\beta\left(\left[w_{1}, v_{1}\right]\right)\right)=0$,
it gives
$d\left(u_{1}\right)\left(g\left(\left[w_{1}, v_{1}\right]\right)-\beta\left(\left[w_{1}, v_{1}\right]\right)\right) R d\left(u_{1}\right)\left(g\left(\left[w_{1}, v_{1}\right]\right)-\beta\left(\left[w_{1}, v_{1}\right]\right)\right)=0$.
As R semi-prime, so we obtain
$d\left(u_{1}\right)\left(g\left(\left[w_{1}, v_{1}\right]\right)-\beta\left(\left[w_{1}, v_{1}\right]\right)\right)=0$,
since $d \neq 0$, we have
$g\left(\left[w_{1}, v_{1}\right]\right)-\beta\left(\left[w_{1}, v_{1}\right]\right)=0$,
we get
$g\left(\left[w_{1}, v_{1}\right]\right)=\beta\left(\left[w_{1}, v_{1}\right]\right)$

As g is homomorphism, so we have
$\left[g\left(w_{1}\right), g\left(v_{1}\right)\right]=\beta\left(\left[w_{1}, v_{1}\right]\right)$
So g is β-strong commutative preserved on B.
Theorem 2.12. Let g on a left ideal $B \neq 0$ of R, is generalized (α, β)-reverse derivation. If g is homomorphism on B, then on B, g is commuting.

Proof. By theorem 2.11, g is β-strong commutative preserved, then $\forall u_{1}, v_{1} \in B$, we get

$$
\begin{equation*}
\beta\left(\left[u_{1}, v_{1}\right]\right)=\left[g\left(u_{1}\right), g\left(v_{1}\right)\right] \tag{5}
\end{equation*}
$$

Replace $v_{1}=v_{1} u_{1}$ in equation (5) we have
$\beta\left(\left[u_{1}, v_{1} u_{1}\right]\right)=\left[g\left(u_{1}\right), g\left(v_{1} u_{1}\right)\right]$
$\beta\left(\left[u_{1}, v_{1}\right]\right) \beta\left(u_{1}\right)=\left[g\left(u_{1}\right), g\left(v_{1}\right)\right] g\left(u_{1}\right)$
By equation (5), we get
$\beta\left(\left[u_{1}, v_{1}\right]\right) \beta\left(u_{1}\right)=\beta\left(\left[u_{1}, v_{1}\right]\right) g\left(u_{1}\right)$
this implies

$$
\begin{equation*}
\beta\left(\left[u_{1}, v_{1}\right]\right)\left(g\left(u_{1}\right)-\beta\left(u_{1}\right)\right)=0 . \tag{6}
\end{equation*}
$$

Now put $v_{1}=u_{1} v_{1}$ in equation (5) we have
$\beta\left(\left[u_{1}, u_{1} v_{1}\right]\right)=\left[g\left(u_{1}\right), g\left(u_{1} v_{1}\right)\right]$
$\beta\left(u_{1}\right) \beta\left(\left[u_{1}, v_{1}\right]\right)=g\left(u_{1}\right)\left[g\left(u_{1}\right), g\left(v_{1}\right)\right]$
By equation (5), we have
$\beta\left(u_{1}\right) \beta\left(\left[u_{1}, v_{1}\right]\right)=g\left(u_{1}\right) \beta\left(\left[u_{1}, v_{1}\right]\right)$
this implies

$$
\begin{equation*}
\left(g\left(u_{1}\right)-\beta\left(u_{1}\right)\right) \beta\left(\left[u_{1}, v_{1}\right]\right)=0 . \tag{7}
\end{equation*}
$$

Put $v_{1}=r_{1} v_{1}$ in equation (6), we have
$\beta\left(\left[u_{1}, r_{1} v_{1}\right]\right)\left(g\left(u_{1}\right)-\beta\left(u_{1}\right)\right)=0$,
this implies
$\beta\left(\left[u_{1}, r_{1}\right]\right) \beta\left(v_{1}\right)\left(g\left(u_{1}\right)-\beta\left(u_{1}\right)\right)=0$,
we get
$\beta\left(\left[u_{1}, r_{1}\right]\right) B\left(g\left(u_{1}\right)-\beta\left(u_{1}\right)\right)=0$,
also that
$\beta\left(\left[u_{1}, r_{1}\right]\right) R B\left(g\left(u_{1}\right)-\beta\left(u_{1}\right)\right)=0$,
By semi-primeness of R, there exist a family $w=\left\{P_{\theta} / \theta \in \Lambda\right\}$ of prime ideals such that $\bigcap P_{\theta}=$ 0 .If w has a member P and $u_{1} \in B$, then last relation, we get, $B\left(g\left(u_{1}\right)-\beta\left(u_{1}\right)\right)$ not in P or $\left[\beta\left(u_{1}\right), R\right] \subseteq P$. If $\exists v_{1} \in B$ such that $\left[\beta\left(u_{1}\right), R\right]$ not in P. It implies $B\left(g\left(v_{1}\right)-\beta\left(v_{1}\right)\right) \subseteq P$. Let $w_{1} \in B$ is arbitrary such that $\left[\beta\left(v_{1}+w_{1}\right), R\right] \subseteq P$. This means that $\left[\beta\left(w_{1}\right), R\right]$ not in P and hence $\left(g\left(w_{1}\right)-\beta\left(w_{1}\right)\right) \subseteq P$. In other ways $\left[\beta\left(v_{1}+w_{1}\right), R\right] \subseteq P$, then $B\left(g\left(v_{1}+w_{1}\right)-\beta\left(v_{1}+w_{1}\right)\right) \subseteq P$.

It gives $B\left(g\left(w_{1}\right)-\beta\left(w_{1}\right)\right) \subseteq P$.
We obtain $B\left(g\left(w_{1}\right)-\beta\left(w_{1}\right)\right) \subseteq P$ for every $w_{1} \in B$ and hence $[B, B]\left(g\left(w_{1}\right)-\beta\left(w_{1}\right)\right) \subseteq P \forall w_{1} \in B$. As P is arbitrary and $\bigcap P_{\theta}=0$, this implies $[B, B]\left(g\left(w_{1}\right)-\beta\left(w_{1}\right)\right)=0$ for all $w_{1} \in B$. Similarly, we can show that $\left(g\left(w_{1}\right)-\beta\left(w_{1}\right)\right)[B, B]=0$ for all $w_{1} \in B$. This implies that $\left(g\left(w_{1}\right)-\beta\left(w_{1}\right)\right) \in$ $C_{R}[B, B]$, for all $w_{1} \in B$. By Lemma 2.10 and [6], we have $\left(g\left(u_{1}\right), \beta\left(u_{1}\right)\right) \in C_{R}(B), \forall w_{1} \in B$. Thus we have $\left[g\left(u_{1}\right)-u_{1}, \beta\left(u_{1}\right)\right]=0 \forall u_{1} \in B$. This implies that $\left[g\left(u_{1}\right), \beta\left(u_{1}\right)\right]=0 \forall u_{1} \in B$. This shows that g is commuting on B.

Theorem 2.13. Suppose a derivation, $d: R \rightarrow R$ where $0 \neq d$, in R and a generalized (α, β)reverse derivation g on left ideal $B \neq 0$. If g is a homomorphism on B, then commutativity exists in R.

Proof. By our hypothesis

$$
\begin{equation*}
\left[g\left(u_{1}\right), u_{1}\right]_{\alpha, \beta}=0, \text { for all } u_{1} \in B \tag{8}
\end{equation*}
$$

We replace u_{1} by $u_{1}+v_{1}$, in equation (2.1), we get
$\left[g\left(u_{1}+v_{1}\right), u_{1}+v_{1}\right]_{\alpha, \beta}=0$,
we have
$\left[g\left(u_{1}\right)+g\left(v_{1}\right), u_{1}+v_{1}\right]_{\alpha, \beta}=0$,
we arrives to
$\left[g\left(u_{1}\right)+g\left(v_{1}\right), u_{1}\right]_{\alpha, \beta}+\left[g\left(u_{1}\right)+g\left(v_{1}\right), v_{1}\right]_{\alpha, \beta}=0$,
this gives
$\left[g\left(u_{1}\right), u_{1}\right]_{\alpha, \beta}+\left[g\left(v_{1}\right), u_{1}\right]_{\alpha, \beta}+\left[g\left(u_{1}\right), v_{1}\right]_{\alpha, \beta}+\left[g\left(v_{1}\right), v_{1}\right]_{\alpha, \beta}=0$.
By equation (), we obtain
$\left[g\left(u_{1}\right), v_{1}\right]_{\alpha, \beta}+\left[g\left(v_{1}\right), u_{1}\right]_{\alpha, \beta}=0$, for all $u_{1} \in B$.
By substituting $v_{1}=u_{1} v_{1}$ in equation (9), we have
$\left[g\left(u_{1}\right), u_{1} v_{1}\right]_{\alpha, \beta}+\left[g\left(u_{1} v_{1}\right), u_{1}\right]_{\alpha, \beta}=0$,
we have
$\beta\left(u_{1}\right)\left[g\left(u_{1}\right), v_{1}\right]_{\alpha, \beta}+\left[g\left(u_{1}\right), u_{1}\right]_{\alpha, \beta} \alpha\left(v_{1}\right)+\left[g\left(v_{1}\right) \alpha\left(u_{1}\right)+\beta\left(v_{1}\right) d\left(u_{1}\right), u_{1}\right]_{\alpha, \beta}=0$.
this implies us by the equation (2.1),
$\beta\left(u_{1}\right)\left[g\left(u_{1}\right), v_{1}\right]_{\alpha, \beta}+\left[g\left(v_{1}\right) \alpha\left(u_{1}\right), u_{1}\right]_{\alpha, \beta}+\left[\beta\left(v_{1}\right) d\left(u_{1}\right), u_{1}\right]_{\alpha, \beta}=0$.
This gives us by $\left[\alpha\left(u_{1}\right), \alpha\left(u_{1}\right)\right]=0$,
$\beta\left(u_{1}\right)\left[g\left(u_{1}\right), v_{1}\right]_{\alpha, \beta}+\left[g\left(v_{1}\right), u_{1}\right]_{\alpha, \beta} \alpha\left(u_{1}\right)+\left[\beta\left(v_{1}\right) d\left(u_{1}\right), u_{1}\right]_{\alpha, \beta}=0$,
Since g is commuting on B, we have
$\left[\beta\left(v_{1}\right) d\left(u_{1}\right), u_{1}\right]_{\alpha, \beta}=0$, for all $u_{1} \in B$.
We replace v_{1} by $r_{1} v_{1}$ in equation (10), we have
$\left[\beta\left(r_{1} v_{1}\right) d\left(u_{1}\right), u_{1}\right]_{\alpha, \beta}=0$,
we get
$\beta\left(r_{1}\right)\left[\beta\left(v_{1}\right) d\left(u_{1}\right), u_{1}\right]_{\alpha, \beta}+\left[\beta\left(r_{1}\right), \beta\left(u_{1}\right)\right] \beta\left(v_{1}\right) d\left(u_{1}\right)=0$.
$B y$ equation (10), we have
$\left[\beta\left(r_{1}\right), \beta\left(u_{1}\right)\right] \beta\left(v_{1}\right) d\left(u_{1}\right)=0$,
this gives
$\left[\beta\left(r_{1}\right), \beta\left(u_{1}\right)\right] B d\left(u_{1}\right)=0$, for all $u_{1} \in B$ and $r_{1} \in R$,
By the semi-primeness of R, \exists a set $\omega=\left\{P_{\alpha} / \alpha \in \Lambda\right\}$ of prime ideals and $\cap P_{\alpha}=(0)$.
If $P \in \omega$ and $u_{1} \in B$, then by equation (10), $\left[R, \beta\left(u_{1}\right)\right] \subseteq P$ or $P \supseteq d\left(u_{1}\right)$. Since $0 \neq d$ on R, so by [7], $0 \neq d$ on B. Consider $d\left(u_{1}\right) P$, where $u_{1} \in B$, then $P \supseteq\left[R, \beta\left(u_{1}\right)\right]$. Suppose $w_{1} \in B$, we see that w_{1} not in Z, then $d\left(w_{1}\right) \subseteq P$ and $u_{1}+w_{1}$ not in Z. This gives that $d\left(u_{1}+w_{1}\right) \subseteq P$ and then $d\left(u_{1}\right) \subseteq P$, which contradicts to our consideration that $d\left(u_{1}\right) P$. So, this gives us $w_{1} \in Z, \forall$ $w_{1} \in B$.
This implies that B is commutative also that by the [7], then commutativity holds in R.
Theorem 2.14. Suppose a semi-prime ring R and a left ideal B of R, s.t. $B \bigcap Z \neq 0$ for center Z of R. Let a generalized (α, β)-reverse derivation g on R and $d \neq 0$ a derivation and g is centralizing on B. Then commutativity holds in R.

Proof. If $Z \neq 0$ and g is commutation on B, so our proof is complete.
As g is centralizing B and by Theorem 2.12, we get
$\left[g\left(u_{1}\right), u_{1}\right]_{\alpha, \beta} \in Z, \forall u_{1} \in B$.
Put $u_{1}=\left(u_{1}+v_{1}\right)$ in equation (11), then
$\left[g\left(u_{1}+v_{1}\right), u_{1}+v_{1}\right]_{\alpha, \beta} \in Z$, for all $u_{1} \in B$,
this relates to
$\left[g\left(u_{1}\right), u_{1}+v_{1}\right]_{\alpha, \beta}+\left[g\left(v_{1}\right), u_{1}+v_{1}\right]_{\alpha, \beta} \in Z, \forall u_{1} \in B$.
It implies
$\beta\left(u_{1}\right)\left[g\left(u_{1}\right), u_{1}\right]_{\alpha, \beta}+\beta\left(u_{1}\right)\left[g\left(u_{1}\right), v_{1}\right]_{\alpha, \beta}+\left[g\left(v_{1}\right), u_{1}\right]_{\alpha, \beta} \alpha\left(u_{1}\right)+\left[g\left(v_{1}\right), v_{1}\right]_{\alpha, \beta} \alpha\left(u_{1}\right) \in Z, \forall u_{1} \in$ B.

By the equation (11), we get
$\beta\left(u_{1}\right)\left[g\left(u_{1}\right), v_{1}\right]_{\alpha, \beta}+\left[g\left(v_{1}\right), u_{1}\right]_{\alpha, \beta} \alpha\left(u_{1}\right) \in Z$, for all $u_{1}, v_{1} \in B$.
Replace u_{1} by $v_{1} w_{1}$ in equation (12), we obtain
$\beta\left(u_{1}\right)\left[g\left(v_{1} w_{1}\right), v_{1}\right]_{\alpha, \beta}+\left[g\left(v_{1}\right), v_{1} w_{1}\right]_{\alpha, \beta} \alpha\left(u_{1}\right) \in Z$,
we get
$\beta\left(u_{1}\right)\left[g\left(w_{1}\right) \alpha\left(v_{1}\right)+\beta\left(w_{1}\right) d\left(v_{1}\right), v_{1}\right]_{\alpha, \beta}+\beta\left(v_{1}\right)\left[G\left(v_{1}\right), w_{1}\right]_{\alpha, \beta} \alpha\left(u_{1}\right)$
$+\left[g\left(v_{1}\right), v_{1}\right] \alpha\left(w_{1}\right) \alpha\left(u_{1}\right) \in Z$, this implies
$\beta\left(u_{1}\right)\left[g\left(w_{1}\right) \alpha\left(v_{1}\right), v_{1}\right]_{\alpha, \beta}+\beta\left(u_{1}\right)\left[\beta\left(w_{1}\right) d\left(v_{1}\right), v_{1}\right]_{\alpha, \beta}+\beta\left(v_{1}\right)\left[g\left(v_{1}\right), w_{1}\right]_{\alpha, \beta} \in Z$.
This equalized to
$\beta\left(u_{1}\right)\left[g\left(w_{1}\right), v_{1}\right] \alpha\left(v_{1}\right)+\beta\left(u_{1}\right) g\left(w_{1}\right)\left[\alpha\left(v_{1}\right), \alpha\left(v_{1}\right)\right]_{\alpha, \beta}+\beta\left(u_{1}\right)\left[\beta\left(w_{1}\right), \beta\left(v_{1}\right)\right] d\left(v_{1}\right)$
$+\beta\left(u_{1}\right) \beta\left(w_{1}\right)\left[d\left(v_{1}\right), v_{1}\right]_{\alpha, \beta}+\beta\left(v_{1}\right)\left[g\left(v_{1}\right), w_{1}\right]_{\alpha, \beta} \alpha\left(u_{1}\right) \in Z$.
As we know for any $u_{1}, v_{1}, w_{1} \in Z$ can commute with each one of R, by equation (12) and $\left[\alpha\left(w_{1}\right), \alpha\left(v_{1}\right)\right]=0$, we get
$\beta\left(u_{1}\right) \beta\left(w_{1}\right)\left[d\left(v_{1}\right), v_{1}\right]_{\alpha, \beta} \in Z$.
Since $\beta\left(w_{1}\right) \neq 0$, this implies by Lemma 2.8, we get
$\left[d\left(v_{1}\right), v_{1}\right]_{\alpha, \beta} \in Z$, for every $v_{1} \in B$.
Then we have d is centralizing on B, hence by the reference [3], R is commutative. This completes our proof.

References

[1] A. Ali, T. Shah, Centralizing and commuting generalized derivations on prime rings, Mat. Vesnik, 60 (2008), 1-2.
[2] H.E. Bell, M.N. Daig, On commutativity and strong commutativity preserving maps, Can. Math. Bull. 37 (1994), 443-447.
[3] H.E. Bell, W.S. Martindale, III, Centralizing mapping of semi-prime rings, Can. Math. Soc. 30 (1987), 92-101.
[4] M. Bresar, J. Vukman, On some additive mappings in rings with involution, Aequat. Math. 38 (1989), 178-185.
[5] M. Bresar, Centralizing mappings and derivations in prime rings, J. Algebra, 156 (1993), 385-394.
[6] M.N. Daig, H.E. Bell, Remarks on derivations on semi-prime rings, Int. J. Math. Math. Sci. 15 (1992), 205-206.
[7] J.H. Mayne, Centralizing mappings of prime rings, Can. Math. Bull. 27 (1984), 122-126.
[8] Z.H. Niazi, M.A.T. Bhatti, M. Aslam, Y. Qayyum, M. Ibrahim, A. Qayyum, d-Lucky labelling of some special graphs, Amer. J. Math. Anal. 10 (2022), 3-11.
[9] M. Ahmad, S. Hussain, I. Zahid, U. Parveen, M. Sultan, A. Qayyum, On degree based topological indices of petersen subdivision graph, Eur. J. Math. Anal. 3 (2023), 20
[10] M. Ahmad, M.J. Hussain, G. Atta, S. Raza, I. Waheed, A. Qayyum, Topological evaluation of four para-line graphs absolute pentacene graphs using topological indices, Int. J. Anal. Appl. 21 (2023), 66.
[11] R.M.K. Iqbal, M. Ahmad, A. Qayyum, S.S. Supadi, M.J. Hussain, S. Raza, On degree-based topological indices of toeplitz graphs, Int. J. Anal. Appl. 21 (2023), 111.
[12] A. Asghar, A. Qayyum, N. Muhammad, Different types of topological structures by graphs, Eur. J. Math. Anal. 3 (2022), 3.

