A New Study on Generalized Reverse Derivations of Semi-prime Ring

Muhammad Naeem Abbas^{1,*}, Mukhtar Ahmad^{1,*}, Abdul Rauf Khan², Ather Qayyum³, Siti Suzlin Supadi³

¹Department of Mathematics, Khawaja Fareed University of Engineering and Information Technology Rahim Yar Khan, Pakistan itxmemuktar@gmail.com, naeemabbas995@gmail.com
²Department of Mathematics, Ghazi University, D.G.Khan, Pakistan arkhan@gudgk.edu.pk
³Institute of Mathematical Sciences, Universiti Malaya, Malaysia dratherqayyum@um.edu.my, suzlin@um.edu.my
*Correspondence: naeemabbas995@gmail.com, itxmemuktar@gmail.com

ABSTRACT. The aim of this paper is to extend the ideas from Generalized reverse derivation to Generalized (α, β) -reverse derivations on Semi-prime ring. We prove that, if $0 \neq d$ be reverse derivation in R and a Generalized (α, β) -reverse derivation g, then g is β -strong commutative preserved. Next we can prove that R is commutative.

1. INTRODUCTION

The study of centralizing mapping of semi-prime rings given by Bell and Martindale [3]. Bell and Martindale [3] proved that $[d(u_1), u_1]_{\alpha,\beta} = 0 \forall u_1 \in B$, where $0 \neq d$ a derivation of R and R is semi-prime ring, then commutativity holds in R. Bell and Daif were studied the commutativity in prime and semi-prime rings that bind endomorphism or a derivation that preserves a β -strong commutativity on a non-zero ideal right in [2]. Further, Ali and Shah [1] extend some consequences for generalized derivation of Bell and Martindale [3]. Bresar established that, if $B \neq 0$ is left ideal in R a prime ring, and two mappings d_1 and d_2 are (α, β) -derivations in R satisfies $(d_1\alpha(a) - \beta(a)d_2) \in Z(R)$, for each $a \in B$, so commutativity holds in R [5]. Some properties are studied by Vukman in [12] and [4]. M. Samman and N. AL Yamani [8] studied reverse derivation on semi prime rings. They proved that the mapping $d : R \to R$ is central derivation iff it is reverse derivation and also that $d \neq 0$ a reverse derivation in semi-prime ring R, then the commutativity exists in R resently Mukhtar Ahmad et.al[9]. Later, the idea of revers derivation and some properties

Received: 19 Nov 2023.

Key words and phrases. Semi-prime ring; ideal; r-generalized reverse derivation; derivation; reverse derivation; r-generalized derivation and reverse derivation.

of reverse derivation were studied by Bresar and Vukman [4]. The aim of this paper is extention the notion of generalized reverse derivation to generalized (α, β) -reverse derivation resently Mukhtar Ahmad et.al[10]. A mapping $G : R \to R$ which associate with (α, β) -reverse derivation D is said to be a generalized (α, β) -reverse derivation if, $G(u_1v_1) = G(v_1)\alpha(u_1) + \beta(v_1)D(u_1)$ resently R. M. Kashif et.al[11].

2. PRELIMINARIES

Throughout this paper,

Definition 2.1. Let *R* is ring and it is considered as a semi-prime ring iff for any u_1 ; $u_1 \neq 0$ such that $u_1Ru_1 = 0$ implies $u_1 = 0$.

Definition 2.2. The additive mapping $d_1 : R \to R$ is known as (α, β) -derivation, if $d_1(u_1v_1) = d_1(u_1)\alpha(v_1) + \beta(u_1)d_1(v_1)$ hold $\forall u_1, v_1 \in R$, where α and β are automorphism.

Definition 2.3. The mapping $d_1 : R \to R$ is called a (α, β) -reverse derivation if $d_1(u_1v_1) = d_1(v_1)\alpha(u_1) + \beta(v_1)d_1(u_1)$ holds $\forall u_1, v_1 \in R$, where α and β are automorphism.

Definition 2.4. An additive mapping $H : R \to R$ be a right (left) generalized (α, β) -reverse derivation if there is a derivation d from R to R such that $H(u_1v_1) = H(v_1)\alpha(u_1) + \beta(v_1)d(u_1)$ ($H(u_1v_1) = d(v_1)\alpha(u_1) + \beta(v_1)H(u_1)$ for all $u_1, v_1 \in R$. H be a generalized reverse (α, β) of R associated with (α, β) derivation.

Definition 2.5. Some identities holds for every $u_1, v_1, w_1 \in R$ $[u_1, v_1w_1] = v_1[u_1, w_1] + [u_1, v_1]w_1$ $[u_1v_1, w_1] = [u_1, w_1]v_1 + u_1[v_1, w_1]$

 $[u_1v_1, w_1]_{\alpha,\beta} = u_1[v_1, w_1]_{\alpha,\beta} + [u_1, \beta(w_1)]v_1 = u_1[v_1, \alpha(w_1)] + [u_1, w_1]_{\alpha,\beta}v_1$ $[u_1, v_1w_1]_{\alpha,\beta} = \beta(v_1)[u_1, w_1]_{\alpha,\beta} + [u_1, v_1]_{\alpha,\beta}\alpha(w_1)$

Definition 2.6. The derivation H would be commuting, if $0 = [v_1, H(u_1)], \forall u_1, v_1 \in R$.

Definition 2.7. The strong commutativity preserving is defined as $[g(u_1), g(v_1)] = [u_1, v_1]$ for all $u_1, v_1 \in R$, where $g : R \to R$ is a mapping on R.

Lemma 2.8. Let $u_1 \neq 0$ in Z(center of ring), if $u_1, v_1 \in Z$, then $v_1 \in Z$.

Lemma 2.9. Let $g : R \to R$ be an additive map and on a left ideal B of R, g is centralizing, then $g(u_1) \in R \forall u_1 \in B \cup Z$.

Lemma 2.10. Let $0 \neq B$ be an ideal of a semi-prime ring *R*. If the set [B, B] centralizes *Z* in *R*, then *B* centralizes *Z*.

2.1. **Point-Wise Operation. Theorem 2.11.** Suppose $0 \neq d$ from R to R a derivation in a semiprime ring R. Let generalized (α, β) -reverse derivation g on a left ideal $B \neq 0$ of R. Then g satisfies $[g(w_1), g(v_1)] = \beta([w_1, v_1])$ for all $v_1, w_1 \in B$ (that is, g is β -strong commutativity preserved), when g is a homomorphism on B.

Proof. Since *g* is generalized (α, β) -reverse derivation and homomorphism on *B*, such that $g(u_1v_1) = g(u_1)g(v_1) \forall u_1, v_1 \in B$.

This implies

$$g(u_1v_1) = g(u_1)g(v_1) = g(v_1)\alpha(u_1) + \beta(v_1)d(u_1), \text{ for all } u_1, v_1 \in B.$$
(1)

We replace v_1 by v_1w_1 where $w_1 \in B$, in equation (1), we obtain $g(u_1)g(v_1w_1) = g(v_1w_1)\alpha(u_1) + \beta(v_1w_1)d(u_1)$ this gives

$$g(u_1)g(v_1w_1) = g(u_1v_1w_1) = g(v_1)g(w_1)\alpha(u_1) + \beta(v_1w_1)d(u_1),$$

for all $u_1, v_1 \in B$. (2)

As g is homomorphism, so we get

$$g(u_1)g(v_1w_1) = g(u_1)g(v_1)g(w_1) = g(u_1v_1)g(w_1)$$

this equalized to
 $g(u_1v_1)g(w_1) = (g(v_1)\alpha(u_1) + \beta(v_1)d(u_1))g(w_1)$
this relates to
 $g(u_1v_1)g(w_1) = g(v_1)\alpha(u_1)g(w_1) + \beta(v_1)d(u_1)g(w_1)$
By the equation (2), we get

$$g(u_1v_1)g(w_1) = g(v_1)g(w_1)\alpha(u_1) + \beta(v_1)d(u_1)g(w_1), \text{ for all } u_1, v_1 \in B.$$
(3)

From equation (2) and equation (3), we obtain $\beta(v_1)d(u_1)g(w_1) = \beta(v_1)d(u_1)\beta(w_1)$ this implies

$$\beta(v_1)d(u_1)(g(w_1) - \beta(w_1)) = 0, \text{ for all } u_1, v_1 \in B.$$
(4)

Put
$$w_1 = [w_1, v_1]$$
 in equation (4), we have
 $\beta(v_1)d(u_1)(g([w_1, v_1]) - \beta([w_1, v_1])) = 0$,
we arrives to
 $d(u_1)\beta(v_1)(g([w_1, v_1]) - \beta([w_1, v_1])) = 0$.
By replacing $\beta(v_1)$ by $(g([w_1, v_1]) - \beta([w_1, v_1]))\alpha(r)d(u_1)$, we obtain
 $d(u_1)(g([w_1, v_1]) - \beta([w_1, v_1]))\alpha(r)d(u_1)(g([w_1, v_1]) - \beta([w_1, v_1])) = 0$,
it gives
 $d(u_1)(g([w_1, v_1]) - \beta([w_1, v_1]))Rd(u_1)(g([w_1, v_1]) - \beta([w_1, v_1])) = 0$.
As *R* semi-prime, so we obtain
 $d(u_1)(g([w_1, v_1]) - \beta([w_1, v_1])) = 0$,
since $d \neq 0$, we have
 $g([w_1, v_1]) - \beta([w_1, v_1]) = 0$,
we get
 $g([w_1, v_1]) = \beta([w_1, v_1])$

As g is homomorphism, so we have

 $[g(w_1), g(v_1)] = \beta([w_1, v_1])$

So *g* is β -strong commutative preserved on *B*.

Theorem 2.12. Let g on a left ideal $B \neq 0$ of R, is generalized (α, β) -reverse derivation. If g is homomorphism on B, then on B, g is commuting.

Proof. By theorem 2.11, *g* is β -strong commutative preserved, then $\forall u_1, v_1 \in B$, we get

$$\beta([u_1, v_1]) = [g(u_1), g(v_1)]$$
(5)

Replace $v_1 = v_1 u_1$ in equation (5) we have $\beta([u_1, v_1 u_1]) = [g(u_1), g(v_1 u_1)]$ $\beta([u_1, v_1])\beta(u_1) = [g(u_1), g(v_1)]g(u_1)$ By equation (5), we get $\beta([u_1, v_1])\beta(u_1) = \beta([u_1, v_1])g(u_1)$ this implies

$$\beta([u_1, v_1])(g(u_1) - \beta(u_1)) = 0.$$
(6)

Now put $v_1 = u_1v_1$ in equation (5) we have $\beta([u_1, u_1v_1]) = [g(u_1), g(u_1v_1)]$ $\beta(u_1)\beta([u_1, v_1]) = g(u_1)[g(u_1), g(v_1)]$ By equation (5), we have $\beta(u_1)\beta([u_1, v_1]) = g(u_1)\beta([u_1, v_1])$ this implies

$$(g(u_1) - \beta(u_1))\beta([u_1, v_1]) = 0.$$
(7)

Put $v_1 = r_1 v_1$ in equation (6), we have $\beta([u_1, r_1 v_1])(g(u_1) - \beta(u_1)) = 0$, this implies $\beta([u_1, r_1])\beta(v_1)(g(u_1) - \beta(u_1)) = 0$, we get $\beta([u_1, r_1])B(g(u_1) - \beta(u_1)) = 0$, also that $\beta([u_1, r_1])RB(g(u_1) - \beta(u_1)) = 0$,

By semi-primeness of R, there exist a family $w = \{P_{\theta}/\theta \in \Lambda\}$ of prime ideals such that $\bigcap P_{\theta} = 0.$ If w has a member P and $u_1 \in B$, then last relation, we get, $B(g(u_1) - \beta(u_1))$ not in P or $[\beta(u_1), R] \subseteq P$. If $\exists v_1 \in B$ such that $[\beta(u_1), R]$ not in P. It implies $B(g(v_1) - \beta(v_1)) \subseteq P$. Let $w_1 \in B$ is arbitrary such that $[\beta(v_1 + w_1), R] \subseteq P$. This means that $[\beta(w_1), R]$ not in P and hence $(g(w_1) - \beta(w_1)) \subseteq P$. In other ways $[\beta(v_1 + w_1), R] \subseteq P$, then $B(g(v_1 + w_1) - \beta(v_1 + w_1)) \subseteq P$.

It gives $B(g(w_1) - \beta(w_1)) \subseteq P$.

We obtain $B(g(w_1)-\beta(w_1)) \subseteq P$ for every $w_1 \in B$ and hence $[B, B](g(w_1)-\beta(w_1)) \subseteq P \forall w_1 \in B$. As P is arbitrary and $\bigcap P_{\theta} = 0$, this implies $[B, B](g(w_1) - \beta(w_1)) = 0$ for all $w_1 \in B$. Similarly, we can show that $(g(w_1) - \beta(w_1))[B, B] = 0$ for all $w_1 \in B$. This implies that $(g(w_1) - \beta(w_1)) \in C_R[B, B]$, for all $w_1 \in B$. By Lemma 2.10 and [6], we have $(g(u_1), \beta(u_1)) \in C_R(B)$, $\forall w_1 \in B$. Thus we have $[g(u_1) - u_1, \beta(u_1)] = 0 \forall u_1 \in B$. This implies that $[g(u_1), \beta(u_1)] = 0 \forall u_1 \in B$. This shows that g is commuting on B.

Theorem 2.13. Suppose a derivation, $d : R \to R$ where $0 \neq d$, in R and a generalized (α, β) -reverse derivation g on left ideal $B \neq 0$. If g is a homomorphism on B, then commutativity exists in R.

Proof. By our hypothesis

$$[g(u_1), u_1]_{\alpha, \beta} = 0, \text{ for all } u_1 \in B.$$
 (8)

We replace
$$u_1$$
 by $u_1 + v_1$, in equation (2.1), we get
 $[g(u_1 + v_1), u_1 + v_1]_{\alpha,\beta} = 0$,
we have
 $[g(u_1) + g(v_1), u_1 + v_1]_{\alpha,\beta} = 0$,
we arrives to
 $[g(u_1) + g(v_1), u_1]_{\alpha,\beta} + [g(u_1) + g(v_1), v_1]_{\alpha,\beta} = 0$,
this gives
 $[g(u_1), u_1]_{\alpha,\beta} + [g(v_1), u_1]_{\alpha,\beta} + [g(u_1), v_1]_{\alpha,\beta} + [g(v_1), v_1]_{\alpha,\beta} = 0$.
By equation (), we obtain
 $[g(u_1), v_1]_{\alpha,\beta} + [g(v_1), u_1]_{\alpha,\beta} = 0$, for all $u_1 \in B$. (9)
By substituting $v_1 = u_1v_1$ in equation (9), we have
 $[g(u_1), u_1]_{\alpha,\beta} + [g(u_1v_1), u_1]_{\alpha,\beta} = 0$,
we have
 $\beta(u_1)[g(u_1), v_1]_{\alpha,\beta} + [g(u_1), u_1]_{\alpha,\beta} \alpha(v_1) + [g(v_1)\alpha(u_1) + \beta(v_1)d(u_1), u_1]_{\alpha,\beta} = 0$.
this implies us by the equation (2.1),
 $\beta(u_1)[g(u_1), v_1]_{\alpha,\beta} + [g(v_1)\alpha(u_1), u_1]_{\alpha,\beta} + [\beta(v_1)d(u_1), u_1]_{\alpha,\beta} = 0$.
This gives us by $[\alpha(u_1), \alpha(u_1)] = 0$,
 $\beta(u_1)[g(u_1), v_1]_{\alpha,\beta} + [g(v_1), u_1]_{\alpha,\beta} \alpha(u_1) + [\beta(v_1)d(u_1), u_1]_{\alpha,\beta} = 0$,
Since g is commuting on B, we have

 $[\beta(v_1)d(u_1), u_1]_{\alpha,\beta} = 0, \text{ for all } u_1 \in B.$

We replace v_1 by r_1v_1 in equation (10), we have $[\beta(r_1v_1)d(u_1), u_1]_{\alpha,\beta} = 0,$ (10)

we get

 $\beta(r_1)[\beta(v_1)d(u_1), u_1]_{\alpha,\beta} + [\beta(r_1), \beta(u_1)]\beta(v_1)d(u_1) = 0.$ By equation (10), we have $[\beta(r_1), \beta(u_1)]\beta(v_1)d(u_1) = 0,$ this gives

 $[\beta(r_1), \beta(u_1)]Bd(u_1) = 0$, for all $u_1 \in B$ and $r_1 \in R$,

By the semi-primeness of R, \exists a set $\omega = \{P_{\alpha} | \alpha \in \Lambda\}$ of prime ideals and $\bigcap P_{\alpha} = (0)$.

If $P \in \omega$ and $u_1 \in B$, then by equation (10), $[R, \beta(u_1)] \subseteq P$ or $P \supseteq d(u_1)$. Since $0 \neq d$ on R, so by [7], $0 \neq d$ on B. Consider $d(u_1)P$, where $u_1 \in B$, then $P \supseteq [R, \beta(u_1)]$. Suppose $w_1 \in B$, we see that w_1 not in Z, then $d(w_1) \subseteq P$ and $u_1 + w_1$ not in Z. This gives that $d(u_1 + w_1) \subseteq P$ and then $d(u_1) \subseteq P$, which contradicts to our consideration that $d(u_1)P$. So, this gives us $w_1 \in Z$, $\forall w_1 \in B$.

This implies that B is commutative also that by the [7], then commutativity holds in R.

Theorem 2.14. Suppose a semi-prime ring R and a left ideal B of R, s.t. $B \cap Z \neq 0$ for center Z of R. Let a generalized (α, β) -reverse derivation g on R and $d \neq 0$ a derivation and g is centralizing on B. Then commutativity holds in R.

Proof. If $Z \neq 0$ and g is commutation on B, so our proof is complete.

As g is centralizing B and by Theorem 2.12, we get

$$[g(u_1), u_1]_{\alpha, \beta} \in \mathbb{Z}, \ \forall \ u_1 \in \mathbb{B}.$$

$$\tag{11}$$

Put $u_1 = (u_1 + v_1)$ in equation (11), then $[g(u_1 + v_1), u_1 + v_1]_{\alpha,\beta} \in Z$, for all $u_1 \in B$, this relates to $[g(u_1), u_1 + v_1]_{\alpha,\beta} + [g(v_1), u_1 + v_1]_{\alpha,\beta} \in Z$, $\forall u_1 \in B$. It implies $\beta(u_1)[g(u_1), u_1]_{\alpha,\beta} + \beta(u_1)[g(u_1), v_1]_{\alpha,\beta} + [g(v_1), u_1]_{\alpha,\beta} \alpha(u_1) + [g(v_1), v_1]_{\alpha,\beta} \alpha(u_1) \in Z$, $\forall u_1 \in B$.

By the equation (11), we get

$$\beta(u_1)[g(u_1), v_1]_{\alpha, \beta} + [g(v_1), u_1]_{\alpha, \beta} \alpha(u_1) \in Z, \text{ for all } u_1, v_1 \in B.$$
(12)

Replace u_1 by $v_1 w_1$ in equation (12), we obtain

```
\begin{split} &\beta(u_1)[g(v_1w_1), v_1]_{\alpha,\beta} + [g(v_1), v_1w_1]_{\alpha,\beta} \,\alpha(u_1) \in Z, \\ &\text{we get} \\ &\beta(u_1)[g(w_1)\alpha(v_1) + \beta(w_1)d(v_1), v_1]_{\alpha,\beta} + \beta(v_1)[G(v_1), w_1]_{\alpha,\beta} \,\alpha(u_1) \\ &+ [g(v_1), v_1]\alpha(w_1)\alpha(u_1) \in Z, \text{ this implies} \\ &\beta(u_1)[g(w_1)\alpha(v_1), v_1]_{\alpha,\beta} + \beta(u_1)[\beta(w_1)d(v_1), v_1]_{\alpha,\beta} + \beta(v_1)[g(v_1), w_1]_{\alpha,\beta} \in Z. \\ &\text{This equalized to} \end{split}
```

 $\beta(u_1)[g(w_1), v_1]\alpha(v_1) + \beta(u_1)g(w_1)[\alpha(v_1), \alpha(v_1)]_{\alpha,\beta} + \beta(u_1)[\beta(w_1), \beta(v_1)]d(v_1)$

 $+\beta(u_1)\beta(w_1)[d(v_1),v_1]_{\alpha,\beta}+\beta(v_1)[g(v_1),w_1]_{\alpha,\beta}\alpha(u_1)\in Z.$

As we know for any $u_1, v_1, w_1 \in Z$ can commute with each one of R, by equation (12) and $[\alpha(w_1), \alpha(v_1)] = 0$, we get

 $\beta(u_1)\beta(w_1)[d(v_1), v_1]_{\alpha,\beta} \in Z.$

Since $\beta(w_1) \neq 0$, this implies by Lemma 2.8, we get

 $[d(v_1), v_1]_{\alpha,\beta} \in Z$, for every $v_1 \in B$.

Then we have d is centralizing on B, hence by the reference [3], R is commutative. This completes our proof.

References

- [1] A. Ali, T. Shah, Centralizing and commuting generalized derivations on prime rings, Mat. Vesnik, 60 (2008), 1-2.
- [2] H.E. Bell, M.N. Daig, On commutativity and strong commutativity preserving maps, Can. Math. Bull. 37 (1994), 443-447.
- [3] H.E. Bell, W.S. Martindale, III, Centralizing mapping of semi-prime rings, Can. Math. Soc. 30 (1987), 92-101.
- [4] M. Bresar, J. Vukman, On some additive mappings in rings with involution, Aequat. Math. 38 (1989), 178-185.
- [5] M. Bresar, Centralizing mappings and derivations in prime rings, J. Algebra, 156 (1993), 385-394.
- [6] M.N. Daig, H.E. Bell, Remarks on derivations on semi-prime rings, Int. J. Math. Math. Sci. 15 (1992), 205-206.
- [7] J.H. Mayne, Centralizing mappings of prime rings, Can. Math. Bull. 27 (1984), 122-126.
- [8] Z.H. Niazi, M.A.T. Bhatti, M. Aslam, Y. Qayyum, M. Ibrahim, A. Qayyum, d-Lucky labelling of some special graphs, Amer. J. Math. Anal. 10 (2022), 3–11.
- [9] M. Ahmad, S. Hussain, I. Zahid, U. Parveen, M. Sultan, A. Qayyum, On degree based topological indices of petersen subdivision graph, Eur. J. Math. Anal. 3 (2023), 20
- [10] M. Ahmad, M.J. Hussain, G. Atta, S. Raza, I. Waheed, A. Qayyum, Topological evaluation of four para-line graphs absolute pentacene graphs using topological indices, Int. J. Anal. Appl. 21 (2023), 66.
- [11] R.M.K. Iqbal, M. Ahmad, A. Qayyum, S.S. Supadi, M.J. Hussain, S. Raza, On degree-based topological indices of toeplitz graphs, Int. J. Anal. Appl. 21 (2023), 111.
- [12] A. Asghar, A. Qayyum, N. Muhammad, Different types of topological structures by graphs, Eur. J. Math. Anal. 3 (2022), 3.