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ABSTRACT. Malaria is currently a life-threatening vector borne disease which is endemic in most
of the developing and underdeveloped countries associated with poor health care systems. In this
study, a host-vector mathematical model that takes into account the inflow of human migrants who
have been exposed or infected with malaria is formulated and analysed. The reproduction number
of the mosquito vector population is derived and used as a threshold quantity for determining the
existence of the model trivial and realistic steady states. The Routh-Hurwitz criterion and some
stability theorems of Metzler matrices are used to show that the realistic disease free equilibrium
is both locally and globally asymptotically stable whenever the disease reproductive number is less
than one. We derived an equation for the model endemic condition and used Descartes Rule of Sign
Change to established the conditions for the model to admit one or three endemic equilibrium state(s).
It is further shown that in the absence of inflow of exposed or infected migrants, the model admits a
globally asymptotically unique endemic equilibrium when Ry > 1 and two endemic equilibria when
Ro < 1. Our local sensitivity analysis revealed that the adults mosquito removal and biting rates
were respectively the most significant contributing parameters to the spread of malaria. The numerical
simulations results suggested that the exposed and infected immigrants have no significant impact on

the dynamical behaviour of the model population sub-classes.

1. INTRODUCTION

Malaria is currently a life-threatening vector borne disease which is endemic in most of the
developing and underdeveloped countries associated with challenging health care systems. More
particularly, malaria is highly endemic in sub-Saharan Africa characterized with poor hygienic
conditions which serve as suitable breeding site for malaria vectors [1]. Plasmodium parasites and
female Anopheles mosquitoes are respectively the causal agent and transmitting vectors of malaria.
Among the most vulnerable groups to malaria are expectant mothers and infants under five years
of age [1-3]. Common symptoms of malaria include: fever, chills, headache, pain, anaemia and
vomiting [1,4]. The World Health Organization (WHO) reported that in 2022 alone, there were two
hundred and forty nine million malaria cases recorded globally. Ninety four percent of theses cases
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were recorded in Africa. For example, Ghana recorded within the same period five million three
hundred and fifteen thousand five hundred and ninety three (5315593) and eleven thousand five
hundred and fifty seven (11557) estimated malaria cases and deaths respectively [3]. Currently,
population migration caused by climate change induced factors and conflicts constitute a major
threat to the malaria control programs.

Mathematical modeling has become a significant tool box for understanding disease transmission
dynamics and evaluating the effectiveness of disease control strategies [5]. These models gener-
ally explain the dynamics of infections, provide/estimate the thresholds indicators that determine
whether the disease will persist or die out [6—8].According to Mukhaktar et al. [9], mathematically
modeling malaria can help better understand the disease dynamics and further unveil how cer-
tain factors such as human migration influence the disease transmission process, In that regard,
several modeling studies have been conducted concerning human migration and malaria. Authors
in [9] assessed how human mobility impact the malaria disease burden in South Sudan. Aprianti
et al. [10] examined the effect of susceptible immigrants on the spread of malaria in Indonesia.
Yiga et al. [11] analysed a malaria transmission model that takes into consideration the combined
effect of infected immigrants and other variables that depend on temperature and rainfall. Ma-
liki et al. [2] modelled the control of malaria in a population with infected immigrants. Witboi et
al. [12] presented a malaria population dynamics model with human migrants. Yacheur et al. [13]
studied the importation of malaria infections from sub-Saharan Africa to northern Africa and the
absorption effect of the immigrants. Researchers in [14,15] formulated and analyzed mathematical
models for malaria disease dynamics that considered malaria vaccination campaigns and inflow of
infective immigrants. Ahkrizal et al. [16] formulated a malaria dynamics model capturing the inflow
of exposed and infected migrants and the recovery of exposed individuals.

In the above mentioned literature, little attention is given to the aquatic phase of the malaria
vectors. Even though, the population of adults mosquitoes responsible for disseminating malaria
infections is proportional to the density of the aquatic mosquitoes. It is therefore necessary to
take into consideration the aquatic stages of the vector in a malaria model [11,17]. Hence, in this
study, in order to explore the impact of exposed and infected individuals on the endemic condition
of malaria, we extend the malaria models formulated in [11] to include the exposed vectors and the
model in [16] to capture the aquatic stage of the Anopheles female mosquito without the relapse
factor of the recovered individuals. The rest of the organization of the paper is as follows: section
two takes care of the model formulation and analysis, in section three, the sensitivity analysis
results is presented, population simulations is carried out in section four and the conclusion is

presented in section five.
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2. MALARIA MoDEL DEVELOPMENT

The model considered the interactions of humans (hosts) and female Anopheles mosquitoes
(vectors). Humans (hosts) are classified into susceptible (Sp), exposed (Ep), infected (/5) and

recovered (Rp) sub-classes. As a result, the total human population at any given time t is:
Ni (t) = Sn (t) + Ep(t) + In (1) + Ra (1) (1)

The human/host population is sustained at a constant birth rate 7, and immigration rate M.
Hence, the susceptible human class is generated at a rate (m, 4+ (1 — p1 — p2)M), where p; and
p> are the immigration rate of exposed and infected migrants respectively. Recovered immigrants
are assumed to be susceptible to malaria. Susceptible humans become exposed to malaria infec-
tions through effective contact with infected female Anopheles mosquitoes during blood meal at
a rate Ap. Exposed humans progress to infected class at rate «y. The size of exposed humans is
augmented as results of immigration of humans at a rate p;M. It is common to find people in
settings with limited health facilities resorting to self medication after being bitten by mosquitoes
or when a family member is suspected of suffering from malaria. Hence, in this model it is assumed
that exposed individuals recover from malaria at a rate w. The density of the infected humans is
reduced following treatment at rate 7 or due to malaria induced mortality at a rate 6. The size of
the infected humans is augmented due to migration of infected individuals at rate po M. Recovered
individuals lose their immunity and join the susceptible sub-class at a rate ¢. The constant wj is
the human removal rate from each human compartment.

Also, the vector (Anopheles mosquito) population is stratified into immature and adult mosquito
sub-populations. The immature female Anopheles mosquito sub-population includes the mosquito
eqggs, larvae and pupae stages.

These aquatic stages are represented by a single compartment denoted by (Ap). The aquatic
vector (Ap) is generated from the eggs laid by the matured mosquitoes (susceptible, exposed and
infected) at a rate 7, ( — A7m) (Sm+ Em+ Im).

The population of aquatic vector is bounded above by the carrying capacity of the aquatic envi-
ronment (K). The aquatic mosquito population declines due to natural death at a rate u,. The
aquatic mosquitoes mature into susceptible mosquitoes at a rate . The matured mosquito is further
stratified into susceptible (Sy,), exposed (Ep,) and infected (/) vectors. The susceptible vectors
become exposed to malaria parasites during blood meal from infectious (infected) humans at a rate
Am. Exposed vectors (E.,) subsequently become infected at a rate 0. As the results of natural
death at a rate un,, the densities of adult mosquito populations ((Sp)), (Em), (Im) decrease. Thus,

at any time t, the aquatic and adult malaria vector populations (A, and N,;,) satisfy:

Am () < Ko Nam () = Sm (t) + Em (t) + I (2) (2)
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Ap = % and A\, = %”;Ih are respectively the forces of infection for the human and female
Anopheles mosquitoes. The schematic diagram (figure 1) describes the transmission dynamics of
malaria in an interacting human and mosquito populations. The model parameters are presented
in Table (1).

TaBLE 1. Parameter description with their values and sources

Parameter Description Value[Range] Reference Unit
Th Human recruitment rate 0.03 [11] Day~!
M Immigration rate of human 0.001 [11] Day~!
p1 Immigration rate of exposed humans 0.2 [11,16] Day™!
P2 Immigration rate of infected humans 0.2 [11,16] Day~!
Lh Natural mortality rate of human 1/21900 [11] Day~1
Bn Probability of transmission of infections
from an infectious human to a 0.00021 [11] -

susceptible mosquito (vector)

o' Progression rate from exposed humans 1/20 [11] Day~
to infected humans

w Progression rate from exposed humans 0.055 [16] Day~
to recovered humans

T Progression rate from infected humans 1/30 [11] Day~

to recovered humans

® Progression rate from recovered humans 1/(20 x 365) [11] Day~—!
to susceptible humans
0 Malaria induced death for humans 0.001 [11] Day~!
T Anopheles mosquito egg deposition rate 6 [17,18] Day~!
K Carrying capacity for immature mosquitoes 40000 [18] Space
b Female Anopheles mosquito biting rate 0.94[0.1-1] [18] Day~!
Bm Probability of transmission of
infections from an infected 0.00021 [11] -
Anopheles mosquito to a susceptible human
P Maturity rate of immature mosquitoes 0.08 [19] Day~!
o Progression rate from exposed mosquitoes
to infected mosquitoes 0.091 [18] Day~!
m Natural mortality rate of adult mosquitoes ~ 0.11346 [17] Day~1

ta Natural mortality rate of immature mosquito 0.1042 [18,19] Day~
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FIGURE 1. Schematic diagram for malaria transmission dynamics with human immi-

grants

Based on figure 1, the following system of equations is derived:

(dS
dth:Wh—i‘(l—Pl—PQ)M+<PRh—(>\h+Mh)5h
dE

Tth:le'f‘AhSh_gOEh

dlp

Eh o oM+ YEp — g1l

at p2M +YEpR — g1ln

dR

d—th:T/h—l—wEh—ngh

1 (3)
dA
Ttm:"rm(l_ATm)(Sm‘i‘Em‘i‘/m)_QSAm
das

T{n:"l)Am_(}\m‘i‘ﬂ'm)sm

dE

T::Am5m494Em

dl

~d7:7:o'Em_,U/m/m

where: go = (W+y+un), g1 = (T+6+un), 9o = (o+un). 93 = (Y+ua) and ga = (0+pm)
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2.1. Boundedness of Solution.

Theorem 1. For non-negative initial values Sp(0), Ex(0), 15(0), Th(0), An(0), Sn(0) and I, (0)
of system (3), each element of the solution set {Sp(t), En(t), In(t), Th(t), Am(t), Sm(t) Im(t)}

is non-negative and bounded ¥ t > 0.

Proof. Considering the first differential equation in system (3):

ds
p =T (1= p1— p2)M + @Ry = (\n + 4n) S (4)

ds
=R > (O + un)Sh

dt
1
- /SdshZ_/O\h‘f‘Ulh)dt
h

—> Sp(t) = Sp(0)e Mt M) > g
Similarly:

dE
dith = piM + X pSp — goEn = En(t) > Ep(0)e %" >0

dl
CT: = poM +v¥Ep — g1l => Ip(t) > 1,(0)e 9t >0

dR
dith =wEL+Tlh — g2)Ry = Rp(t) > Rp(0)e 9" >0

Am

Tm (1 - K) (Sm + En+ /m) — §3An = Am(t) > Am(O)e_%t >0

dAn
dt

ds t
Ttm =PAn — Am + Um)Sm = Sm(t) > Sm(O)e_(#mt—i_fO Am(x)dx) >0
dEm
dt
dlm

—E = AnSm — il = (1) = Im(0)e #7* 2 0

Therefore, for V t > 0, the state variables of the model have non-negative solutions.

= AmSm — GaEm = Sm(t) > Sm(0)e %t >0

2.2. Invariant Region. This section is dedicated to finding the region over which the solution set

of our malaria model system of equations is well posed.

Theorem 2. The feasible region in which the solution set of the model system of equations make
biological sense is the set;
D =Dy x Dy CRY x RY (5)

where

(6)

M+m
Dh:{(Shthv/thh)eRi15h+Eh—|—/h—|—Rh§ ”}

Kh
and

K
Dy = {(Am, Smy Em, Im) €ERE : Ap <K, S+ Ep+1m < w} (7)

Lo
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Proof.
Firstly, we determine the subset Dy,

The human (host) population N, at any given time t is:
Np=S5p+ En+In+ Rn

Taking the differential of both sides of equation (8) and simplifying gives:

dNp,
— =M — wpNp =0l
T + 7 — wplNp —61p
dNp, . - .
= s < M+ mp, — upNp (in the absence of malaria induced mortality)
dNp
= N Mo < Tkt
Mn
Integrating the last inequality in (9) and taking the limit as t — 400, yield: Ny — %

Consequently, the following result is obtained

0< Ny < M+ p
Kh
Therefore:
M+
DhZ{(Sh. En, In, Rp) €RY :Sp+ En+1n+ Ry < m h}
h

(10)

(11)

Secondly, the subset D, is determined. At any point in time, the mosquito (vector) population

satisfies:

AmSKy Nam:5m+Em+/m

d d
= E(Nam) = a(Sm +Em+1m)
dNam  dSm | dEn  dip
dt  dt + dt + dt
dN
K K
e M 2 () - B e
Km m
K
— Namgw— as t— +oo.
Hom

K
Therefore, D, = {(Am, Sm, Em, Im) € Ri CARSK, ShwHEL+In< d}}

thm

Thus, the feasible region for system (3) is the set:

D =Dy x Dy, CRE xRE

(12)

(13)
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2.3. Model Equilibrium Points. To discuss the model equilibrium points, we consider two cases.
The case where there is inflow of exposed and infected migrants (p1, po > 0). For this scenario,
there is no disease free equilibrium and the model admits only the endemic equilibrium to be
determine later. The second case is when there is no immigration of exposed and infected humans
(p1 = p2 = 0). In this case, the computation of the model disease-free equilibria, is summarized in

the theorem below. This approach is adopted from [20-22].

Theorem 3. For convenience, we define the threshold parameter
_ TmY _ TmY
bm(¥ + pa)  g3bm

as the mosquito net reproduction or extinction number, then if:

N (15)

(1) N <1, system (3) admits a trivial disease-free equilibrium (TDFE) (which corresponds to

a population without mosquitoes) given by:
&= (S5, 0,0,0, 0,0 0,0) (16)

(2) N > 1 (mosquitoes persist in the community), system (3) admits a realistic disease-free
equilibrium (RDFE) (since it corresponds to the existence of mosquitoes in the population)
given by:

¢1= (S} 0,0, 0, 0 A% St 0) (17)

. cx _ M+ x 1 x* _ YK 1
where: S =Mt Ar — K (1— %) and Sp, =45 (1- %)
Proof.
Suppose, (S;‘7 Er 1L Ry A Sh Ep /;';1) is any arbitrary disease-free equilibrium point.
Setting system (3) to zero with the condition that there are no infections at the disease-free
equilibrium, that is, py = pp = E} = I}, = R} = E;,, = I, = 0, gives: S} = % for the first
equation.

Also, it is not hard to see from system (3) that

A*
St £ g1, = YA (18)
Km
Hence, from the sixth equation of system (3), we see that A}, satisfies:
'l./J’ﬂ'm A*m *
RASLUY | - At — gy Af = 1
(1= ) A - g2 =0 (19)
* * 1
== A,=00r A, =K 1—N (20)
1 YK ( 1 )
Now Ay, =0 = S;,,=0and A, =K |l—-—=| = S;,,= — |1—— 21

Hence, &p and &; are obtained respectively from A% = 0 and A}, = K (1 — ﬁ) Clearly, the

magnitude of A dictates the existence of the model disease-free equilibrium points.
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N is a threshold quantity known as the vector offspring number or vector net reproduction number
[18,19,23]. In general, N can be interpreted as a measure of the average number of new adult
female Anopheles mosquitoes produced by one reproductive Anopheles mosquito during its entire

reproductive life. It is expressed as a product of the egg deposition rate 7, the fraction of immature

mosquito that survive and develop into adult Anopheles mosquito and the average life span of

P
P+ua
adult Anopheles mosquito A%m Thus, if N > 1, the mosquito population persists in the community,
otherwise if N/ < 1, the malaria vector population becomes extinct and the local transmission
of malaria cannot take place. It is worth noting that the trivial disease-free equilibrium (TDFE)
corresponds to the absence of female Anopheles mosquitoes in the community. Hence, the TDFE

is biologically less meaningful.

2.4. The Basic Reproductive Number. In epidemiology, the basic reproductive number (R,) is
a threshold quantity that is used to determine the extent of severity of the epidemics. In this
study, the method of next generating matrix is adopted to compute the model R,. Expressing our
model differential equations in the form ‘% = (F —V)XT where XT denotes the transpose of
X =(Ep, In, Em, Im), F and V are vectors denoting the rate of generation of new infections and

transfer rates respectively, gives:

p1M + XpSh 9goEn
M —vEh+ g1/
F= P2 andy = | TEhT A (22)
>\m5m 94Em
0 _O'Em+,ulm/m

Evaluating the Jacobian matrices F and V of F and V at the RDFE gives respectively:

bBr S}

0 0 0 T g 0 0 0
0 0 0 0 - 0 0

F=|? e and v=| " & (23)
0 ,’V";m 0 0 0O 0 gs O
0O 0 0 0 0 0 —0 mm
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Hence, the next generation matrix FV 1 is given by:

obByS;  bBrS;

0 0 9aNjum — Nipm
0 0 0 0
Fv—t= (25)
YbBmS;,  bBmSh,
Jog1 Nj, g Ny 0 0

0 0 0 0

Solving for X in the relation |[FV ™1 — )\I‘ = 0, where / is a unit matrix and A an eigenvalue of

FV~!, we get the dominant eigenvalue as:

b2 SrSx
)\max _ RO _ oy ﬁhﬁfT;Qh m (26)
909194 N~ thm

Taking N} = S} and simplifying the expression in (26), we obtain the reproductive number of the

model given by:

Ry = oY b?BpBmpn Ky (1 B 1)
909194(M + Tp) 2, N
(27)
=/ Ron X Rom
where:
YbBhiin obBmKY ( 1 )
Rop= — 2000 g Ry, = Z2mBY g 2
" gogr (M + ) om gap2, N

The threshold quantities Ry, and Ron, characterized the contributions of malaria disease spread
from human to mosquito (host to vector) and from mosquito to human (vector to host) respectively.
Ron represents the number of secondary cases of Anopheles mosquitoes one infectious (infected
or treated) human will generate in a completely susceptible population of Anopheles mosquitoes
during its infectious phase. Similarly, Rom can be interpreted as the number of secondary human
cases generated by an infected Anopheles mosquito in an entirely susceptible human population

over the course of its life time as infectious [2].
2.5. Stability of Malaria-Free Equilibrium.
2.5.1. Local Stability of Malaria-Free Equilibrium.

M+ 1 K 1 ;
Theorem 4. The RDFE (&) = (4™, 0,0, 0, 0. K (1= %), &2 (1- %), 0] with N >
1 is locally asymptotically stable (LAS) if Ry < 1 and unstable if Ry > 1
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Proof. Let matrix Jy be the Jacobian matrix of system (3) evaluated at the RDFE (&;1). Thus,

—up 0 0 0 0 0 0 —b%sz
bBS},
0 —-g O 0 0 o o B
0 o' -0 0 0 0 0 0
0 w T —go 0 0 0 0
Jo = TmSh Tm T Ty (28)
0 0 0 0 —(gs+"522) Tw Ty
mSh
0 0 —Fmo0 Y im0 0
nSh
o o 0 0 0 -a O
0 0 0 0 0 0 o —Um
It is not hard to see that the matrix in (28) admits two negative eigenvalues, namely A\; = —up, and
A2 = —go. Using the matrix reduction method, the remaining eigenvalues can be obtained from the
sub-matrix in (29) below:
g% 0 0 o o X
h
v —J1 0 0 0 0
0 0 —(ermE) B B o
S = BB S (29)
O - N* = ",b _ler O O
mSh
o F 0 0 -g O
0 0 0 0 o —lUm
The characteristic equation of the sub-matrix in (29) is given by
A+ 90) A+ g) A+ ga) A+ pm) (N> +SX+P) =0 (30)
where:
S=T820 4 g3+ p, and P = Tbnn
It can clearly be seen from (30) that four eigenvalues of the sub-matrix in (29) A3 = —go,
M =—0g1, Xs=—ga, and g = —u, are negative. Also, the nature of the remaining two
eigenvalues of the sub-matrix in (29) are determined from :
MNESA+P=0 (31)

Since, § and P are positive whenever A/ > 1, it implies that the two remaining eigenvalues of
the sub-matrix J; are stricly negative. Consequently, all eigenvalues of the matrix Jy are real and
negative. Hence, according to the Routh-Hurwitz stability criterion, the malaria realistic disease-
free equilibrium state &; is locally asymptotically stable when N > 1 and Ry < 1 and unstable

otherwise.
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2.5.2. Global Stability of Malaria-Free Equilibrium. Following [19,24-27], the global stability of
a system equilibrium point can be established by first expressing the system in a triangular form

as follows:

dt (32)

Here, Ys and Y; denotes the compartments of non-transmitting and transmitting hosts and vec-
tors respectively, with Ys = (Sp, Rn, Am, Sm)T Yi = (Ep, In, Enm, /m)T and  Yrpre =
* * * «\ _ [ M+ 1 K 1
(Sh' Rh' A Sm) - (%'K(l_ﬁ)'ipﬂ(l_ﬁ))

m
- M+
Sh Kh :
Rp
(Ys — YrDFE) = 1 . (33)
An—K(1-x)
K
[Sm = e (1= )
9Ys
B = 4
L= 55, R A S) oY
oYs
B =
2= 3(En In. Emr ) %)
Y
By = 36
> 8(En, In, Em, Im) (30)
Using our model system of equations system (3), we get:
—Hh @ 0 0
—92 0 0
By = X (37)
0 0 - (% +z/z+ua) Ty
0 0 P —Um
bBs S
0 0 0 N
5 w T 0 0 (38)
12 =
I
0 —bﬁ,g;m 0 0
e 0 o S
¥ —9 0 0
Be = bBmS?, (39)
0 N7 —3s 0

From the above we formulate the theorem as follows.
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Theorem 5. The system dys — B1 (Ys — Yrpre)+B12Y; is globally asymptotically stable (GAS) at the

dt
RDFE when all eigenvalues of matrix B1 have negative real parts and By is a Metzler matrix.

Proof.
Clearly, two eigenvalues of the matrix By are A\; = —up and A» = —go. Thus, applying the
method of matrix reduction, By reduces to the sub-matrix:
TTmS? T
(B g)
A= ( KoTHB) W (40)
¢ —Mm
The nature of the remaining two eigenvalues of B; are determined from characteristic equation:
TmS, 1
>\2+(g3+um+";<m)>\+7rm'd1(1—/\/)—0 (41)

TmSH,

Since in equation (41), g3 + um + —= > 0 and T, (1 — %) > 0 whenever N/ > 1, we conclude

using the Routh-Hurwitz stability condition, that the eigenvalues A3 and X4 have negative real
parts. Hence, all the eigenvalues of the matrix By have negative real parts.

Additionally, By is clearly a Metzler matrix (since all the off diagonal entries are non negative).
Thus, we conclude that the system

d¥s
dt

is GAS at the realistic disease free equilibrium [19,24-27].

= B1 (Ys — YrpFE) + B12Yi (42)

2.6. Malaria Endemic Equilibrium. Let & = (Sp*, Ef* I7*, Ry, An. Sy En. 1) be the
endemic equilibrium (EE) point for the malaria model, then setting system (3) to zero, the following

system of solutions is obtained

'5** o) (9o b@TBmin) 2 +[Q1bBmpen+tm (M+mp)1E* +Q1ibm(M+1)
h 0 [Q2052B1Bmkun® An + 9a bBmbn b (MAT )11+ 9092942, (M+71)2

Q3153 +Qa 2+ Qs 11 +Qs

Err —
h Q7/;*2+Q8/;*+Q9
wk _ T HWEL
Ry = P
m = or A, = — N) (43)
<
wk Kk (M+7p) Y AL
Sm = 00r S5 =t T o (M7
sk *k bﬁmﬂhsf:/;*
Exf=00r E} = G (ME75)
sk __ wx _ ObBmpnSHIE*
Im=0or ;7 = Gatkm(M+p)

here, /;* satisfies : Q3/Z*3 + qglz*2 +qil} +q =0

Where:

_ Gabbm(M+ms)
Qo = Ken

Q1 = prowM + gogo((1 — p1 — p2)M + mp)
Q2 = goga — pw
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Q3 = Wi 909a9TID BB ntm P Apy

Qu = ks G40TO L BrBintin WAy (Q1bBmitm + LM goor ) +

2B, Bmiin D A
9ap1MbBmim (% + gogzg4bﬁmuhum)

Qs = gabBmu2, (bBRY A (Q1 + p1MQ2) + 2909294 p1 Mism(M + m4))
Qs = 92PM (12 g, (M + mp))?

Q7 = 79094,6,[1”’#“’” (Q20b*BrBmbAry + 909294 bBmitm(M + 1))

Qs = gogau2, (Qoob*BrBmP Ay + 290929abBmitm(M + m4))

Qo = £ (gogatsZ(M + mp))°

ob? 5h5ml/«h Ay

a3 =9094bBmim{ Mot = (gogien + ©¥(n +6)) + 9091929 bBmiknibm}

Q20b2BrBm Y Al
M+

G2 =091 a2y (M + 74)( + 2909294 bBmktm—

O'b26 ﬁ A*F
W(Sﬂ@l bBmtntim + Goga@Tu(M + 7)) —

OLO'b ,Bth

M+n + 909294bBmim)

9aMDbBmintem(p1Y + gop2)(

2(M+7 Qiyob*BrB Axx
_ Gakkim( h){ggglgzgmfn(/\// ) — Q19 Bn mbnPAL
Kh M + mp

Q20 b°BrBmun Ay
M + 7y,

Jop2M( + 298 9294 bBmtnkim }

9092 2
do = _WM(Plfy + gop2 (gans,(M + m4))

To analyse the disease endemic condition, we consider the polynomial function:
FUE) = i+ @2+ quli* + g0 =0 (44)

There is enough evidence that the polynomial in (44) admits a positive solution on the interval

[0, +00) since: f(0) = qo < 0 and / IirT}r f(I;*) = +oo. Next, we employ Descartes’ Rule of
pr—r+too

Signs Change to explore more information on the roots of the polynomial f(/}*) (see table 2).

TaBLE 2. Number (#) of Possible Positive Roots of f(/;*)

’ Case H g3 ‘ Q2 ‘ el ‘ Qo ‘ # of sign change ‘ 7+ of roots ‘
(V) + 1
(it) + |+ = |- 1
+
+

+ 4| -

(iif) — |+ |- 1,3
(v)

2w =] =
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Based on the results in table 2, we claim that in the presence of importation of malaria infections,
system (3) may admit one or three endemic equilibrium state(s). To better understand any possible
impact of the inflow of humans who have been exposed or infected with malaria parasites on the
disease endemic condition, we now consider the endemic relation in the absence of exposed and
infected immigrants.

To that effect, we set p; = p» = 0 into (44) and simplify to obtain:

7 (@l + a1l + a0) = 0 (45)
Equation (45) implies
[}*=0 or alf*+ailf*+a =0 (46)
where:
O'bzﬁ 6 Ax*
a :bﬁmﬂh{# (90g11en + @Y(p +0)) + 909194 bBmisntim} (47)

a1 =g1lntim (Q20b*BrBm WAL + 290929abBmbm(M + 4)) —

Yo b*BrBmbin® Ay (92bBmitn + OTHm)

a0 = 9og1929aphi,(M + )% (1 — R3) (49)
With /;* = 0in (46), we retrieve the TDFE when A% = 0 and the RDFE when A%f = K (1 — ﬁ)

Furthermore, a solution to the quadratic equation in (46) can be obtained using the quadratic

—a; £+/a? — 4apar
3 = (50)

282
The expression in (50) leads to the following theorem:

formula, that is :

Theorem 6. In the absence of inflow of exposed and infected human migrants, the malaria model

represented by system (3) admits:

(i) one unique EE if ag < 0, that is Rg > 1

(il) one unique EE if a1 <0, and Ry =1 or a% —4a0a, =0

(iii) two EE if a1 <0 and ap > 0 that is Ry < 1 or a3 — 4apas > 0
)

(iv) no EE otherwise.

We deduce from case (i) of theorem 6 that for a specific case where the parameter accounting
for the importation of malaria infections is zero, system 3 admits a unique EE when Ry > 1. This
suggests that even in the absence of importation of malaria infections from elsewhere, malaria
epidemics can continue to propagate in the population. The occurrence of two endemic equilibria

when Ry does not exceed one, case (iii) of theorem 6 shows that the model bifurcate backwardly.
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That is, two stable equilibrium states coexist when the reproductive number of the model is less
than one. In this case, Ry < 1 even though necessary is no more enough for the elimination of
malaria. To obtain the value of Ry say, R§ at which backward bifurcation takes place in this case,

we set the discriminant (A) of equation 46 to zero and solve for R§. That is

A=0 :>a%—4aoa2:O

2
a
= R§ =1/1—
0 \/ 432909192943 (M + p)?

Hence, for values of Ry between R§ < Ro < 1, system 3 in the absence of importation of malaria

infections experiences backward bifurcation.

2.7. Global Stability of the Malaria Endemic Equilibrium Point. In what follows, we explore the

long term behavior of the unique endemic equilibrium point whenever it exist.
Consider the Lyapunov candidate:
L(Sy Eio 10 Ry A S5 Exf 157)

S E /
:((sh—sz*)—sz*m f*)+((Eh—E;;*)—E;*|n *”*)Jr((/h—/ ) — [ *”*)
Sy [ "

+((Rh—Rh — R*In R**)+((A — ATY — A A**)+((s Sy =S¥ |5**)

Em Im
- eznz) oo
Taking the time derivative of £ gives:

() ) ) () o

dt Sy | dt E, | dt Iy | dt R, | dt
AR\ A [, SE) e [y Ex\9En (4 lx|
Am dt Sm dt E., dt Im dt
Sp—S*
. [mh + (1 = p1 — P2)M + @Ry — (Ap + 1r) Skl + (P M+ XpSh — goEn)
[T R Ry},
+ ( h I i ) (poM +YEp — g1lp) + (th) (Tlh + wWEL — g2Rp)
Am — Am Am Sm— S
+ (Am) [T (1_K) Nam — 93Am] + (Sm) [WARm — (Am + tm)Sm]

E _ E** / _ /**
+ | == (>‘ Sm 94Em)Jr = (UEm*Um/m)
Em Im

*k

S
=7+ (1= pr—=P2)M+ @Ry + Ay + pn) Sy — (mh + (1 — p1 — p2)M + @R},) Sh

(51)
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K%

E
— (An =+ 1n)Sh + PLM + XSk + GoE* — goEn — (P1M + ApSh) == + poM +YEn + 11}

Ep

= g1ln — (p2M +’YEh)W +Tlh +WEr + 2Ry — GaRy — (T1h + wEp) R + NamTm + /\/am7fm7
+ g3Am - Namﬂ—ml - g3Am - Namﬂ—min7 + 'lpAm + >\m5m + g4Em - g4Em - Amsmim =

K Am Em Sm
+ OEm + Mm/:n* - /J'm/m - UEm/ﬂ

m
=Lt -~
where
. . s } ) 52

LT=m+ M+ R+ (>\h “rlih)sh + (Pl +p2)M S, + XpSh + gth +vEn + gllh +Tlp

ok

+WEp + GRE + NomTp + Namme’” + BAY + YA+ A + bm)SEE + AmSm + gaE

+OEm + tmlpy

S E /
L = (mh+ M+ Ry shh + (Mn + wp)Sh+ 9goEn + (pLM 4 X, Sh) Ehh + (pzl\/l—i—'th)/h—h + a1l

+ g2Rh + (T/h + UJEh)Rih + Nam7rm7m + g3Am + Namﬂ'mAl + >\mSmEim + g4Em + l/'m/m
m m

Hk

+0E,"

Im

Since the model parameters and state variables are non-negative, it follows from (52) that
9L <0 if LT < L7and %€ =0 ifandonlyif Si* = Sy, Eff = Ep, I} = Ip, Ry =
Rn, Ayx =Am, SiF=Sm, ENy =En, and 157 =1y

Therefore, the largest compact invariant set within the model’s invariant region is the singleton
{Sp*, Ef*, IE*, Rys, Apx, Syixo Err, Ix¢}. Hence, by the Lasalle’s invariant principle [28], the

unique endemic equilibrium of system (3) is globally asymptotically stable whenever it exists.

3. LocAL SENSITIVITY ANALYSIS

In this section, local sensitivity analysis is carried out to determine the parameters that mostly
contribute to disease spread or increase (Rp). These parameters should be targeted during any
intervention aimed at combating the malaria infections. Using the normalized forward sensitivity

index relation:

w Oow X
ry = xS w (53)
and the model parameter values provided in Table 1 we compute the values for sensitivity indices

of the parameters of the model reproductive number, (Ry) as presented in Table 3.


https://doi.org/10.28924/ada/ma.4.7

Eur. J. Math. Anal.

TaBLE 3. The values of the sensitivity indices

Parameter Sensitivity index

b +1.00

Bh +0.50

Bm +0.50

Th —0.4839

M —0.0161

W +0.4991
—0.2618

7y +0.2620

T —0.4848

0 —0.0291

Tm +1.98 x10~4

k +0.50
+0.4999

o +0.2775

La —1.12 x10~#

hm —1.2779

If the sign of the sensitivity index of a given parameter of Ry is positive, it means Ry is directly
proportional to that parameter. That is, an increase (decrease) in the parameter value when other
parameters remain constant would result in an increase (decrease) in disease incidence. Conversely,
if the sign of the sensitivity index of a given parameter is negative, then Ry is indirectly proportional
to that parameter [29]. From table 3, it is clear that an increase in the parameters: b, B, Gm,
K. 7y, T , and o will lead to an increase in the disease spread (Rp) while an increase in the

parameters: l;,, T, w and p, will result in a reduction of the disease spread Ry and vice versa.

4. NUMERICAL SIMULATIONS

In order to explore the possible impact of the exposed and infected human immigrants on the
dynamical behaviour of the malaria model sub-populations, system (3) is simulated using the fol-
lowing assumed set of initial condition values of the state variables:

{Sr(0), Ex(0), I4(0), RK(0) Am(0), Sm(0), Em(0), Im(0)} = {700, 350, 100, 0, 5000, 1000, 300, 120}}
and the parameter values provided in Table 1. The results (figures 10-13) suggest that the exposed and
infected human immigrants have no influence on the population density of the humans and mosquitoes in
the community. It can also be observed from the simulation results that the population of the immature and

susceptible Anopheles mosquitoes remain high in the community. This implies that efficient vector control
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(@]

strategies for both the immature and mature Anopheles mosquitoes are urgently required if malaria is to be

eradicated from the population.
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5. CONCLUSION

In this study, a deterministic compartmental model for malaria dynamics that takes into consideration the
inflow of exposed and infected migrants and the recovery of exposed humans is formulated and analysed.
In the absence of inflow of exposed and infected humans from elsewhere, the model disease free states are
obtained and the biologically desired infection-free equilibrium point (RDFE) is shown to be both locally and
globally asymptotically stable when the disease reproduction number (Rg) is less than one and unstable if
Ro > 1. Furthermore, we derived the equation for the endemic condition and used the Descartes rule of sign
change to establish the conditions for the model to admit one or three endemic equilibrium state(s). For a
special case of no inflow of exposed or infected migrants, we proved that the model admits a global asymptotic
stable unique endemic equilibrium if Ry > 1 and two endemic equilibria when Ry < 1. The results from our
local sensitivity analysis revealed that adult mosquito removal and biting rates (., and b) are respectively
the most sensitive parameters to the spread of malaria. This suggests that malaria vector control remains
a key factor for consideration in the elimination of malaria epidemics. Our numerical simulation graphical
results indicate that the inflow of exposed and infected migrants has no significant impact on the dynamical
behavior of the model population sub-classes. Thus, we recommend that real immigrants data is used to fit
the malaria model and explore more on the disease dynamics in the presence of exposed or infected human

immigrants.
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