Hybrid Inertial Iterative Method for Fixed point, Variational Inequality and Generalized Mixed Equilibrium Problems in Banach Space

Lawal Umar ${ }^{1, *}$, Yusuf Ibrahim², M.S. Lawan ${ }^{3}$
${ }^{1}$ Department of Mathematics, Federal College of Education, Zaria Kaduna, Nigeria lawalu4@gmail.com
${ }^{2}$ Department of Mathematics, Saadatu Rimi University of Education, Kumbotso Kano, Nigeria danustazz@gmail.com
${ }^{3}$ Department of Mathematics and Statistics, Kaduna Polytechnic Kaduna, Nigeria mslawankh@yahoo.com
*Correspondence: lawalu4@gmail.com

Abstract

In this paper, we introduced a hybrid inertial iterative method which converges strongly to a common element of solution of generalized mixed equilibrium, variational inequality and fixed point problems in a two uniformly smooth and uniformly convex Banach space. Our hybrid inertial iterative method, techniques of proof and corollaries improves, extends and generalizes many results in the literature.

1. introduction

Let B denotes a real Banach space with B^{*} as the dual space of B. We consider $\left\langle\tau_{1}, j\right\rangle$ as the value of the functional $j \in B^{*}$ at $\tau_{1} \in B$ and $\|$.$\| as the norm of B$ or B^{*}. Let $c \neq \emptyset$ be subset of B. A mapping $J: B \longrightarrow 2^{B^{*}}$ is called normalized duality provided that

$$
J \tau_{1}=\left\{\tau_{2} \in B^{*}:\left\langle\tau_{2}, \tau_{1}\right\rangle=\left\|\tau_{1}\right\|^{2}=\left\|\tau_{2}\right\|^{2}\right\}, \forall \tau_{1} \in B .
$$

We denotes the short form GMEP as generalized mixed equilibrium problem: Find $v_{1} \in C$ such that

$$
\begin{equation*}
D\left(v_{1}, v_{2}\right)+\left\langle G v_{1}, v_{2}-v_{1}\right\rangle+\vartheta\left(v_{1}, v_{2}\right)-\vartheta\left(v_{1}, v_{1}\right) \geq 0, \forall v_{2} \in C, \tag{1.1}
\end{equation*}
$$

where $D, \vartheta: C \times C \longrightarrow \mathbb{R}$ and $G: C \longrightarrow B^{*}$ denotes the bifunctions and a nonlinear mapping respectively, also \mathbb{R} is consider as the set of all real numbers. Then, $\operatorname{Sol}(\operatorname{GMEP}(1.1))$ is consider as the solution set of GMEP.(1.1).

[^0]Key words and phrases. Hybrid Inertial Iterative Method; Fixed point problem; Variational Inequality problem; Generalized Mixed Equilibrium Problem.

If $G \equiv 0, G M E P(1.1)$ reduces to generalized equilibrium problem (with $G E P$ as the short form): Find $v_{1} \in C$ such that

$$
\begin{equation*}
D\left(v_{1}, v_{2}\right)+\vartheta\left(v_{1}, v_{2}\right)-\vartheta\left(v_{1}, v_{1}\right) \geq 0, \forall v_{2} \in C . \tag{1.2}
\end{equation*}
$$

Then, $\operatorname{Sol}(G E P(1.2))$ is represent the solution set of $G E P(1.2)$.
If $G \equiv 0$ and $\vartheta \equiv 0, \operatorname{GMEP}(1.1)$ becomes equilibrium problem (with $E P$ as the short form) [3]: Find $v_{1} \in C$ such that

$$
\begin{equation*}
D\left(v_{1}, v_{2}\right) \geq 0, \forall v_{2} \in C \tag{1.3}
\end{equation*}
$$

Then, $\operatorname{Sol}(E P(1.3))$ is consider as the solution set of $E P$.(1.3).
If $D \equiv 0$ and $\vartheta \equiv 0, G M E P(1.1)$ reduces to variational inequality problem (with VIP as the short form): Find $v_{1} \in C$ such that

$$
\begin{equation*}
\left\langle G v_{1}, v_{2}-v_{1}\right\rangle \geq 0, \forall v_{2} \in C \tag{1.4}
\end{equation*}
$$

Then, $\operatorname{Sol}(V I P(1.4))$ is consider as the solution set of $V I P(1.4)$.
Definition 1.1. Let $T: C \longrightarrow C$ be a mapping [6], then
(i) a point $v_{1} \in C$ is called fixed point of T provided that $F(T)=\left\{v_{1} \in C: T v_{1}=v_{1}\right\} \neq \emptyset$;
(ii) a point $v_{0} \in C$ is called an asymptotic fixed point of T provided that $\left\{v_{n}\right\} \subset C, v_{n} \rightharpoonup v_{0}$ such that

$$
\lim _{n \rightarrow \infty}\left\|v_{n}-T v_{n}\right\|=0
$$

The set of asymptotic fixed point of T is denoted by $\hat{F}(T)$;
(iii) T is called quasi- ϕ-nonexpansive provided that $\phi\left(v_{0}, T v\right) \leq \phi\left(v_{0}, v\right)$ and $F(T) \neq \emptyset, \forall v \in$ $C, v_{0} \in F(T)$;
(iv) T is called quasi- ϕ-asymptotically nonexpansive provided that $F(T) \neq \emptyset$ and there exists a sequence $\left\{k_{n}\right\} \subset[1, \infty)$ with $k_{n} \longrightarrow 1$ as $n \rightarrow \infty$ such that

$$
\phi\left(v_{0}, T^{n} v\right) \leq k_{n} \phi\left(v_{0}, v\right), \forall v \in C, v_{0} \in F(T), n \geq 1
$$

Definition 1.2. A function $T: C \longrightarrow B^{*}$ is said to be [6]:
(i) Monotone if $\left\langle\tau_{1}-\tau_{2}, T \tau_{1}-T \tau_{2}\right\rangle \geq 0, \forall \tau_{1}, \tau_{2} \in B$;
(ii) γ-inverse strongly monotone (with ism as short form) if $\exists \gamma>0$ such that

$$
\left\langle\tau_{1}-\tau_{2}, T \tau_{1}-T \tau_{2}\right\rangle \geq \gamma\left\|T \tau_{1}-T \tau_{2}\right\|^{2}, \forall \tau_{1}, \tau_{2} \in B
$$

(iii) Lipschitz continuous if $\exists L>0$ such that $\left\|T \tau_{1}-T \tau_{2}\right\| \leq L\left\|\tau_{1}-\tau_{2}\right\|, \forall \tau_{1}, \tau_{2} \in B$. If T is $\gamma-i s m$, then it is Lipschitz continuous with $\frac{1}{\gamma}$ as a constant.

Definition 1.3. A mapping $\Pi_{C}: B \longrightarrow C$ is called generalized projection [6], provided that $\Pi_{C} \tau_{1}=$ v_{0}, for any $\tau_{1} \in B$ and v_{0} be the solution of $\phi\left(v_{0}, \tau_{1}\right)=\inf _{v \in C} \phi\left(v, \tau_{1}\right)$.

An inertial-type algorithm is a method for speeding the convergence of the sequence of an algorithm introduced by Polyak [16]. Numerous problems have been approximated by using inertial algorithms (for more details see, $[4,5,12$] and the references therein). Mainge [13] proposed and studied the development of an inertial- type algorithm method as follows:

$$
\left\{\begin{array}{l}
u_{n}=\omega_{n}+\theta_{n}\left(\omega_{n}-\omega_{n-1}\right), \\
\omega_{n+1}=\left(1-\delta_{n}\right) u_{n}+\delta_{n} T u_{n}
\end{array}\right.
$$

Takahashi and Zembayashi [17] Proposed an iterative process which converges strongly to a common element of solution of equilibrium problem and fixed point problem of relatively nonexpansive mapping. Furthermore, the generalization of the proposed iterative process [17] have been carried out by many researchers (for more details see, $[7,8,11,18,20]$ and the references therein). Kazmi and $\mathrm{Ali}[10]$ introduced an iterative algorithm for solving a common solution of $E P$.(1.3). and fixed point problemof quasi- ϕ - asymptotically nonexpansive mapping.
Alansari et al. [1] studied an inertial iterative method for finding a common solution of generalized equilibrium, variational inequality and fixed point problems using the sequences $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ generated by the iterative algorithm:

$$
\left\{\begin{array}{l}
x_{0}=x_{1}, z_{0} \in C, C_{0}:=C ; \\
\mu_{n}=x_{n}+\alpha_{n}\left(x_{n}-x_{n-1}\right) ; \\
y_{n}=\Pi_{C} J^{-1}\left(J \mu_{n}-w_{n} G \mu_{n}\right) ; \\
u_{n}=J^{-1}\left(\delta_{n} J z_{n}+\left(1-\delta_{n}\right) J T y_{n}\right) ; \\
z_{n+1}=T_{r_{n}} u_{n} ; \\
C_{n}=\left\{u \in C: \phi\left(u, z_{n+1}\right) \leq \delta_{n} \phi\left(u, z_{n}\right)+\left(1-\delta_{n}\right) \phi\left(u, \mu_{n}\right) ;\right. \\
\left.Q_{n}=\left\langle u \in C: x_{n}-u, J x_{n}-J x_{0}\right\rangle \leq 0\right\} ; \\
x_{n+1}=\Pi_{C_{n} \cap Q_{n} x_{0}, \forall n \geq 0,}
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\} \subset(0,1),\left\{w_{n}\right\} \subset(0, \infty),\left\{\delta_{n}\right\} \subset[0,1]$ and $\left\{r_{n}\right\} \subset[a, \infty)$, for some $a>0$. Then, $\left\{x_{n}\right\}$ converges strongly to $\varpi=\Pi_{\Gamma} x_{0}$.

Farid et al. [6] proposed the following inertial algorithm for approximating a common solution of generalized mixed equilibrium problem, variational inequality problem and fixed point problem for family of quasi $-\phi$-nonexpansive mappings:

$$
\left\{\begin{array}{l}
x_{0}, x_{1} \in q, \quad q_{1}:=q ; \\
\omega_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right) \\
y_{n}=\Pi_{q} J^{-1}\left(J \omega_{n}-w_{n} Q \omega_{n}\right) ; \\
v_{n}=J^{-1}\left(\delta_{n, 0} J \omega_{n}+\sum_{i=1}^{N} \delta_{n, i} J T_{i} \omega_{n}\right) ; \\
z_{n}=J^{-1}\left(\alpha_{n} J y_{n}+\left(1-\alpha_{n}\right) J v_{n}\right) ; \\
u_{n}=T_{r_{n}} z_{n} ; \\
q_{n}=\left\{u \in q: \phi\left(u, u_{n}\right) \leq \phi\left(u, \omega_{n}\right) ;\right. \\
\left.Q_{n}=\left\langle u \in q: x_{n}-u, J x_{n}-J x_{0}\right\rangle \leq 0\right\} ; \\
x_{n+1}=\Pi_{q_{n} \cap Q_{n} x_{0}, \forall n \geq 1} .
\end{array}\right.
$$

Consider $\left\{\delta_{n, i}\right\}$ and $\left\{\alpha_{n}\right\} \subset[0,1],\left\{w_{n}\right\} \subset(0, \infty),\left\{\theta_{n}\right\} \subset(0,1)$ and $\left\{r_{n}\right\} \subset[a, \infty)$, for some $a>0$. It has been proved that $\left\{x_{n}\right\}$ is a strong convergent to $\hat{x}=\Pi_{\Omega} x_{0}$.

Motivated and inspired by the work of Kazmi and Ali [10], Alansari et al. [1] and Farid et al. [6]. We proposed a hybrid inertial iterative algorithm for approximating a common solution of GMEP.(1.1), VIP (1.4) and fixed point problem for a family of two quasi- ϕ-asymptotically nonexpansive mappings in two- uniformly convex and uniformly smooth Banach spaces. Our result extends and improves the results of Kazmi and Ali [10], Alansari et al. [1] and Farid et al. [6], many results in the literature.

2. Preliminaries

Let $W=\left\{\tau_{1} \in B:\left\|\tau_{1}\right\|=1\right\}$ be the unit sphere of B. If for any $\varepsilon \in(0,2]$ there exists $\delta>0$ such that $\left\|\tau_{1}-\tau_{2}\right\| \geq \varepsilon \Longrightarrow \frac{\left\|\tau_{1}+\tau_{2}\right\|}{2} \leq 1-\delta, \forall \tau_{1}, \tau_{2} \in W$, then B is called uniformly convex. B is called strictly convex if $\frac{\left\|\tau_{1}+\tau_{2}\right\|}{2}<1, \forall \tau_{1}, \tau_{2} \in W$ and $\tau_{1} \neq \tau_{2}$. The space B is called smooth if $\lim _{t \rightarrow 0} \frac{\left\|\tau_{1}+t \tau_{2}\right\|-\left\|\tau_{1}\right\|}{t}$ exists, $\forall \tau_{1}, \tau_{2} \in W$ and also is said to be uniformly smooth if the limit is attained uniformly, $\forall \tau_{1}, \tau_{2} \in W$.
A function $\phi: B \times B \longrightarrow \mathbb{R}$ defined by

$$
\phi\left(\tau_{1}, \tau_{2}\right)=\left\|\tau_{1}\right\|^{2}-2\left\langle\tau_{1}, J \tau_{2}\right\rangle+\left\|\tau_{2}\right\|^{2}, \forall \tau_{1}, \tau_{2} \in B
$$

is consider as Lyapunov functional. From the definition of ϕ, the following properties can be verified [6]:
$\left(L_{1}\right) \quad\left(\left\|\tau_{1}\right\|-\left\|\tau_{2}\right\|\right)^{2} \leq \phi\left(\tau_{1}, \tau_{2}\right) \leq\left(\left\|\tau_{1}\right\|+\left\|\tau_{2}\right\|\right)^{2}, \forall \tau_{1}, \tau_{2} \in B$;
$\left(L_{2}\right) \phi\left(\tau_{1}, J^{-1}\left(\lambda J \tau_{2}+(1-\lambda) J \tau_{3}\right)\right) \leq \lambda \phi\left(\tau_{1}, \tau_{2}\right)+(1-\lambda) \phi\left(\tau_{1}, \tau_{3}\right), \forall \tau_{1}, \tau_{2}, \tau_{3} \in B$,
$\left(L_{3}\right) \phi\left(\tau_{1}, \tau_{2}\right)=\left\|\tau_{1}\right\|\left\|J \tau_{1}-J \tau_{2}\right\|+\left\|\tau_{2}\right\|\left\|\tau_{1}-\tau_{2}\right\|, \forall \tau_{1}, \tau_{2} \in B$.

Remark 2.1. Consider B as smooth, strictly convex and reflexive Banach space, then

$$
\phi\left(\tau_{1}, \tau_{2}\right)=0 \Longleftrightarrow \tau_{1}=\tau_{2}, \forall \tau_{1}, \tau_{2} \in B
$$

Lemma 2.2. [9] Let $C \neq \emptyset$ be closed convex subset of a stricly convex, reflexive and smooth Banach space B. Then, $\exists a$ unique element $\tau_{0} \in C$ such that $\phi\left(\tau_{0}, \tau_{1}\right)=\inf _{v \in C} \phi\left(v, \tau_{1}\right)$, for $\tau_{1} \in B$.

Lemma 2.3. [15] Let B be a uniformly convex and smooth Banach space, $C \subset B$ be closed convex and $T: C \longrightarrow C$ be closed and quasi- ϕ-asymptotically nonexpansive mapping. Then, $F(T)$ is closed and convex.

Lemma 2.4. [14] Let $C \neq \emptyset$ be closed convex subset of B and $Q: C \longrightarrow B^{*}$ be monotone and hemicontinuous function. Then VIP(1.4). is closed and convex

Lemma 2.5. [19] Let B be a 2 -uniformly convex and smooth Banach space. Then, $\tau_{1}, \tau_{2} \in$ $B, \phi\left(\tau_{1}, \tau_{2}\right) \geq \delta\left\|\tau_{1}-\tau_{2}\right\|^{2}$, where $0<\delta \leq 1$ and called two-uniformly convex constant.

Lemma 2.6. [19] Let B be a two-uniformly convex Banach space, then

$$
\left\|\tau_{1}-\tau_{2}\right\| \leq \frac{2}{\delta}\left\|J \tau_{1}-J \tau_{2}\right\|, \forall \tau_{1}, \tau_{2} \in B
$$

where $0<\delta \leq 1$.
Lemma 2.7. [9] Let E be a smooth and uniformly convex Banach space and let $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ be sequences in E such that either $\left\{u_{n}\right\}$ or $\left\{v_{n}\right\}$ is bounded. If $\lim _{n \rightarrow \infty} \phi\left(u_{n}, v_{n}\right)=0$, then $\lim _{n \rightarrow \infty} \|$ $u_{n}-v_{n} \|=0$.

Remark 2.8. By considering (L_{3}), it is observe that the converse of Lemma 2.7 is true, provided that $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are bounded

Lemma 2.9. [2] Let $C \neq \emptyset$ be closed convex subset of a stricly convex, reflexive and smooth Banach space B. Then,

$$
\phi\left(v, \Pi_{C} \tau_{1}\right)+\phi\left(\Pi_{C} \tau_{1}, \tau_{1}\right) \leq\left(v, \tau_{1}\right), \forall v \in C, \tau_{1} \in B
$$

And, so for any $\tau_{1} \in B$ and $v \in C$,

$$
u=\Pi_{C} \tau_{1} \Longleftrightarrow\left\langle v-u, J \tau_{1}-J v\right\rangle, \forall u \in C
$$

Assumption 1: Consider $D: C \times C \longrightarrow \mathbb{R}$ as a bifunction satisfies the following assumptions [3]: $\left(D_{1}\right) D(v, v)=0, \forall v \in C$;
$\left(D_{2}\right) D$ is monotone, 1.e, $D(v, u)+D(u, v) \leq 0, \forall v, u \in C$;
$\left(D_{3}\right)$ the mapping $v \mapsto D(v, u)$ is upper hemicontinuity, $\forall u \in C$.
$\left(D_{4}\right)$ the mapping $u \mapsto D(v, u), u \in C$ is convex and lower semicontinuous.
Assumption 2: Also consider $v: C \times C \longrightarrow \mathbb{R}$ as a bifunction satisfying the following assumptions:
$\left(\vartheta_{1}\right) \vartheta$ is skew-symmetric, i.e., $\vartheta(v, v)-\vartheta(v, u)-\vartheta(u, v)+\vartheta(u, u) \geq 0, \forall v, u \in C$;
$\left(\vartheta_{2}\right) \vartheta$ is convex in the second argument;
$\left(\vartheta_{3}\right) \vartheta$ is continuous.
Lemma 2.10. [1,6,21] Let B a uniformly smooth, strictly convex and reflexive Banach space and $C \subset B$ be closed. Let $G: C \longrightarrow B^{*}$ be a continuous and monotone mapping, $D: C \times C \longrightarrow \mathbb{R}$ be a bifunction satisfying Assumptions 1 and $\vartheta: C \times C \longrightarrow \mathbb{R}$ be a bifunction satisfying Assumptions 2. For any given number $r>0$ and $\tau_{1} \in B$, define a mapping $T_{r}: B \longrightarrow C$ by $T_{r}\left(\tau_{1}\right)=\left\{u \in C: D(u, v)+\langle v-u, G u\rangle+\frac{1}{r}\left\langle v-u, J u-J \tau_{1}\right\rangle+\psi(u, v)-\psi(u, u) \geq 0, \forall y \in C\right\}$,
$\forall v \in B$.
The mapping T_{r} has the following properties:
$\left(p_{1}\right) T_{r}$ is single-valued;
$\left(p_{2}\right) T_{r}$ is a firmly nonexpansive - type mapping, for all $\tau_{1}, \tau_{2} \in B$,

$$
\left\langle T_{r} \tau_{1}-T_{r} \tau_{2}, J T_{r} \tau_{1}-J T_{r} \tau_{2}\right\rangle \leq\left\langle T_{r} \tau_{1}-T_{r} \tau_{2}, J \tau_{1}-J \tau_{2}\right\rangle,
$$

($\left.p_{3}\right) F\left(T_{r}\right)=\operatorname{Sol}(\operatorname{GMEP}(1.1))$ is closed convex set of C;
$\left(p_{4}\right) T_{r}$ is quasi- $\phi-$ nonexpansive;
$\left(p_{5}\right) \phi\left(v_{0}, T_{r} \tau_{1}\right)+\phi\left(T_{r} \tau_{1}, \tau_{1}\right) \leq \phi\left(v_{0}, \tau_{1}\right), \forall v_{0} \in F\left(T_{r}\right), \tau_{1} \in B$.
Furthermore, consider the map $\Phi: B \times B^{*} \longrightarrow \mathbb{R}$, defined by

$$
\Phi\left(\tau_{1}, \tau_{1}^{*}\right)=\left\|\tau_{1}\right\|^{2}-\left\langle\tau_{1}, \tau_{1}^{*}\right\rangle+\left\|\tau_{1}^{*}\right\|^{2}
$$

Observe that $\Phi\left(\tau_{1}, \tau_{1}^{*}\right)=\Phi\left(\tau_{1}, J^{-1} \tau_{1}^{*}\right)$
Lemma 2.11. [2] Let B be a strictly convex, smooth and reflexive Banach space. Then

$$
\Phi\left(\tau_{1}, \tau_{1}^{*}\right)+2\left\langle J^{-1} \tau_{1}^{*}-\tau_{1}, \tau_{2}^{*}\right\rangle \leq \Phi\left(\tau_{1}, \tau_{1}^{*}+\tau_{2}^{*}\right), \forall \tau_{1} \in B, \tau_{1}^{*}, \tau_{2}^{*} \in B^{*}
$$

3. Main Results

Theorem 3.1. Let C be a nonempty closed and convex subset of a 2 uniformly smooth and uniformly convex Banach space B with B^{*} as the dual space of B. Let $Q: \longrightarrow B^{*}$ be a γ-ism mapping with $\gamma \in(0,1)$ as a constant. Let $D: C \times C \longrightarrow \mathbb{R}$ be a bifunction satisfying Assumption 1, $\vartheta: C \times C \longrightarrow \mathbb{R}$ be a bifunction satisfying Assumption 2 and $G: C \longrightarrow B^{*}$ be a monotone and continuous mapping. Let $T_{i}: C \longrightarrow C$ and $S_{i}: C \longrightarrow C$, for each $i=1,2, \ldots, N$ be two finite family of closed I_{i}-Lipschitz continuous and uniformly quasi- ϕ-asymptotically nonexpansive mappings such that $\Omega:=\left(\cap_{i=1}^{N} F\left(T_{i}\right)\right) \cap\left(\cap_{i=1}^{N} F\left(S_{i}\right)\right) \cap \operatorname{SoI}(\operatorname{VIP}(1.4)) \cap \operatorname{Sol}(G M E P(1.1)) \neq \emptyset$. Let $\left\{x_{n}\right\}$
generated by algorithm :

$$
\left\{\begin{array}{l}
x_{0}, x_{1} \in C, C_{1}:=C \tag{3.1}\\
\omega_{n}=x_{n}+\alpha_{n}\left(x_{n}-x_{n-1}\right) \\
v_{n}=\Pi_{C} J^{-1}\left(J \omega_{n}-\beta_{n} Q \omega_{n}\right) \\
y_{n}=J^{-1}\left(\mu_{n, 0} J \omega_{n}+\sum_{i=1}^{N} \mu_{n, i} J T_{i}^{n} \omega_{n}\right) \\
z_{n}=J^{-1}\left(\eta_{n, 0} J v_{n}+\sum_{i=1}^{N} \eta_{n, i} J S_{i}^{n} y_{n}\right) \\
u_{n}=T_{r_{n}} z_{n}, \\
C_{n+1}=\left\{u \in C_{n}: \phi\left(u, u_{n}\right) \leq k_{n}^{2} \phi\left(u, \omega_{n}\right)\right\} \\
x_{n+1}=\Pi_{C_{n+1}} x_{0}, \forall n \geq 1
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\} \subset(0,1),\left\{\mu_{n, i}\right\} \subset[0,1]$ and $\left\{\eta_{n, i}\right\} \subset(0,1]$ satisfying the following conditions:
$\left(S_{1}\right) \sum_{i=0}^{N} \mu_{n, i}=1$;
$\left(S_{2}\right) \sum_{i=0}^{N} \eta_{n, i}=1$
$\left(S_{3}\right) \limsup _{n \rightarrow \infty} \eta_{n, 0}<1$;
$\left(S_{4}\right)$ for same $a>0, r_{n} \in[a, \infty)$;
$\left(S_{5}\right)\left\{\beta_{n}\right\} \subset(0, \infty)$ satisfying the condition $0<\liminf _{n \rightarrow \infty} \beta_{n}<\frac{\delta^{2} \gamma}{2}$, where $0<\delta \leq 1$.
Then, $\left\{x_{n}\right\}$ converges strongly to ϖ, where $\varpi=\Pi_{\Omega} x_{0}$ is consider as the generalized projection of ϖ onto Ω.

Proof. We consider the proof in the following steps:
Step 1 : We show that C_{n+1} is closed and convex for each $n \geq 1$ and $\left\{x_{n}\right\}$ is well defined. Observe clearly that $C_{1}=C$ is closed and convex. Suppose that C_{n} is closed and convex for each $n \in \mathbb{N}$. Now, we know from 3.1 that for any $u \in C_{n}$,

$$
\begin{aligned}
\phi\left(u, u_{n}\right) \leq k_{n}^{2} \phi\left(u, \omega_{n}\right) & \Longleftrightarrow\left(1-k_{n}^{2}\right)\left[\|u\|^{2}-2\left(1-k_{n}^{2}\right)\left\langle u, J u_{n}\right\rangle+2 k_{n}^{2}\left\langle u, J \omega_{n}-J u_{n}\right\rangle\right] \\
& \leq k_{n}^{2}\left\|\omega_{n}\right\|^{2}-\left\|u_{n}\right\|^{2}
\end{aligned}
$$

Then, C_{n+1} is closed and convex. Implies that $\Pi_{C_{n+1}} x_{0}$ is well defined $\forall n \geq 1$, also $\left\{x_{n}\right\}$ is well defined. Furthermore since $\Omega \neq \emptyset$, by considering Lemma 2.3, 2.4 and 2.10 we conclude that Ω is closed and convex, and so $\Pi_{\Omega} x_{0}$ is well defined.
Step 2 : we show that $\Omega \subset C_{n}, \forall n \geq 1$. It is Obvious that $\Omega \subset C_{1}=C$. Suppose that $\Omega \subset C_{n}$ for some $n \geq 1$. Let $\hat{x} \in \Omega$, from the definition of ϕ, quasi- ϕ-asymptotically nonexpansive mapping
of S_{i} and convexity of $\|.\|^{2}$ we have the following estimate:

$$
\begin{align*}
\phi\left(\hat{x}, u_{n}\right) & =\phi\left(\hat{x}, T_{r_{n}} z_{n}\right) \\
& \leq \phi\left(\hat{x}, z_{n}\right) \tag{3.2}\\
& =\phi\left(\hat{x}, J^{-1}\left(\eta_{n, 0} J v_{n}+\sum_{i=1}^{N} \eta_{n, i} J S_{i}^{n} y_{n}\right)\right) \\
& =\|\hat{x}\|^{2}-2\left(\left\langle\hat{x}, \eta_{n, 0} J v_{n}+\sum_{i=1}^{N} \eta_{n, i} J S_{i}^{n} y_{n}\right\rangle\right)+\left\|\eta_{n, 0} J v_{n}+\sum_{i=1}^{N} \eta_{n, i} J S_{i}^{n} y_{n}\right\|^{2} \\
& \leq\|\hat{x}\|^{2}-2 \eta_{n, 0}\left\langle\hat{x}, J v_{n}\right\rangle-2 \sum_{i=1}^{N} \eta_{n, i}\left\langle\hat{x}, J S_{i}^{n} y_{n}\right\rangle+\eta_{n, 0}\left\|J v_{n}\right\|^{2} \\
& +\sum_{i=1}^{N} \eta_{n, i}\left\|J S_{i}^{n} y_{n}\right\|^{2} \\
& =\eta_{n, 0}\left(\|\hat{x}\|^{2}-2\left\langle\hat{x}, J v_{n}\right\rangle+\left\|v_{n}\right\|^{2}\right)+\sum_{i=1}^{N} \eta_{n, i}\left(\|\hat{x}\|^{2}-2\left\langle\hat{x}, J S_{i}^{n} y_{n}\right\rangle+\left\|S_{i}^{n} y_{n}\right\|^{2}\right) \\
& =\eta_{n, 0} \phi\left(\hat{x}, v_{n}\right)+\sum_{i=1}^{N} \eta_{n, i} \phi\left(\hat{x}, S_{i}^{n} y_{n}\right) \\
& \leq \eta_{n, 0} \phi\left(\hat{x}, v_{n}\right)+k_{n} \sum_{i=1}^{N} \eta_{n, i} \phi\left(\hat{x}, y_{n}\right) \tag{3.3}
\end{align*}
$$

Similarly, by quasi- ϕ-asymptotically nonexpansive of T_{i}, definition of ϕ and convexity of $\|.\|^{2}$, we estimate as follows:

$$
\begin{align*}
\phi\left(\hat{x}, y_{n}\right) & =\phi\left(\hat{x}, J^{-1}\left(\mu_{n, 0} J \omega_{n}+\sum_{i=1}^{N} \mu_{n, i} J T_{i}^{n} \omega_{n}\right)\right) \\
& =\|\hat{x}\|^{2}-2\left(\left\langle\hat{x}, \mu_{n, 0} J \omega_{n}+\sum_{i=1}^{N} \mu_{n, i} J T_{i}^{n} \omega_{n}\right\rangle\right)+\left\|\mu_{n, 0} J \omega_{n}+\sum_{i=1}^{N} \mu_{n, i} J T_{i}^{n} \omega_{n}\right\|^{2} \\
& \leq\|\hat{x}\|^{2}-2 \mu_{n, 0}\left\langle\hat{x}, J \omega_{n}\right\rangle-2 \sum_{i=1}^{N} \mu_{n, i}\left\langle\hat{x}, J T_{i}^{n} \omega_{n}\right\rangle+\mu_{n, 0}\left\|J \omega_{n}\right\|^{2} \\
& +\sum_{i=1}^{N} \mu_{n, i}\left\|J T_{i}^{n} \omega_{n}\right\|^{2} \\
& =\mu_{n, 0}\left(\|\hat{x}\|^{2}-2\left\langle\hat{x}, J \omega_{n}\right\rangle+\left\|\omega_{n}\right\|^{2}\right)+\sum_{i=1}^{N} \mu_{n, i}\left(\|\hat{x}\|^{2}-2\left\langle\hat{x}, J T_{i}^{n} \omega_{n}\right\rangle+\left\|T_{i}^{n} \omega_{n}\right\|^{2}\right) \\
& =\mu_{n, 0} \phi\left(\hat{x}, \omega_{n}\right)+\sum_{i=1}^{N} \mu_{n, i} \phi\left(\hat{x}, T_{i}^{n} \omega_{n}\right) \\
& \leq \mu_{n, 0} \phi\left(\hat{x}, \omega_{n}\right)+k_{n} \sum_{i=1}^{N} \mu_{n, i} \phi\left(\hat{x}, \omega_{n}\right) \\
& \leq k_{n} \mu_{n, 0} \phi\left(\hat{x}, \omega_{n}\right)+k_{n} \sum_{i=1}^{N} \mu_{n, i} \phi\left(\hat{x}, \omega_{n}\right) \\
& =k_{n} \phi\left(\hat{x}, \omega_{n}\right) \tag{3.4}
\end{align*}
$$

It has been observe from (3.3) and (3.4) that

$$
\begin{align*}
\phi\left(\hat{x}, u_{n}\right) & \leq \eta_{n, 0} \phi\left(\hat{x}, v_{n}\right)+k_{n} \sum_{i=1}^{N} \eta_{n, i}\left[k_{n} \phi\left(\hat{x}, \omega_{n}\right)\right] \\
& =\eta_{n, 0} \phi\left(\hat{x}, v_{n}\right)+k_{n}^{2} \sum_{i=1}^{N} \eta_{n, i} \phi\left(\hat{x}, \omega_{n}\right) \\
& \leq k_{n}^{2} \eta_{n, 0} \phi\left(\hat{x}, v_{n}\right)+k_{n}^{2} \sum_{i=1}^{N} \eta_{n, i} \phi\left(\hat{x}, \omega_{n}\right) \tag{3.5}
\end{align*}
$$

Also, by Lemma 2.6 and 2.11, we estimate as:

$$
\begin{align*}
\phi\left(\hat{x}, v_{n}\right) & =\phi\left(\hat{x}, \Pi_{C} J^{-1}\left(J \omega_{n}-\beta_{n} Q \omega_{n}\right)\right) \\
& \leq \phi\left(\hat{x}, J^{-1}\left(J \omega_{n}-\beta_{n} Q \omega_{n}\right)\right) \\
& =\phi\left(\hat{x}, J \omega_{n}-\beta_{n} Q \omega_{n}\right) \\
& \leq \phi\left(\hat{x},\left(J \omega_{n}-\beta_{n} Q \omega_{n}\right)+\beta_{n} Q \omega_{n}\right)-2\left\langle J^{-1}\left(J \omega_{n}-\beta_{n} Q \omega_{n}\right)-\hat{x}, \beta_{n} Q \omega_{n}\right\rangle \\
& =\phi\left(\hat{x}, J \omega_{n}\right)-2 \beta_{n}\left\langle J^{-1}\left(J \omega_{n}-\beta_{n} Q \omega_{n}\right)-\hat{x}, Q \omega_{n}\right\rangle \\
& =\phi\left(\hat{x}, \omega_{n}\right)-2\left\langle\omega_{n}-\hat{x}, Q \omega_{n}\right\rangle-2 \beta_{n}\left\langle J^{-1}\left(J \omega_{n}-\beta_{n} Q \omega_{n}\right)-\omega_{n}, Q \omega_{n}\right\rangle \\
& =\phi\left(\hat{x}, \omega_{n}\right)-2\left\langle\omega_{n}-\hat{x}, Q \omega_{n}-Q \hat{x}\right\rangle-2 \beta_{n}\left\langle J^{-1}\left(J \omega_{n}-\beta_{n} Q \omega_{n}\right)-\omega_{n}, Q \omega_{n}\right\rangle \\
& \leq \phi\left(\hat{x}, \omega_{n}\right)-2 \beta_{n} \gamma\left\|Q \omega_{n}\right\|^{2}+2 \beta_{n}\left\|J^{-1}\left(J \omega_{n}-Q \omega_{n}\right)-J^{-1} J \omega_{n}\right\|\left\|Q \omega_{n}\right\|^{2} \\
& \leq \phi\left(\hat{x}, \omega_{n}\right)-2 \beta_{n} \gamma\left\|Q \omega_{n}\right\|^{2}+\frac{4 \beta_{n}^{2}}{\delta^{2}}\left\|Q \omega_{n}\right\|^{2} \\
& =\phi\left(\hat{x}, \omega_{n}\right)-2 \beta_{n}\left(\gamma-\frac{2 \beta_{n}}{\delta^{2}}\right)\left\|Q \omega_{n}\right\|^{2}, \tag{3.6}
\end{align*}
$$

if follows by combined with $\beta_{n}<\frac{\delta^{2}}{2}$ that

$$
\begin{equation*}
\phi\left(\hat{x}, v_{n}\right) \leq \phi\left(\hat{x}, \omega_{n}\right) \tag{3.7}
\end{equation*}
$$

Now, putting (3.7) in (3.5) leads to

$$
\begin{aligned}
\phi\left(\hat{x}, u_{n}\right) & \leq k_{n}^{2} \eta_{n, 0} \phi\left(\hat{x}, \omega_{n}\right)+k_{n}^{2} \sum_{i=1}^{N} \eta_{n, i} \phi\left(\hat{x}, \omega_{n}\right) \\
& =\left(\eta_{n, 0}+\sum_{i=1}^{N} \eta_{n, i}\right) k_{n}^{2} \phi\left(\hat{x}, \omega_{n}\right) \\
& =k_{n}^{2} \phi\left(\hat{x}, \omega_{n}\right)
\end{aligned}
$$

which gives

$$
\begin{equation*}
\phi\left(\hat{x}, u_{n}\right) \leq k_{n}^{2} \phi\left(\hat{x}, \omega_{n}\right) \tag{3.8}
\end{equation*}
$$

Therefore $\hat{x} \in C_{n+1}$, implies that $\Omega \subset C_{n+1}$. Hence $\Omega \subset C_{n}, \forall n \geq 1$.

Step 3 : we show that $\left\{x_{n}\right\},\left\{\omega_{n}\right\},\left\{v_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\}$ and $\left\{u_{n}\right\}$ are bounded and $\left\{x_{n}\right\}$ is Cauchy. We consider $x_{n}=\Pi_{C_{n}} x_{0}$ and $C_{n+1} \subset C_{n}, \forall n \geq 1$. Then from Lemma 2.9, we observe that

$$
\phi\left(x_{n}, x_{0}\right) \leq \phi\left(x_{n+1}, x_{0}\right)
$$

Hence $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ is non decreasing. Also it has been observe that

$$
\phi\left(x_{n}, x_{0}\right)=\phi\left(\Pi_{C_{n} x_{0}}, x_{0}\right) \leq \phi\left(\hat{x}, x_{0}\right)-\phi\left(\hat{x}, x_{n}\right) \leq \phi\left(\hat{x}, x_{0}\right),
$$

which gives that $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ is bounded and $\left\{x_{n}\right\}$ is also bounded. Therefore, since $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ non decreasing. $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ convergent. Taking the advantage of $\left\{x_{n}\right\}$ as a bounded sequence implies that $\left\{\omega_{n}\right\},\left\{v_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\}$ and $\left\{u_{n}\right\}$ are all bounded. Also by Lemma 2.9, we have

$$
\begin{align*}
\phi\left(x_{m}, x_{n}\right) & =\phi\left(x_{m}, \Pi_{C_{n}} x_{0}\right) \\
& \leq \phi\left(x_{m}, x_{0}\right)-\phi\left(x_{n}, x_{0}\right) \longrightarrow 0 \text { as } n, m \rightarrow \infty . \tag{3.9}
\end{align*}
$$

By Lemma 2.7, we have $\lim _{n \rightarrow \infty}\left\|x_{m}-x_{n}\right\|=0$. Hence $\left\{x_{n}\right\}$ is a Cauchy sequence.
Step 4 : we show that $x_{n} \longrightarrow \varpi, \omega_{n} \longrightarrow \varpi, u_{n} \longrightarrow \varpi, z_{n} \longrightarrow \varpi, y_{n} \longrightarrow \varpi$ and $v_{n} \longrightarrow \varpi($ as $n \rightarrow \infty)$. Since $\left\{x_{n}\right\}$ is a Cauchy sequence, then by the closedness of C and the completeness of B, we can assume that there exists $\varpi \in C$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=\varpi \tag{3.10}
\end{equation*}
$$

Now, setting $m=n+1$ in (3.9), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, x_{n}\right)=0 \tag{3.11}
\end{equation*}
$$

Using Lemma 2.7, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.12}
\end{equation*}
$$

We observe from (3.1) that

$$
\left\|\omega_{n}-x_{n}\right\|=\left\|\alpha_{n}\left(x_{n}-x_{n-1}\right)\right\| \leq\left\|x_{n}-x_{n-1}\right\|
$$

Using (3.12), we arrive at

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\omega_{n}-x_{n}\right\|=0 \tag{3.13}
\end{equation*}
$$

By (3.10) and (3.13), we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \omega_{n}=\varpi \tag{3.14}
\end{equation*}
$$

Taking the advantage of Remark 2.8, (3.13) and boundedness of $\left\{\omega_{n}\right\}$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(\omega_{n}, x_{n}\right)=0 \tag{3.15}
\end{equation*}
$$

Also, by (3.12) and (3.13), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-\omega_{n}\right\|=0 \tag{3.16}
\end{equation*}
$$

Using Remark 2.8, we present (3.16) as

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, \omega_{n}\right)=0 \tag{3.17}
\end{equation*}
$$

We observe from $x_{n+1}=\Pi_{C_{n+1} x_{0}} \in C_{n+1} \subset C_{n}$ and definition of C_{n} that

$$
\phi\left(x_{n+1}, u_{n}\right) \leq k_{n}^{2} \phi\left(x_{n+1}, \omega_{n}\right)
$$

Using (3.17,) we obtain

$$
\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, u_{n}\right)=0
$$

Applying Lemma 2.7, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-u_{n}\right\|=0 \tag{3.18}
\end{equation*}
$$

Taking the advantage of triangular inequality, we present

$$
\left\|x_{n}-u_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-u_{n}\right\|
$$

By (3.12) and (3.18), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0 \tag{3.19}
\end{equation*}
$$

It follows from (3.10) and (3.19) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} u_{n}=\varpi \tag{3.20}
\end{equation*}
$$

Similarly, by definition of C_{n} and $x_{n+1}=\Pi_{C_{n+1} x_{0}} \in C_{n+1} \subset C_{n}$, we also present that

$$
\phi\left(x_{n+1}, z_{n}\right) \leq k_{n}^{2} \phi\left(x_{n+1}, \omega_{n}\right)
$$

By applying (3.17,) we arrive at

$$
\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, z_{n}\right)=0
$$

Using Lemma 2.7, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-z_{n}\right\|=0 \tag{3.21}
\end{equation*}
$$

Taking into account that

$$
\left\|x_{n}-z_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-z_{n}\right\|
$$

Using (3.12) and (3.21), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0 \tag{3.22}
\end{equation*}
$$

By considering(3.10) and (3.22), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} z_{n}=\varpi \tag{3.23}
\end{equation*}
$$

Also from the definition of C_{n} and $x_{n+1}=\Pi_{C_{n+1}} x_{0} \in C_{n+1} \subset C_{n}$, we estimate as

$$
\phi\left(x_{n+1}, y_{n}\right) \leq k_{n}^{2} \phi\left(x_{n+1}, \omega_{n}\right)
$$

By (3.17,) we get

$$
\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, y_{n}\right)=0
$$

It follows from Lemma 2.7 that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-y_{n}\right\|=0 \tag{3.24}
\end{equation*}
$$

By triangular inequality, we obtain

$$
\left\|x_{n}-y_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\|
$$

Also by (3.12) and (3.24), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0 \tag{3.25}
\end{equation*}
$$

Using (3.10) and (3.25), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} y_{n}=\varpi \tag{3.26}
\end{equation*}
$$

Finally, by considering $x_{n+1}=\Pi_{C_{n+1} x_{0}} \in C_{n+1} \subset C_{n}$ and definition of C_{n}, we present that

$$
\phi\left(x_{n+1}, v_{n}\right) \leq k_{n}^{2} \phi\left(x_{n+1}, \omega_{n}\right)
$$

Applying (3.17,) we obtain

$$
\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, v_{n}\right)=0
$$

By Lemma 2.7, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-v_{n}\right\|=0 \tag{3.27}
\end{equation*}
$$

We consider the following estimate using triangular inequality

$$
\left\|x_{n}-v_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-v_{n}\right\|
$$

Using (3.12) and (3.27), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-v_{n}\right\|=0 \tag{3.28}
\end{equation*}
$$

Using (3.10) and (3.28), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} v_{n}=\varpi \tag{3.29}
\end{equation*}
$$

Step 4: we show that $\left\|\omega_{n}-T_{i}^{n} \omega_{n}\right\|=\left\|y_{n}-S_{i}^{n} y_{n}\right\|=0$. Now, taking the advantage of J as uniformly continuity on bounded sets, then it follows from (3.16) and (3.24) that

$$
\begin{equation*}
\left\|J \omega_{n}-J x_{n+1}\right\|=\left\|J x_{n+1}-J y_{n}\right\|=0 \tag{3.30}
\end{equation*}
$$

From (3.1), we observe that

$$
\begin{aligned}
\left\|J x_{n+1}-J y_{n}\right\| & =\left\|J x_{n+1}-\left(\mu_{n, 0} J \omega_{n}+\sum_{i=1}^{N} \mu_{n, i} J T_{i}^{n} \omega_{n}\right)\right\| \\
& =\left\|\sum_{i=1}^{N} \mu_{n, i} J x_{n+1}-\sum_{i=1}^{N} \mu_{n, i} J T_{i}^{n} \omega_{n}+\mu_{n, 0} J x_{n+1}-\mu_{n, 0} J \omega_{n}\right\| \\
& =\left\|\sum_{i=1}^{N} \mu_{n, i}\left(J x_{n+1}-J T_{i}^{n} \omega_{n}\right)+\mu_{n, 0}\left(J x_{n+1}-J \omega_{n}\right)\right\| \\
& \geq \sum_{i=1}^{N} \mu_{n, i}\left\|J x_{n+1}-J T_{i}^{n} \omega_{n}\right\|-\mu_{n, 0}\left\|J \omega_{n}-J x_{n+1}\right\|
\end{aligned}
$$

this gives

$$
\left\|J x_{n+1}-J T_{i}^{n} \omega_{n}\right\| \leq \frac{1}{\sum_{i=1}^{N} \mu_{n, i}}\left[\left\|J x_{n+1}-J y_{n}\right\|+\mu_{n, 0}\left\|J \omega_{n}-J x_{n+1}\right\|\right]
$$

$B y$ (3.30), we arrive at

$$
\lim _{n \rightarrow \infty}\left\|J x_{n+1}-J T_{i}^{n} \omega_{n}\right\|=0
$$

As J^{-1} is uniform norm-to-norm continuous on bounded sets, we present that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-T_{i}^{n} \omega_{n}\right\|=0 \tag{3.31}
\end{equation*}
$$

Taking into account that

$$
\left\|\omega_{n}-T_{i}^{n} \omega_{n}\right\| \leq\left\|\omega_{n}-x_{n+1}\right\|+\left\|x_{n+1}-T_{i}^{n} \omega_{n}\right\|
$$

By (3.16) and (3.31), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\omega_{n}-T_{i}^{n} \omega_{n}\right\|=0 \tag{3.32}
\end{equation*}
$$

Similarly, we observe from (3.21), (3.27) and by continuity of J that

$$
\begin{equation*}
\left\|J x_{n+1}-J z_{n}\right\|=\left\|J x_{n+1}-J v_{n}\right\|=0 . \tag{3.33}
\end{equation*}
$$

Also by (3.1), we observe that

$$
\begin{aligned}
\left\|J x_{n+1}-J z_{n}\right\| & =\left\|J x_{n+1}-\left(\eta_{n, 0} J v_{n}+\sum_{i=1}^{N} \eta_{n, i} J S_{i}^{n} y_{n}\right)\right\| \\
& =\left\|\sum_{i=1}^{N} \eta_{n, i} J x_{n+1}-\sum_{i=1}^{N} \eta_{n, i} J S_{i}^{n} y_{n}+\eta_{n, 0} J x_{n+1}-\eta_{n, 0} J v_{n}\right\| \\
& =\left\|\sum_{i=1}^{N} \eta_{n, i}\left(J x_{n+1}-J S_{i}^{n} y_{n}\right)+\eta_{n, 0}\left(J x_{n+1}-J v_{n}\right)\right\| \\
& \geq \sum_{i=1}^{N} \eta_{n, i}\left\|J x_{n+1}-J S_{i}^{n} y_{n}\right\|-\eta_{n, 0}\left\|J v_{n}-J x_{n+1}\right\|
\end{aligned}
$$

this implies

$$
\left\|J x_{n+1}-J S_{i}^{n} y_{n}\right\| \leq \frac{1}{\sum_{i=1}^{N} \eta_{n, i}}\left[\left\|J x_{n+1}-J z_{n}\right\|+\eta_{n, 0}\left\|J v_{n}-J x_{n+1}\right\|\right]
$$

Also by (3.33), we get

$$
\lim _{n \rightarrow \infty}\left\|J x_{n+1}-J S_{i}^{n} y_{n}\right\|=0
$$

Applying J^{-1} as uniform norm-to-norm continuous on bounded sets, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-S_{i}^{n} y_{n}\right\|=0 \tag{3.34}
\end{equation*}
$$

By triangular inequality, we obtain

$$
\left\|y_{n}-S_{i}^{n} y_{n}\right\| \leq\left\|y_{n}-x_{n+1}\right\|+\left\|x_{n+1}-S_{i}^{n} y_{n}\right\|
$$

By (3.24) and (3.34), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-S_{i}^{n} y_{n}\right\|=0 \tag{3.35}
\end{equation*}
$$

Therefore by (3.32) and (3.35), we conclude that

$$
\lim _{n \rightarrow \infty}\left\|\omega_{n}-T_{i}^{n} \omega_{n}\right\|=\lim _{n \rightarrow \infty}\left\|y_{n}-S_{i}^{n} y_{n}\right\|=0 .
$$

Step 5 : we show that $\varpi \in \Omega$. To show this we claim as follows:
We claim that $\varpi \in\left(\cap_{i=1}^{N} F\left(T_{i}\right)\right) \cap\left(\cap_{i=1}^{N} F\left(S_{i}\right)\right)$. By triangular inequality for $i \geq 1$, we have

$$
\left\|T_{i}^{n} \omega_{n}-\varpi\right\| \leq\left\|T_{i}^{n} \omega_{n}-\omega_{n}\right\|+\left\|\omega_{n}-\varpi\right\| .
$$

Using (3.14) and (3.32), we arrive at

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{i}^{n} \omega_{n}-\varpi\right\|=0 \tag{3.36}
\end{equation*}
$$

By the assumption that for each T_{i} is uniformly L_{i}-Lipschitz continuous, we obtain

$$
\begin{aligned}
\left\|T_{i}^{n+1} \omega_{n}-T_{i}^{n} \omega_{n}\right\| & \leq\left\|T_{i}^{n+1} \omega_{n}-T_{i}^{n+1} \omega_{n+1}\right\|+\left\|T_{i}^{n+1} \omega_{n+1}-\omega_{n+1}\right\| \\
& +\left\|\omega_{n+1}-\omega_{n}\right\|+\left\|\omega_{n}-T_{i}^{n} \omega_{n}\right\| \\
& \leq\left(L_{i}+1\right)\left\|\omega_{n+1}-\omega_{n}\right\|+\left\|T_{i}^{n+1} \omega_{n+1}-\omega_{n+1}\right\|+\left\|\omega_{n}-T_{i}^{n} \omega_{n}\right\| .
\end{aligned}
$$

By (3.12) and (3.32,) we get

$$
\lim _{n \rightarrow \infty}\left\|T_{i}^{n+1} \omega_{n}-T_{i}^{n} \omega_{n}\right\|=0
$$

Which yields from (3.36) that

$$
\lim _{n \rightarrow \infty}\left\|T_{i}^{n+1} \omega_{n}-\varpi\right\|=0, \quad \forall i \geq 1
$$

Consequently, we get $T_{i}\left(T_{i}^{n}\right) \omega_{n} \longrightarrow \varpi($ as $n \rightarrow \infty)$. In view of the closedness of T_{i}, we arrive at $T_{i} \varpi=\varpi, \forall i \geq 1$. Thus $\varpi \in \cap_{i=1}^{N} F\left(T_{i}\right)$. Furthermore, following similar argument as above, one can also claim that $\varpi \in \cap_{i=1}^{N} F\left(S_{i}\right)$. Hence

$$
\varpi \in\left(\cap_{i=1}^{n} F\left(T_{i}\right)\right) \cap\left(\cap_{i=1}^{n} F\left(S_{i}\right)\right) .
$$

Next, we claim that $\varpi \in \operatorname{Sol}(V I P(1.4))$. Consider the triangular inequality

$$
\left\|\omega_{n}-z_{n}\right\| \leq\left\|\omega_{n}-x_{n}\right\|+\left\|x_{n}-z_{n}\right\|
$$

Using (3.13) and (3.22,) leads to

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\omega_{n}-z_{n}\right\|=0 \tag{3.37}
\end{equation*}
$$

From the uniform continuity of J on bounded set, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J \omega_{n}-J z_{n}\right\|=0 \tag{3.38}
\end{equation*}
$$

Since $\hat{x} \in \Omega$, then it follows from (3.2), (3.3), (3.4) and (3.6) that

$$
\begin{aligned}
\phi\left(\hat{x}, z_{n}\right) & \leq \eta_{n, 0}\left[\phi\left(\hat{x}, \omega_{n}\right)-2 \beta_{n}\left(\gamma-\frac{2 \beta_{n}}{\delta^{2}}\right)\left\|Q \omega_{n}\right\|^{2}\right]+k_{n} \sum_{i=1}^{N} \eta_{n, i}\left[k_{n} \phi\left(\hat{x}, \omega_{n}\right)\right] \\
& \leq k_{n}^{2} \eta_{n, 0} \phi\left(\hat{x}, \omega_{n}\right)+k_{n}^{2} \sum_{i=1}^{N} \eta_{n, i} \phi\left(\hat{x}, \omega_{n}\right)-2 \beta_{n} \eta_{n, 0}\left(\gamma-\frac{2 \beta_{n}}{\delta^{2}}\right)\left\|Q \omega_{n}\right\|^{2} \\
& =k_{n}^{2} \phi\left(\hat{x}, \omega_{n}\right)-2 \beta_{n} \eta_{n, 0}\left(\gamma-\frac{2 \beta_{n}}{\delta^{2}}\right)\left\|Q \omega_{n}\right\|^{2},
\end{aligned}
$$

implies that

$$
\begin{equation*}
2 \beta_{n} \eta_{n, 0}\left(\gamma-\frac{2 \beta_{n}}{\delta^{2}}\right)\left\|Q \omega_{n}\right\|^{2} \leq k_{n}^{2} \phi\left(\hat{x}, \omega_{n}\right)-\phi\left(\hat{x}, z_{n}\right) \tag{3.39}
\end{equation*}
$$

But

$$
\begin{aligned}
k_{n}^{2} \phi\left(\hat{x}, \omega_{n}\right)-\phi\left(\hat{x}, z_{n}\right) & =k_{n}^{2}\left[\|\hat{x}\|^{2}-2\left\langle\hat{x}, J \omega_{n}\right\rangle+\left\|\omega_{n}\right\|^{2}\right]-\left[\|\hat{x}\|^{2}-2\left\langle\hat{x}, J z_{n}\right\rangle+\left\|z_{n}\right\|^{2}\right] \\
& =\left(k_{n}^{2}-1\right)\|\hat{x}\|^{2}-2\left(k_{n}^{2}-1\right)\left\langle\hat{x}, J z_{n}\right\rangle-2 k_{n}^{2}\left\langle\hat{x}, J \omega_{n}-J \omega_{n}\right\rangle \\
& +k_{n}^{2}\left\|\omega_{n}\right\|^{2}-\left\|z_{n}\right\|^{2} \\
& =\left(k_{n}^{2}-1\right)\|\hat{x}\|^{2}-2\left(k_{n}^{2}-1\right)\left\langle\hat{x}, J z_{n}\right\rangle-2 k_{n}^{2}\left\langle\hat{x}, J \omega_{n}-J z_{n}\right\rangle \\
& +\left(k_{n}^{2}-1\right)\left\|\omega_{n}\right\|^{2}+\left\|\omega_{n}\right\|^{2}-\left\|z_{n}\right\|^{2} \\
& \leq\left|\left(k_{n}^{2}-1\right)\|\hat{x}\|^{2}\right|+\left|2\left(k_{n}^{2}-1\right)\left\langle\hat{x}, J z_{n}\right\rangle\right|+\left|2 k_{n}^{2}\left\langle\hat{x}, J \omega_{n}-J z_{n}\right\rangle\right| \\
& +\left|\left(k_{n}^{2}-1\right)\left\|\omega_{n}\right\|^{2}\right|+\left|\left\|\omega_{n}\right\|^{2}+\left\|z_{n}\right\|^{2}\right| \\
& \leq\left(k_{n}^{2}-1\right)\|\hat{x}\|^{2}+2\left(k_{n}^{2}-1\right)\|\hat{x}\|\left\|J z_{n}\right\|+2 k_{n}^{2}\|\hat{x}\|\left\|J \omega_{n}-J z_{n}\right\| \\
& +\left(\left\|\omega_{n}-z_{n}\right\|\right)\left(\left\|\omega_{n}\right\|+\left\|z_{n}\right\|\right) .
\end{aligned}
$$

Since $k_{n} \longrightarrow 1$ as $n \longrightarrow \infty$, then by (3.37) and (3.38,) we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(k_{n}^{2} \phi\left(\hat{x}, \omega_{n}\right)-\phi\left(\hat{x}, z_{n}\right)\right)=0 \tag{3.40}
\end{equation*}
$$

Also since $\beta_{n} \eta_{n, 0}\left(\gamma-\frac{2 \beta_{n}}{\delta^{2}}\right)>0$, by (3.39) and (3.40), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|Q \omega_{n}\right\|=0 \tag{3.41}
\end{equation*}
$$

Taking the advantage of Q as γ-ism and so $\frac{1}{\gamma}$-Lipschitz continuous. Therefore, it follows from (3.38) and (3.40) that $\varpi \in Q^{-1}(0)$. Hence, $\varpi \in \operatorname{SoI}(V I P(1.4))$.

We also claim that $\varpi \in \operatorname{Sol}(G M E P(1.1))$. Consider the triangular inequality

$$
\left\|u_{n}-z_{n}\right\| \leq\left\|u_{n}-x_{n}\right\|+\left\|x_{n}-z_{n}\right\| .
$$

By (3.19) and (3.22), we get

$$
\lim _{n \rightarrow \infty}\left\|u_{n}-z_{n}\right\|=0
$$

From uniform continuity of J on bounded sets, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J u_{n}-J z_{n}\right\|=0 \tag{3.42}
\end{equation*}
$$

Since $r_{n} \geq a$ and by (3.42), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left\|J u_{n}-J z_{n}\right\|}{r_{n}}=0 . \tag{3.43}
\end{equation*}
$$

Equation $u_{n}=T_{r_{n}} z_{n}$ implies that

$$
H\left(u_{n}, v\right)+\frac{1}{r_{n}}\left\langle v-u_{n}, J u_{n}-J z_{n}\right\rangle+\vartheta\left(v, u_{n}\right)-\vartheta\left(u_{n}, u_{n}\right) \geq 0, \forall v \in C .
$$

where

$$
H\left(u_{n}, v\right)=D\left(u_{n}, v\right)+\left\langle G u_{n}, v-u_{n}\right\rangle
$$

By applying Assumption $\left(D_{2}\right)$, we obtain

$$
\begin{aligned}
\frac{1}{r_{n}}\left\langle v-u_{n}, J u_{n}-J z_{n}\right\rangle & \geq-H\left(u_{n}, v\right)-\vartheta\left(v, u_{n}\right)+\vartheta\left(u_{n}, u_{n}\right) \\
& \geq H\left(v, u_{n}\right)-\vartheta\left(v, u_{n}\right)+\vartheta\left(u_{n}, u_{n}\right)
\end{aligned}
$$

Letting $n \longrightarrow \infty$, by Assumption $\left(D_{4}\right)$ and (3.43), we get

$$
H(v, \varpi)-\vartheta(v, \varpi)+\vartheta(\varpi, \varpi) \leq 0, \forall v \in C
$$

For all $s \in(0,1]$ and $v \in C$, setting $v_{s}:=s v+(1-s) \varpi$. Therefore $v_{s} \in C$ and then,

$$
H\left(v_{s}, \varpi\right)-\vartheta\left(v_{s}, \varpi\right)+\vartheta(\varpi, \varpi) \leq 0
$$

By Assumption $\left(D_{1}\right)-\left(D_{4}\right)$, we estimate as

$$
\begin{aligned}
0 & =H\left(v_{s}, v_{s}\right) \\
& \leq s H\left(v_{s}, v\right)+(1-s) H\left(v_{s}, \varpi\right) \\
& \leq s H\left(v_{s}, v\right)+(1-s)\left[\vartheta\left(v_{s}, \varpi\right)-\vartheta(\varpi, \varpi)\right] \\
& \leq s H\left(v_{s}, v\right)+(1-s)[\vartheta(v, \varpi)-\vartheta(\varpi, \varpi)]
\end{aligned}
$$

As $s>0$, from Assumption $\left(D_{3}\right)$, we conclude that

$$
H(\varpi, v)+\vartheta(v, \varpi)-\vartheta(\varpi, \varpi) \geq 0, \quad \forall v \in C
$$

Hence, $\varpi \in \operatorname{Sol}(G M E P(1.1))$.
Step 6 : Finally we show that $\varpi=\Pi_{\Omega} x_{0}$ and so $x_{n} \longrightarrow \Pi_{\Omega} x_{0}$ as $n \longrightarrow \infty$. Putting $x^{*}=\Pi_{\Omega} x_{0}$, since $x^{*} \in \Omega \subset C_{n}$ and $x_{n}=\Pi_{\Omega} x_{0}$, we have

$$
\phi\left(x_{n}, x_{0}\right) \leq \phi\left(x^{*}, x_{0}\right), \quad \forall n \geq 0
$$

Then

$$
\phi\left(\varpi, x_{0}\right)=\lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{0}\right) \leq \phi\left(x^{*}, x_{0}\right)
$$

implies that $\varpi=x^{*}$ and since $x^{*}=\Pi_{\Omega} x_{0}$, then we conclude that $x_{n} \longrightarrow \varpi=\Pi_{\Omega} x_{0}$, as $n \rightarrow \infty$. This completes the proof.

Corollary 3.2. Let C be a nonempty closed and convex subset of a 2 -uniformly smooth and uniformly convex Banach space B with B^{*} as the dual space of B. Let $D: C \times C \longrightarrow \mathbb{R}$ be a bifunction satisfying Assumption 1, $\vartheta: C \times C \longrightarrow \mathbb{R}$ be a bifunction satisfying Assumption 2 and $G: C \longrightarrow B^{*}$ be a monotone and continuous mapping. Let $T_{i}: C \longrightarrow C$ and $S_{i}: C \longrightarrow$ C, for each $i=1,2, \ldots, N$ be two finite family of closed I_{i}-Lipschitz continuous and uniformly
quasi- ϕ-asymptotically nonexpansive mappings such that $\Omega:=\left(\cap_{i=1}^{N} F\left(T_{i}\right)\right) \cap\left(\cap_{i=1}^{N} F\left(S_{i}\right)\right) \cap$ $\cap \operatorname{Sol}(G M E P(1.1)) \neq \emptyset$. Let $\left\{x_{n}\right\}$ generated by algorithm :

$$
\left\{\begin{array}{l}
x_{0}, x_{1} \in C, C_{1}:=C \\
\omega_{n}=x_{n}+\alpha_{n}\left(x_{n}-x_{n-1}\right) \\
y_{n}=J^{-1}\left(\mu_{n, 0} J \omega_{n}+\sum_{i=1}^{N} \mu_{n, i} J T_{i}^{n} \omega_{n}\right) \\
z_{n}=J^{-1}\left(\eta_{n, 0} J \omega_{n}+\sum_{i=1}^{N} \eta_{n, i} J S_{i}^{n} y_{n}\right), \\
u_{n}=T_{r_{n}} z_{n}, \\
C_{n+1}=\left\{u \in C_{n}: \phi\left(u, u_{n}\right) \leq k_{n}^{2} \phi\left(u, \omega_{n}\right)\right\} \\
x_{n+1}=\Pi_{C_{n+1}} x_{0}, \quad \forall n \geq 1
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\} \subset(0,1),\left\{\mu_{n, i}\right\} \subset[0,1]$ and $\left\{\eta_{n, i}\right\} \subset(0,1]$ satisfying the following conditions:
$\left(S_{1}\right) \sum_{i=0}^{N} \mu_{n, i}=1$;
$\left(S_{2}\right) \sum_{i=0}^{N} \eta_{n, i}=1$;
$\left(S_{3}\right) \limsup _{n \rightarrow \infty} \eta_{n, 0}<1$;
$\left(S_{4}\right)$ for same a $>0, r_{n} \in[a, \infty)$.
Then, $\left\{x_{n}\right\}$ converges strongly to ϖ, where $\varpi=\Pi_{\Omega} x_{0}$ is consider as the generalized projection of ϖ onto Ω.

Corollary 3.3. Let C be a nonempty closed and convex subset of a 2 -uniformly smooth and uniformly convex Banach space B with B^{*} as the dual space of B. Let $D: C \times C \longrightarrow \mathbb{R}$ be a bifunction satisfying Assumption 1 and $G: C \longrightarrow B^{*}$ be a monotone and continuous mapping. Let $T_{i}: C \longrightarrow C$ and $S_{i}: C \longrightarrow C$ for each $i=1,2, \ldots, N$ be two finite family of closed I_{i}-Lipschitz continuous and uniformly quasi- ϕ-asymptotically nonexpansive mappings such that $\Omega:=\left(\cap_{i=1}^{N} F\left(T_{i}\right)\right) \cap\left(\cap_{i=1}^{N} F\left(S_{i}\right)\right) \cap \cap \operatorname{Sol}(G E P(1.2)) \neq \emptyset$. Let $\left\{x_{n}\right\}$ generated by algorithm :

$$
\left\{\begin{array}{l}
x_{0}, x_{1} \in C, C_{1}:=C \\
\omega_{n}=x_{n}+\alpha_{n}\left(x_{n}-x_{n-1}\right), \\
y_{n}=J^{-1}\left(\mu_{n, 0} J \omega_{n}+\sum_{i=1}^{N} \mu_{n, i} J T_{i}^{n} \omega_{n}\right) ; \\
z_{n}=J^{-1}\left(\eta_{n, 0} J \omega_{n}+\sum_{i=1}^{N} \eta_{n, i} J S_{i}^{n} y_{n}\right), \\
u_{n}=T_{r_{n} z_{n}}, \\
C_{n+1}=\left\{u \in C_{n}: \phi\left(u, u_{n}\right) \leq k_{n}^{2} \phi\left(u, \omega_{n}\right)\right\} \\
x_{n+1}=\Pi_{C_{n+1} x_{0}}, \quad \forall n \geq 1,
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\} \subset(0,1),\left\{\mu_{n, i}\right\} \subset[0,1]$ and $\left\{\eta_{n, i}\right\} \subset(0,1]$ satisfying the following conditions:
$\left(S_{1}\right) \sum_{i=0}^{N} \mu_{n, i}=1$;
$\left(S_{2}\right) \sum_{i=0}^{N} \eta_{n, i}=1$;
$\left(S_{3}\right) \limsup _{n \rightarrow \infty} \eta_{n, 0}<1$;
$\left(S_{4}\right)$ for same $a>0, r_{n} \in[a, \infty)$.
Then, $\left\{x_{n}\right\}$ converges strongly to ϖ, where $\varpi=\Pi_{\Omega} x_{0}$ is consider as the generalized projection of ϖ onto Ω.

4. Numerical Example

Let $B=\mathbb{R}$ and $C=[0,1]$. Let $Q: C \rightarrow C$ be defined by $Q u=2 u \forall u \in C$. Define $\vartheta: C \times C \rightarrow \mathbb{R}$, $D: C \times C \rightarrow \mathbb{R}, G: C \rightarrow \mathbb{R}, Q: C \rightarrow \mathbb{R}, T_{i}: C \rightarrow C$ and $S_{i}: C \rightarrow C$ by $\vartheta(u, v)=0$, $D(u, v)=(u+v)(v-u), G(u)=u, Q(u)=2 u$ and $T_{i}(u)=S_{i}(u)=\frac{1}{i+1} u$, respectively. Setting $\left\{\beta_{n}\right\}=\left\{\frac{0.9}{2 n}\right\}, r_{n}=\frac{1}{2},\left\{\alpha_{n}\right\}=0.9, \mu_{0, n}=\frac{1}{2}, \sum_{i=1}^{N} \mu_{n, i}=\frac{1}{2}$ such that $\sum_{i=0}^{N} \mu_{i, n}=1$ and $\eta_{0, n}=\frac{1}{3}, \sum_{i=1}^{N} \eta_{n, i}=\frac{2}{3}$ so that $\sum_{i=0}^{N} \eta_{i, n}=1$.
Let $\left\{x_{n}\right\}$ be generated by the hybrid inertial iterative algorithm (3.1) converges to $x^{*}=\{0\} \in \Omega$.

Proof. Clearly ϑ and D satisfy assumptions 1 and 2, respectively, and G is continuous and monotone so that $\operatorname{Sol}(G M E P(e q 1.1))=\{0\} \neq \emptyset$, $\operatorname{Sol}(V I P(e q 1.4))=\{0\} \neq \emptyset$. Obviously Q is $\frac{1}{2}-i s m$, and T_{i} and S_{i} are two finite families of closed 1-Lipschitz continuous and uniformly quisi- ϕ-asymptotically nonexpansive mappings with $\operatorname{Fix}\left(T_{i}\right)=\operatorname{Fix}\left(S_{i}\right)=\{0\}$. Thus $\Omega=\operatorname{Sol}(\operatorname{GMEP}(e q 1.1)) \cap \operatorname{Sol}(\operatorname{VIP}(e q 1.4)) \cap \operatorname{Fix}\left(T_{i}\right) \cap \operatorname{Fix}\left(S_{i}\right)=\{0\} \neq \emptyset$. Hence, the iterative scheme (3.1) becomes the following scheme (4.1) after simplification:

$$
\left\{\begin{array}{l}
x_{0}, x_{1} \in C, C_{1}:=C, \tag{4.1}\\
\omega_{n}=x_{n}+0.9\left(x_{n}-x_{n-1}\right), \\
y_{n}=\frac{1}{2} \omega_{n}+\frac{1}{2(n+1)} \omega_{n}, \\
z_{n}=\frac{1}{3} y_{n}+\frac{2}{3(n+1)} v_{n}, \\
u_{n}=\frac{2 z_{n}}{7}, \\
C_{n+1}=\left[0, \frac{u_{n}+\omega_{n}}{2}\right], \\
x_{n+1}=\Pi_{C_{n+1} x_{0}, \forall n \geq 1,}, \\
\text { where, for } \Pi_{C} \text { a metric projection onto } C, \\
v_{n}=\Pi_{C}\left(\omega_{n}-\beta_{n} Q \omega_{n}\right)=\left\{\begin{array}{l}
0, \omega_{n}-\frac{0.9}{2 n} \omega_{n}<0 \\
1, \\
\omega_{n}-\frac{0.9}{2 n} \omega_{n}>1 \\
\omega_{n}-\frac{0.9}{2 n} \omega_{n}, \text { otherwise. }
\end{array}\right.
\end{array}\right.
$$

Finally, using the software Matlab 7.8.0, we have the following figure which shows that $\left\{x_{n}\right\}$ converges to $\{0\}$ as $n \rightarrow \infty$.

Figure 1. Convergence of $\left\{x_{n}\right\}$ when $x_{0}=1.0$ and $x_{1}=0.5$

References

[1] M. Alansari, R. Ali and M. Farid, Strong convergence of an inertial iterative algorithm for variational inequality problem, generalized equilibrium problem and fixed point problem in a Banach space, J. Ineq. Appl. 2020 (2020) 42.
[2] Y.I. Alber, Metric and generalized projection operators in Banach spaces, In: Properties and Applications, Lect. Note, Pure. Appl. Math. 8(1996), 15-50.
[3] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud. 63 (1994) 123-145.
[4] R.I. Bot, E.R. Csetnek and C. Hendrich, Inertial Douglas-Racheord splitting for monotone inclusion problems, Appt. Math. Comp. 256 (2015) 472-487.
[5] R.I. Bot and E.R. Csetnek, An inertial forward- backward - forward primal-dual splitting algorithm for solving monotone inclusions problems, Numer. Algor. 71 (2016) 519-540.
[6] M. Farid, R. Ali and K.R. Kazmi, Inertial iterative method for a generalized mixed equilibrium, variational inequality and a fixed point problems for a family of quasi- ϕ-nonexpansive mappings, Filomat. 37 (2023), 6133-6150.
[7] S. Gupta, S. Husain and V.N. Mishra, Variationa inclusion governed by $\alpha \beta-H((.,),.(.,)-$. mixed accretive mapping, Filomat, 31 (2017), 6529-6542.
[8] J. Iqbal, V.N. Mashra W.A. Mir, A.H. Dar, M. Ishiyak and L. Rathour, Generalized resolvent operator involving G(.,.)- Co-monotone mapping for solving generalized variational inclusion problem, Georgian Math. J. 3 (2022), 533-542.
[9] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002) 938-945.
[10] K.R. Kazmi and R. Ali, Common solution to an problem and fixed point problem for an asymptotically quasi- ϕ-nonexpansive mapping in intermediate sense, RACSAM, 111 (2017) 877-889.
[11] L. Umar, Y. Ibrahim and T.M. Kabir, Hybrid algorithm for solving fixed point problem and generalized mixed equilibrium problem in Banach spaces, Uzbek Math. J. 66 (2022) 101-118.
[12] L. Umar, T.M. Kabir and I.U. Haruna, An inertial algorithm of generalized f - projection for maximal monotone operators and generalized mixed equilibrium problem in Banach spaces, Afr. Sci. Rep. 1 (2022) 32-47.
[13] P.E. Mainge, Convergence theorem for inertial KM-type algorithms J. Comp. Appl. Math. 219 (2008) 223-236.
[14] K. Nakajo, Strong convergence for gradient projection method and relatively nonexpansive mappings in Banach spaces, Appl. Math. Comp. 271 (2017) 251-258.
[15] X.L. Qin, Y.J. Cho and S.M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in a Banach spaces, J. Comp. Appl. Math. 225 (2009) 20-30.
[16] B.T. Polyak, Some methods of speeding up the convergence of iteration methods. USSR Comp. Math. Phys. 4 (1964) 1-7.
[17] W. Takahashi and K. Zembayashi, Strong and weak convergence theorem for equilibrium problem and relatively nonexpansive mappings in Banach space, Nonlinear Anal. TMA. 70 (2009) 45-57.
[18] Vandana, R. Dubey, Deepmala, L.N. Mishra and V.N. Mishra, Duality relations for a class of a multiobjective faction programming problem involving support functions, Amer. J. Oper. Res. 8 (2018) 293-311.
[19] H.K. Xu, Inequality in Banach space with application, Nonlinear. Anal. TMA. 16 (1991) 1127-1138.
[20] C. Zalinesco, On uniformly convex function, J. Math. Anal. Appl. 95 (1983) 344-374.
[21] H. Zegeye, A hybrid iterative scheme for equilibrium problems, variational inequality problems and common fixed point problems in Banach spaces, Nonlinear Anal. TMA. 72 (2010) 2136-2146.

[^0]: Received: 16 Jan 2024.

