©2024 Ada Academica
Eur. J. Math. Anal. 4 (2024) 8
doi:

Hybrid Inertial Iterative Method for Fixed point, Variational Inequality and Generalized Mixed
Equilibrium Problems in Banach Space

Lawal Umar®*, Yusuf Ibrahim?, M.S. Lawan?

! Department of Mathematics, Federal College of Education, Zaria Kaduna, Nigeria
lawalu4@gmail.com
2Department of Mathematics, Saadatu Rimi University of Education, Kumbotso Kano, Nigeria
danustazz@gmail.com
3Department of Mathematics and Statistics, Kaduna Polytechnic Kaduna, Nigeria

mslawankh@yahoo.com

*Correspondence: lawalu4d@gmail.com

ABSTRACT. In this paper, we introduced a hybrid inertial iterative method which converges strongly
to a common element of solution of generalized mixed equilibrium, variational inequality and fixed
point problems in a two uniformly smooth and uniformly convex Banach space. Our hybrid inertial
iterative method, techniques of proof and corollaries improves, extends and generalizes many results

in the literature.

1. INTRODUCTION

Let B denotes a real Banach space with B* as the dual space of B. We consider (11,/) as the
value of the functional j € B* at 7y € B and || . || as the norm of B or B*. Let ¢ # () be subset of
B. A mapping J : B — 28" is called normalized duality provided that

Jrn={meB":(mmn)=|n ||2: |72 ||2},V7'1 € B.

We denotes the short form GMEP as generalized mixed equilibrium problem: Find v; € C such
that

D(Vl, V2) + <GV1, Vo — V1> +19(V1, V2) — ’19(V1, V1) >0, Vv € C, (11)

where D, 9 : C x C — R and G : C — B”* denotes the bifunctions and a nonlinear mapping
respectively, also R is consider as the set of all real numbers. Then, So/(GMEP(1.1)) is consider
as the solution set of GMEP.(1.1).
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If G=0, GMEP(1.1) reduces to generalized equilibrium problem ( with GEP as the short form):
Find v; € C such that

D(Vl,V2)—|—’L9(V1,V2)—19(V1,V1)ZO,VVQEC. (1.2)

Then, So/(GEP(1.2)) is represent the solution set of GEP(1.2).
If G=0and ¥ =0, GMEP(1.1) becomes equilibrium problem ( with EP as the short form) [3]:
Find v; € C such that

D(Vl, V2) >0,Vw € C. (13)

Then, Sol(EP(1.3)) is consider as the solution set of EP.(1.3).
If D=0and ¥ =0, GMEP(1.1) reduces to variational inequality problem ( with V/P as the
short form): Find v; € C such that

(Gvi,vp —vy) >0,V € C. (1.4)

Then, Sol(VIP(1.4)) is consider as the solution set of V/P(1.4).

Definition 1.1. Let T : C — C be a mapping [6], then

(i) a point vy € C is called fixed point of T provided that F(T) ={v; € C: Tvy = w1} # 0;

(it) a point vp € C is called an asymptotic fixed point of T provided that {v,} C C, v, — vy such
that

lim || vp — Tv, ||=0.
n—oo

The set of asymptotic fixed point of T is denoted by F(T);

(iit) T is called quasi—¢—nonexpansive provided that ¢(vp, Tv) < ¢(vo, v) and F(T) # 0, Vv €
C, o€ F(T);

(iv) T is called quasi—¢—asymptotically nonexpansive provided that F(T) # () and there exists a
sequence {kp} C [1,00) with k, — 1 as n — oo such that

d(vo, T"v) < knd(vo,v), Vv € C, vy € F(T), n>1.

Definition 1.2. A function T : C — B* is said to be [0] :
(i) Monotone if (11 — 72, TT4 — TT2) >0, V71,72 € B;
(ii) y—inverse strongly monotone (with ism as short form) if 3y > 0 such that

(MM—T, TT1—TT) >y || T —TT2 ||2, Y11, T2 € B;

(iit) Lipschitz continuous if 3L > O such that | Ty — T [SK L T1—7 ||, Vi, € B.If T is

¥ — ism, then it is Lipschitz continuous with — as a constant.
y

Definition 1.3. A mapping lN¢ : B — C is called generalized projection [6], provided that McT1 =

vo, for any 71 € B and vy be the solution of ¢(vp, 71) = infc¢(v,7'1).
ve
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An inertial-type algorithm is a method for speeding the convergence of the sequence of an algorithm
introduced by Polyak [16]. Numerous problems have been approximated by using inertial algorithms
( for more details see, [4,5,12] and the references therein). Mainge [13] proposed and studied the

development of an inertial- type algorithm method as follows:

{ Up = wp + Op(wn — wp-1),

Wnt1 = (1 = 0p)Un + 05T up.

Takahashi and Zembayashi [17] Proposed an iterative process which converges strongly to a common
element of solution of equilibrium problem and fixed point problem of relatively nonexpansive
mapping. Furthermore, the generalization of the proposed iterative process [17] have been carried
out by many researchers ( for more details see, [7,8,11,18,20] and the references therein). Kazmi
and Ali [10] introduced an iterative algorithm for solving a common solution of £P.(1.3). and fixed

point problemof quasi—¢@— asymptotically nonexpansive mapping.

Alansarti et al. [1] studied an inertial iterative method for finding a common solution of generalized
equilibrium, variational inequality and fixed point problems using the sequences {x,} and {z,}

generated by the iterative algorithm:

-

Xo=x1, 20€C, Co:=C¢C;

bn = Xp + an(Xn — Xp—1);

Yn = Ncd ™ (Ipn — wnGpn);

Up = J7(6nJzn + (1 = 6n)ITyn):

Zny1 = Tr Un;

Co={ue C:d(u znt1) < 0nd(u, zn) + (1 — 0n)P(u, n);
Qn=(ueC:x,—u Jx,— Jxo) <0},

Xn+1 = lc,nQ,%0, Vn = 0,

C

where {a,} C (0,1), {w,} C (0,00), {05} C [0,1] and {r,} C [a, >0), for some a > 0. Then, {x,}

converges strongly to @ = lNrxo.

Farid et al. [6] proposed the following inertial algorithm for approximating a common solution of
generalized mixed equilibrium problem, variational inequality problem and fixed point problem for

family of quasi—@—nonexpansive mappings:
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X0, X1 €4, q1 '=q,
Wp = Xp + en(Xn - Xn—l);
Yo = NgJ 7 (Jwp — wyQup);

N
Vn = J_l(én,Oan + Z 5n,/J7—iwn);
i=1
Zn = J N apdyn + (1 — an)dvy);
Up = Tr Zn;
dn={u € q:d(u, up) < P(u, wn);
Qn=(u€q:xn—u,Jx,— JIxg) <0};

Xp+1 = I_ananxo,Vn Z 1.

.

Consider {6,;} and {an} C [0,1], {wy} C (0,00), {65} C (0,1) and {r,} C [a, ), for some

a > 0. It has been proved that {x,} is a strong convergent to X = Mxp.

Motivated and inspired by the work of Kazmi and Ali [10], Alansari et al. [1] and Farid et al. [6]. We
proposed a hybrid inertial iterative algorithm for approximating a common solution of GMEP.(1.1),
VIP(1.4) and fixed point problem for a family of two quasi—@—asymptotically nonexpansive map-
pings in two- uniformly convex and uniformly smooth Banach spaces. Our result extends and
improves the results of Kazmi and Ali [10], Alansari et al. [1] and Farid et al. [6], many results in

the literature.

2. PRELIMINARIES

Let W = {11 € B:|| 71 ||= 1} be the unit sphere of B. If for any € € (0, 2] there exists 6 > 0 such

T+ T
that || 7, — 7 ||> e = H122H <1-9, V11,7 € W, then B is called uniformly convex. B is
. T+l .
called strictly convex if ———— < 1, V711, 7» € W and 71 # T2. The space B is called smooth
) LI+t || — || T
if lim I 2l =l | exists, V71, 72 € W and also is said to be uniformly smooth if the limit

t—0
is attained uniformly, V711, 70 € W.

A function ¢ : B x B — R defined by
&(11,72) =|| 71 |* =2(1, J2) + |72 II°, V71,72 € B.

is consider as Lyapunov functional. From the definition of ¢, the following properties can be veri-
fied [6]:

(L) (Tl =Nme ID? < (i m2) < (Il + [ 72 ) V71,72 € B;

(L) (1, JTE NI + (1 — N)J713)) < AP(11, 72) + (1 — N)p(71, 73), V71,72, T3 € B,

(L3) d(ri. ) =Tl [[Jr1i—J2 |+ 2| | T2 =72, V71,72 € B.
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Remark 2.1. Consider B as smooth, strictly convex and reflexive Banach space, then
d)(Tl,TQ) =0<«<= 71 =7, V711,70 € B.

Lemma 2.2. [9] Let C # () be closed convex subset of a stricly convex, reflexive and smooth Banach

space B. Then, 3 a unique element Ty € C such that ¢(19, T1) = infcdb(v, T1), for 71 € B.
ve

Lemma 2.3. [75] Let B be a uniformly convex and smooth Banach space, C C B be closed convex
and T : C — C be closed and quasi—¢—asymptotically nonexpansive mapping. Then, F(T) is

closed and convex.

Lemma 2.4. [14] Let C # 0 be closed convex subset of B and Q : C — B* be monotone and

hemicontinuous function. Then VIP(1.4). is closed and convex

Lemma 2.5. [19] Let B be a 2—uniformly convex and smooth Banach space. Then, T1,T> €

B, ¢(11,72) > 6| 71 — 72 ||>, where 0 < § <1 and called two-uniformly convex constant.

Lemma 2.6. [79] Let B be a two-uniformly convex Banach space, then
I =72 lI< 2| Jm— I |, ¥m,m2 € B,
where 0 < § < 1.
Lemma 2.7. [9] Let E be a smooth and uniformly convex Banach space and let {u,} and {v,}

be sequences in E such that either {u,} or {v,} is bounded. If ILm d(un, vp) = 0, then Iiﬁ\m I
n—,oo n—oo

Up — vy ||=0.

Remark 2.8. By considering (L3), it is observe that the converse of Lemma 2.7 is true, provided
that {u,} and {v,} are bounded

Lemma 2.9. [2] Let C # () be closed convex subset of a stricly convex, reflexive and smooth Banach

space B. Then,
o(v,Ner) + ¢(MNem, 1) < (v, 711), Vv eC, 11 €B.
And, so for any 7, € B and v € C,
u="Nem <= (v—u,Jr — Jv), Yu e C.

Assumption 1: Consider D : C x C — R as a bifunction satisfies the following assumptions [3]:
(Dy) D(v,v)=0,Vv € C;

(D2) D is monotone, 1.e, D(v, u) + D(u,v) <0, Vv,u € C,

(D3) the mapping v — D(v, u) is upper hemicontinuity, V u € C.

(D4) the mapping u— D(v, u), u € C is convex and lower semicontinuous.

Assumption 2: Also consider ¥ : C x C — R as a bifunction satisfying the following assumptions:
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(%1) O is skew-symmetric, ie., ¥(v,v) — (v, u) — ¥(u, v) + ¥(u,u) > 0,Vv,u € C,
(92) ¥ is convex in the second argument;

(93) ¥ is continuous.

Lemma 2.10. [7,6,21] Let B a uniformly smooth, strictly convex and reflexive Banach space and
C C B be closed. Let G : C — B* be a continuous and monotone mapping, D : C x C — R be
a bifunction satisfying Assumptions 1 and ¥ : C x C — R be a bifunction satisfying Assumptions

2. For any given number r > 0 and 11 € B, define a mapping T, : B — C by
1
T.(m)={uveC:D(uv)+{v—uGu)+ ;(v —u, Ju—Jdm) +Y(u,v) —Y(u,u) >0,Vy € C},

Vv € B.
The mapping T, has the following properties:
(p1) T, is single-valued;

(p2) T, is a firmly nonexpansive - type mapping, for all 71,1, € B,
<Tr7'1 - Tr’TQ, JTrTl - JTrT2> < <Tr’T1 - TrTQ, JT1 - JT2>,

(p3) F(T,) = Sol(GMEP(1.1)) is closed convex set of C;
(ps) T, is quasi—¢p— nonexpansive;
(ps) d(vo, Tr11) + d(Trm1, 1) < P(vo, T1), Vvo € F(T,), 11 € B.

Furthermore, consider the map ® : B x B* — R, defined by
o(r, 1) =l 2 = {r )+ |
Observe that ®(1y, 75) = ®(11, J~177)
Lemma 2.11. [2] Let B be a strictly convex, smooth and reflexive Banach space. Then

O(1, 7)) + 27 =1, 73 S O(Ty, T +73), YL € B, T, 75 € B

3. MaIN REsuLTs

Theorem 3.1. Let C be a nonempty closed and convex subset of a 2—uniformly smooth and uniformly
convex Banach space B with B* as the dual space of B. Let Q :— B* be a y—ism mapping
with v € (0,1) as a constant. Let D : C x C — R be a bifunction satisfying Assumption 1,
¥ : C x C — R be a bifunction satisfying Assumption 2 and G : C — B* be a monotone and
continuous mapping. LetT; : C — Cand S;: C — C, foreach i = 1,2, ..., N be two finite family
of closed li—Lipschitz continuous and uniformly quasi—@—asymptotically nonexpansive mappings
such that Q == (NN, F(T;)) N (N, F(S))NSol(VIP(1.4)) N Sol(GMEP(1.1)) # 0. Let {x}
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generated by algorithm :

( X0, x1 € C, C1:=C,

Wp = Xp + Oln(Xn - Xn—l),

Vh = I_ICJil(JWn - 6ann)v

N
Yo =7 nodwn + Y tniJT wn);

) N (3.1)
Zn = J_l('r)n,OJVn + Z nn,/JSFYn),

Unp = Tr,Zpn, -

Cop1={uveCy:o(u up) < k,%qb(u,wn)},

Xp+1 = Me¢, X0, VN> 1,

o

where {ap} C (0,1), {uni} C[0,1] and {n, i} C (0O, 1] satistying the following conditions:
N

(51) ) pni=1;
i=0

N
(S2) Y _mni=1;
i=0
(S3) limsup My < 1

n—o0
(S4) for same a > 0, r, € [a, 0);
2

. 0
(Ss) {Bn} C (0, 00) satisfying the condition 0 < ||nl|nf Bn < 77 where 0 < § < 1.
n—oo
Then, {x,} converges strongly to w, where w = MNqxpy is consider as the generalized projection

of w onto 2.

Proof. We consider the proof in the following steps:

Step 1 : We show that Cp,y1 is closed and convex for each n > 1 and {x,} is well defined.
Observe clearly that C; = C is closed and convex. Suppose that C,, is closed and convex for each

n € N. Now, we know from 3.1 that for any v € C,,

o(u, uy) < k,%qb(u, wyp) <= (1- k,f)[ || u ||2 —2(1— k,%)(u, Jup) + 2k,3(u, Jw, — Ju,,)]

< Ky llwa 2 =1lun |7

Then, Cp11 is closed and convex. Implies that N . xo is well defined Vn > 1, also {x,} is well

n+1
defined. Furthermore since Q2 # (), by considering Lemma 2.3, 2.4 and 2.10 we conclude that Q is
closed and convex, and so lNaxg is well defined.

Step 2 : we show that Q C C,,, ¥n > 1. It is Obvious that 2 C C; = C. Suppose that Q C C, for

some n > 1. Let X € €2, from the definition of ¢, quasi—¢—asymptotically nonexpansive mapping
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of S; and convexity of || . ||> we have the following estimate:
d(x un) = B(XT,,2)
< (% z) (3.2)
N

O(%, I (Mo IV + Y MnidSyn))

i=1

N N
= % ||2 —2((X, Mn,oJvn + Z Nn,idS!Yn)) + [1Mn0dva + Z 77n,iJS/nyn||2
i=1 i=1
N
< || X ||2 —277n,0<>A<, JVn> -2 Z 'r’n,i<)A<v JS/nyn> + nn,OHJVn”z
i=1
N
+ Znn,/||-/5fyn||2
=1
N
= Moo IRI7 = 2%, Jvi) + [vall®) + D _ i (IR17 = 2(%, ISya) + [1STyal?)
i=1
N
= nn,0¢()?v Vn) + Z nn,iqb()?v Slnyn)
i=1
N
< Mo®(X, Vi) + Ky Z'r’n,iqj(;{vYn) (3:3)
i=1
Similarly, by quasi—@—asymptotically nonexpansive of T;, definition of ¢ and convexity of || . ||,

we estimate as follows:

(X, yn)

IN

IN

IN

N

&%, I (pnodwn + Y pniJTw,))
i=1

N N
I 1P =20(%, tinodwn + D pnid T wn))+ | thnodwn + Y phni T wy |2
=1 i=1

N
| x ||2 —2fn,0(X, Jwp) — 2 Z.U'n,io?r ITwy) + Nn,O||an||2
i=1

N
Zl/'n,i||~/7—jn"‘/n||2
i=1
N
B0 (IR17 = 2%, Jwn) + lwall?) + Y pni (| % 1P =2(%, IT wp) + 1T wal?)
i=1

N
lf'n,O(p()?. wn) + Z /J'n,i(p()?v Tinwn)

=1

N
/~Ln,0¢()?v wn) + kn Z Mn,i(b()?v wn)
i=1
N
kn/J'n,O(‘b()A(- (’Jn) + kn Z ;U«n,i(;b()?v wn)
i=1
knd (X, wn) (3.4)
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It has been observe from (3.3) and (3.4) that

N
d(%, un) < Mnod(X, Vi) + kn Z nn,i[knqb()?' Wn)]

=1

N
= nn,O(P()?: Vn) + k,% Z nn,i(p()?. (—Un)
=1

IN

N
Kamno®(%, Vo) + k3 D Mpid(%, wp) (3.5)
=1

Also, by Lemma 2.6 and 2.11, we estimate as:

(X, Vi)

o(%, N ™ (Jwn — BnQun))

¢(% I (Jwp — BrQun))

®(%, Jwn — BrQun)

D (%, (Jwn — BnQun) + BnQuwn) — 2(J ™ (Juwn — BnQun) — £, BnQup)
D(R, Jwn) = 2B, (Jwp — BaQun) — X, Quip)

d(%, wn) — 2{wn — £, Q) — 2Bn(J " (Jwn — BaQuin) — wn, Qup)

O(R, Wn) = 2(wp — &, Qun — QR) — 264(J™ (Jwn — BnQun) — wn, Qun)
O(R, wn) = 28n7 || Quall® + 26 | I (Jwp — Qi) — I~ Juwy|[[|Quin1?

]
if follows by combined with G, < — that

4 2
B3, wn) — 287 | Qun P +57 || Qun |
2Bn
B, 0n) 201~ 22 | Qun |2 (36)
2
2
d(X, v) < d(X, wh) (3.7)

Now, putting (3.7) in (3.5) leads to

which gives

N
O(% un) < K2mno@(X, wn) + K3 D> M (K, wp)
=1

N
= (Mo +)_Mn)kid(X, wn)
=1

= Kk2(X, wp),

(X, up) < K2R wh), (3.8)

Therefore X € Cpy1, implies that Q C Cp11. Hence Q C Cpp, Vn > 1.
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Step 3 : we show that {x,}, {wn}, {va}, {¥n}, {20} and {u,} are bounded and {x,} is Cauchy.
We consider x, = lN¢,xg and Cp41 C Cy, Vn > 1. Then from Lemma 2.9, we observe that

$(xn, x0) < d(Xnt1, X0)

Hence {¢(xn, X0)} is non decreasing. Also it has been observe that

¢(xn, X0) = ¢(Mc, %0, X0) < (X, x0) = B(X, x1) < B(X, x0),

which gives that {¢(x,, X0)} is bounded and {x,} is also bounded. Therefore, since {¢(x,, xp)} non
decreasing. {¢(xn, x0)} convergent. Taking the advantage of {x,} as a bounded sequence implies
that {wn}, {va}, {¥n}, {z,} and {u,} are all bounded. Also by Lemma 2.9, we have

G(Xm. Xn) = (xm, MNc,x0)
< d(xm, x0) — (xn, x0) —> 0 as n,m — oc. (3.9)
By Lemma 2.7, we have Ii_)m | Xm — xn ||= 0. Hence {x,} is a Cauchy sequence.
n—oo

Step 4 : we show that x, — @, Wwyp — @, Uy — W, Zn — W, Yn — @
and v, — w (as n — o0). Since {x,} is a Cauchy sequence, then by the closedness of C and

the completeness of B, we can assume that there exists w € C such that

Iim x, = w. (3.10)
n—oo

Now, setting m = n+ 1 in (3.9), we obtain

nlmm¢(xn+1, Xp) = 0. (3.11)
Using Lemma 2.7, we get

nli—>moo||X”+1 — Xp|| = 0. (3.12)
We observe from (3.1) that

| wn =X (=] an(xn = Xp—1) [I<]] X0 — Xp—1 ||
Using (3.12), we arrive at
lim |lw, — xp|| = 0. (3.13)
n—oo

By (3.10) and (3.13), we conclude that
Im w, = w. (3.14)
n—oo

Taking the advantage of Remark 2.8, (3.13) and boundedness of {w,}, we get

nli_)moo¢>(w,,, Xp) = 0. (3.15)
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Also, by (3.12) and (3.13), we obtain
nli_)moo||x,,+1 —wp ||=0. (3.16)
Using Remark 2.8, we present (3.16) as
lim ¢(xpt1, wn) = 0. (3.17)
n—oo

We observe from x,11 = ¢ X0 € Cpi1 C Cpy and definition of C,, that

n+1
d(Xnt1, Un) < k,%(j)(X,H_l,an)

Using (3.17,) we obtain

n“—>moo¢(X”+1’ up) = 0.
Applying Lemma 2.7, we get
nIme | Xp+1 — Un |[|= 0. (3.18)
Taking the advantage of triangular inequality, we present
%0 — unll < 11X = Xnt1ll + X041 — unll
By (3.12) and (3.18), we obtain
nIme | xn — un ||= 0. (3.19)
It follows from (3.10) and (3.19) that
lim u, = . (3.20)
n—oo

Similarly, by definition of C,, and x,4+1 = ¢, ., X0 € Cpy1 C Cp, we also present that

n+1
¢(Xnt1, 2n) < k:%‘b(xn—l—l:wn)

By applying (3.17,) we arrive at

nli_>mood>(xn+1, zp) = 0.
Using Lemma 2.7, we have

Jim ] Xp+1 = 20 [|= 0. (3.21)
Taking into account that

X0 = znll < [IX0 = Xng1ll + [[Xn+1 — 2a|

Using (3.12) and (3.21), we get

lim || x, —z, ||= 0. (3.22)
n—oo
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By considering(3.10) and (3.22), we obtain
lim z, = w. (3.23)
n—o0

Also from the definition of Cj, and x;,1 1 =l¢,,, x0 € Ch11 C Cpy, we estimate as
¢(Xn+1,Yn) < kr%d)(xn—l-lv Wn)
By (3.17,) we get
nlew¢(Xn+1-Yn) =0.
It follows from Lemma 2.7 that
im [ xo1 =y [|= 0, (3.24)
By triangular inequality, we obtain
X0 = Yl < X0 = Xt 1]l + [[Xn+1 — yall
Also by (3.12) and (3.24), we get
lim || x» — yn ||= 0. (3.25)
n—oo
Using (3.10) and (3.25), we obtain
lim y, = . (3.26)
n—oo
Finally, by considering x,41 = l¢,,, X0 € Cpy1 C C, and definition of C;;, we present that
d(Xnt1, V) < kr%d’(XnJrlvwn)
Applying (3.17,) we obtain
nIme¢(xn+1, vp) = 0.
By Lemma 2.7, we get
nIi_}moo Il Xn+1 — Vi ||= 0. (3.27)
We consider the following estimate using trianqular inequality
X0 = Vall < X0 = X1l + [[Xn+1 — vanll
Using (3.12) and (3.27), we obtain
lim || x, — vy ||= 0. (3.28)
n—oo
Using (3.10) and (3.28), we obtain

lim v, = w. (3.29)

n—oo
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Step 4 : we show that || w, — T/ w, ||=]| ya» — S7ya ||= 0. Now, taking the advantage of J as

uniformly continuity on bounded sets, then it follows from (3.16) and (3.24) that
| Jwn — Ixnt1 (=] Ixns1 — Jyn [|= 0.

From (3.1), we observe that

N
D1 =y | = [ o1 = (nodwn + ) nidTwn) |
i=1
N N
= ” Z /Ln,iJXn-i-l - Z ,U'n,/JT,‘nwn + ,U'n,OJXn—I—l - P'n,OJWn ||
i=1 i=1

N
= > tni(Sxnr1 = IT wn) + o (Ixas — Jwn) |
i=1

N
> i | Ixnsr = IT wn | —thno | Jwn = Ixasa |,
=1

v

this gives

| X1 = ITwp ||<

N [ H IXpt1 — Jyn ” +n,0 H Jwn — Ixny1 ” ]

Z/J'n,i
i=1

By (3.30), we arrive at
Jm | s = TPy = 0.
As J~1 is uniform norm-to-norm continuous on bounded sets, we present that
Tim | o1 = Ty [|= 0.

Taking into account that

| wn = T wn I<[| wp = Xnt1 | + (| Xpt1 = T whn ||
By (3.16) and (3.31), we obtain
lim || wp — T/'wp ||= 0.
—00
Similarly, we observe from (3.21), (3.27) and by continuity of J that

| Ixny1 — Jzn [|=] IXpg1 — Jvia [|= 0.

(3.30)

(3.31)

(3.32)

(3.33)
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Also by (3.1), we observe that

N

| Ixng1 —Jzn |l = || IXpy1 — (nn,OJVn + Z'fln,i-jsln)/n) |
i=1

N N
= || Z nn,iJXn—i-l - Z nn,iJS,nJ/n + nn,OJXn-i-l - T’n,OJVn ||
=1 =1

N
= | Znn,/(JXn—I—l - JS,nYn) =+ nn,O(JXn—H - JVn) I
i=1
N

> Znn,i | IXns1 — JS,“Yn I —"n,0 | Jvin — Ixpg1 |l
=1

this implies

[Ixn41 = IS{ynll < [HJXn+1 — Jzp[| + M0l IV — Ixns1 || ]

N

Znn,i
i=1
Also by (3.33), we get
nIi_}mOO | Ixn+1 — JS]'yn ||= 0.
Applying J=! as uniform norm-to-norm continuous on bounded sets, we have
nli_)moo | Xnt1 — S/'vn ||=0. (3.34)

By trianqular inequality, we obtain
“ Yn — S,‘nYn ||§|| Yn — Xn+1 || + || Xn+1 — SPJ/n ||
By (3.24) and (3.34), we get
lim [| yn = Si'yn I=0. (3.35)
n—oo
Therefore by (3.32) and (3.35), we conclude that
im || wyp =T ws |= lim || ya — Si'ys [|= 0.
n—oo n—o0
Step 5 : we show that @ € 2. To show this we claim as follows:
We claim that w € (NY; F(T;)) n (N, F(S)). By triangular inequality for i > 1, we have
I T wn =@ [|[<|| T'wn —wn | + [ wp —w ||
Using (3.14) and (3.32), we arrive at

lim || T w, — @ ||= 0. (3.36)
n—oo
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By the assumption that for each T; is uniformly L;—Lipschitz continuous, we obtain

1T wp = Tl wall < 1T wn = T waga |+ (1T Wit — wogal]
+  Nwnyr — wall + llwn — T wh]|

< (Li + l)Hwn—i-l - UJnH + ||T,'n+1wn+1 - wn-i—l“ + ||wn - TinwnH-
By (3.12) and (3.32,) we get

Jim [T/ wp = Tw,|| = 0.

Which yields from (3.36) that

lim |7 w, —w| =0, Vi > 1.

n—oo

Consequently, we get T;(T")w, — w ( as n — o0). In view of the closedness of T;, we arrive at
Tiwo=w, Vi > 1. Thus w € ﬂlNle(T,-). Furthermore, following similar argument as above, one

can also claim that @ € N F(S;). Hence
€ (N F(TH) N (nity F(S).
Next, we claim that w € So/(V/P(1.4)). Consider the triangular inequality
lwn = 2zn ISl wn = Xn [ + 1| X0 = za || -
Using (3.13) and (3.22,) leads to

lim || wy, — 2, [|= 0. (3.37)

n—oo

From the uniform continuity of J on bounded set, we get
lim || Jwn, — Jz, ||= 0. (3.38)
n—oo

Since X € Q, then it follows from (3.2), (3.3), (3.4) and (3.6) that

28, Y .
$(%,zp) < nn,O[(b()?- Wn) — 26n('y - 5£2)||an ||2 ] + kn Znn,i[knd’(xx wn)]
i=1
N

< kEnno®(R wn) + k2 Y iR, wn) — 2Bamno(y —
i=1

26n
= R0 0n) — 2By — ) 1| Qua I

26,
62

) H Quy ||2

implies that

2Bn . .
2Bnol1 ~ 5) || Qui 7S K93, wn) — 9(. 22) (339
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But

Kad(X,wn) = (%,20) = K[ I %17 =2(%, Jwn)+ [ wn 7] = [ & [P =2(%, Jza)+ || 2o |17 ]
(ky = DRI = 2(kp = 1)(%, Jzp) — 2k (R, Jwn — Jwn)

+ Kllwa > =1l zo IIP

= (ki = 1) | R I? =2(k3 — 1)(%, Jz0) — 2k3(X, Jwn — Jzn)

+ (k= Dlwn P+ wa P =1l za I

< (kg = D) R IPL+ 1 2(Kke = 1)(R, Jza) | + | 2K5 (R, Jwp — Jz) |

+ (kg = Dllwn 1P+ 1 wn 117+ 1 20 117

< (k=D IR 1P 420k = D) RN Jza | +2K5 | X 1| Jwn — Jza |
+ (lwa=zn DUl wa |l + 1l 20 1)

Since k, — 1 as n — oo, then by (3.37) and (3.38,) we obtain
nli_>moo(k,§¢(>?, wn) — B(%, zy)) = 0. (3.40)

2
Also since 5,77],,,0(')/ — %) > 0, by (3.39) and (3.40), we have

lim || Qw, ||= 0. (3.41)
n—oo

1
Taking the advantage of Q as v — ism and so ——Lipschitz continuous. Therefore, it follows from

(3.38) and (3.40) that @ € Q~1(0). Hence, @ € Sol(VIP(1.4)).

We also claim that w € So/(GMEP(1.1)). Consider the triangular inequality
| un =z [I<]] un =X [l + 1 X0 — 20 || -
By (3.19) and (3.22), we get
lim || up —z, ||= 0.
n—oo
From uniform continuity of J on bounded sets, we obtain
lim || Ju, — Jz, ||= 0. (3.42)
n—oo

Since r, > a and by (3.42), we have

n—o0o I'n

0. (3.43)
Equation u, = T}, z, implies that

1
H(up, v) + r—(v — Up, Jup — Jzp) + (v, up) — 3(up, up) >0, Vv € C.

n
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where
H(un, v) = D(up, v) + (Gup, v — up).
By applying Assumption (D>), we obtain
l(v — Up, Jup — Jzpy > —H(up, v) — (v, up) + 3(up, uy)

,
i > H(v,up) —9(v, up) + 9(up, upn).
Letting n — oo, by Assumption (Dy4) and (3.43), we get
H(v,w) —¥(v,w) + % (w,w) <0, VveC.
For all s € (0,1] and v € C, setting vs :== sv + (1 — s)w. Therefore vs € C and then,
H(vs, @) — ¥(vs, w) + ¥(w, w) < 0.

By Assumption (D1) — (Dg4), we estimate as

O — H(Vs,VS)

IN

sH(vs,v) 4+ (1 — s)H(vs, @)

IN

sH(vs, v) + (1 = s)[9(vs, w) — H(w, w)]
< sH(vs,v) + (1 = 9)[¢(v, w) — ¥(w, w)]
As s > 0, from Assumption (D3), we conclude that
H(w,v)+%(v,w) — % (w,w) >0, Vv e C.
Hence, w € So/(GMEP(1.1)).

Step 6 : Finally we show that w = lNgxg and so x, — laxg as n — oo. Putting x* = lNqxp,

since x* € Q C C, and x, = lNaxp, we have
d(xn, x0) < P(x*, x0), ¥Vn > 0.
Then

d(w, x0) = n|i_>moo¢(><n,><o) < o(x*, x0),

implies that w = x* and since x* = lNgXg, then we conclude that x, — @ = lNaxg, as n — oo.

This completes the proof. O

Corollary 3.2. Let C be a nonempty closed and convex subset of a 2—uniformly smooth and
uniformly convex Banach space B with B* as the dual space of B. Let D : C x C — R be
a bifunction satisfying Assumption 1, ¥ : C x C — R be a bifunction satisfying Assumption 2
and G : C — B* be a monotone and continuous mapping. Let T; : C — C and S; : C —

C, for each i = 1,2,..., N be two finite family of closed l;—Lipschitz continuous and uniformly
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quasi—d—asymptotically nonexpansive mappings such that Q := (NN, F(T;)) n (N, F(S)) N
NSol(GMEP(1.1)) # 0. Let {x,} generated by algorithm :

~

Xo, X1 € C, C1 = C,

Wn = Xp + an(Xn - Xn—l),

N

Vo =7 nodwn+ Y o i T wp);
=1
N

Zn = J_l(nn,Oan + Z nn,iJSFYn)y
=1
Up = TrnZn,
Cn+1 = {U €Cp: ¢(U, Un) < k,%(]b(l,l,wn)},
Xpr1 = Me, X0, Vn 2> 1,

;

where {ap} C (0,1), {uni} C[0,1] and {n, i} C (0O, 1] satistying the following conditions:
N

(51) Zun,/ =1
(52) Znn/ =1

(S3) I|m sup Nno < 1;
(S4) for same a > 0, r, € [a, 00).
Then, {xn} converges strongly to w, where w = lNqxy is consider as the generalized projection

of w onto 2.

Corollary 3.3. Let C be a nonempty closed and convex subset of a 2—uniformly smooth and
uniformly convex Banach space B with B* as the dual space of B. Let D : C x C — R be a
bifunction satisfying Assumption 1 and G : C — B* be a monotone and continuous mapping.
let T; : C — C and S; : C — C, for each i = 1,2,...,N be two finite family of closed
li—Lipschitz continuous and uniformly quasi—¢—asymptotically nonexpansive mappings such that
Q= (N, F(T))n (N, F(S))NNSol(GEP(1.2)) # 0. Let {x»} generated by algorithm :

-

Xo, X1 € C, C1 = C,

Wn = Xp + o‘n(Xn - anl)y
N

Yn= Jil(.un,OJWn + Z pn,iJ T wn);
=1
N

Zn = J_l(nn,onn + Z Mn,iJS!Vn),
=1
up = Tr,Zn,

Xp+1 = M, X0, VN 2> 1,
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where {a,} C (0,1), {un,i} € [0,1] and {n,;} C (0, 1] satisfying the following conditions:
N

(Sl) Z/J'n,i =1;
52 Znn/ - 1

(S3) I|m sup Nno < 1;
(S4) for same a>0, rela 00).
Then, {x,} converges strongly to w, where w = MNqxy is consider as the generalized projection

of w onto Q.

4. NUMERICAL EXAMPLE

Let B=Rand C =[0,1]. Let Q : C — C be defined by Qu = 2uVu € C. Define ¥ : CxC — R,
D:CxC—-RG:C—-RQ:C—-RT;:C—CandS§;:C— Chbyduv)=0,
D(u,v) = (u+v)(v—u), G(u) =u, Q(u) =2u and Ti(u) =S, (u) ,+1u respectively.

Setting {Bn} = {21, = L fan} = 0.9, pop =3 YN, pn; = 3 such that ¥ i, = 1 and
No,n = §. Z,Nzl Nni = § so that Z/:o Nin =1
Let {x,} be generated by the hybrid inertial iterative algorithm (3.1) converges to x* = {0} € Q.

Proof. Clearly ¥ and D satisfy assumptions 1 and 2, respectively, and G is continuous and
monotone so that So/(GMEP(eql.1)) = {0} # 0, Sol(VIP(eql.4)) = {0} # 0. Obviously
Q is % —ism, and T; and S; are two finite families of closed 1-Lipschitz continuous and uni-
formly quisi-¢-asymptotically nonexpansive mappings with Fix(T;) = Fix(S;) = {0}. Thus
Q = Sol(GMEP(eql.1)) N Sol(VIP(eql.4)) N Fix(T;) N Fix(S;) = {0} # 0. Hence, the it-
erative scheme (3.1) becomes the following scheme (4.1) after simplification:

~

x0,x1 € C, C; . =C,

Wy = Xn + 0.9(xy — Xp—1),
Yo = 3Wn + 3y Wan
Zo= Yo + 520

3 Coir = [0, 23], (41)
Xnt1 = M, X0, Vn 2> 1,
where, for lN¢ a metric projection onto C,
0, wh— Fw, <0
Vn = |_lC((Un _ﬁann) =11, w,— @wn >1

L Wy — %gwn otherwise.
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Finally, using the software Matlab 7.8.0, we have the following figure which shows that {x,}

converges to {0} as n — oo.

06+ .

04 .

“alue of the sequence: x(n)

=
]
T
1

1 1 1
10 20 30 40 a0 B0
Mumber of iterations:n

Ficure 1. Convergence of {x,} when xp = 1.0 and x; = 0.5
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