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ABSTRACT. The study presented some results on convexity properties in non-Newtonian calculus. Also
presented is the Jensen-Steffensen inequality in non-Newtonian calculus and some applications. The

research was mainly on positive real numbers.

1. INTRODUCTION

Classical calculus was introduced by Newton and Leibnitz which is applied on our present day
mathematics [1]. There are different operations with respect to addition and subtraction of numbers
under this calculus. However, Grossman and Karts came out with another calculus known as
non-Newtonian calculus in the 20th century [2]. Non-Newtonian calculus which is also called
multiplicative calculus is a multiplicative way of generating positive solutions to mathematical
problems [3]. It is a recent approach used to solve mathematical problems with positive real
numbers.

It is evidently clear that addition is replaced by multiplication in non-Newtonian calculus, and
subtraction by division for example, see authors in [4,5]. This result has been supported by au-
thors in [6], when they introduced the multiplicative calculus and its applications, which has been
established to be applicable to solving mathematical problems [6]. Non-Newtonian calculus has
been extended in many directions; fractional derivative, complex derivative, integral transformations,

differential equations and applications for science and engineering.
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The authors in [7] stated that, the centre of all analysis in the social science is the derivative.
They were expecting another method which may treat realistic growth phenomenon better in our
economy than the ordinary approach. The change actually came, which confirmed that variations are
more naturally measured in ratios than in differences [7], until 1972 that Grossman and Katz came
out with non-Newtonian calculus (see [2]). In their work, they also made it clearly that measuring
growth in ratios gives a better variations than measuring it in differences. Non-Newtonian calculus
is essential in the development of our scientific world, which enhances production and development.
It is applicable in various ways such as finance (used in marketing and determining rates of
return), health (used in tumor therapy and chemotherapy in medicine, pathogen counts in treated
water), thermostatistics, quantum theory, wave phenomenon, pattern recognition in images (eg. in
biomedicine), signal processing, biology-thus the rate at which growth increases or decays.

In the Non-Newtonian calculus, ratios are used in measuring change in values whiles in the

classical approach, differences are used in measuring change in values.

2. PRELIMINARIES

In this section, we give an overview of known definitions and theories used in achieving our

results.

2.1. Non-Newtonian Arithmetic. A system that satisfies the basic assumptions whose domain is a
subset of R is called arithmetic. Exactly one arithmetic result is produced by a generator, which
is a one-to-one function with a range of B that is a subset of the domain R [3,8]. The fundamental
arithmetic operations are defined using the generator as follows [3,4]:

Addition, k+r = a[a™t(k) +a(r)]

Subtraction, k—r = a[a"!(k) — a"1(r)]

Multiplication, kxr = a[a™ (k) x a™1(r)]

Division, k/r = a[a1(k)/a~ (r)]

When we take a-generator as a(k) = e¥, a7 1(k) = In(k) and k = R™, then o arithmetic reduces
to non-Newtonian arithmetic as follows:

Non-Newtonian - addition,

kt+r=a [a’l(k) - a’l(r)] = e(n()+In() — k. (1)
Non-Newtonian - subtraction,

k—r=a [a’l(k) — ofl(r)] = e(In(k)=In(r) — k/r (2)
Non-Newtonian - multiplication,

KXr — a [a—l(k) % a—l(r)] — o(n(k)xIn(r)) — jlIn(r) 3)
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Non-Newtonian - division,

1

k/r=a [ofl(k)/ofl(r)] = e(n(K)/In(r)) — ki (4)

[1,4,8,9]

The above non-Newtonian arithmetic are widely accepted in non-Newtonian calculus.

When considering n positive real numbers xi, X, ..., X, then the a-arithmetic mean is given as [10]:
Aa=3 1 xi/n=Y1,a [%]

A, = [a_l(X1)+OL_1();2)+...+C!_]’(Xn)]

1 1
Considering oo = exp, we have Agxp = [|—|,'-7:1 X,']" = (X1 X X2...Xp) "
Also considering xi, X2, ..., X, € RT and G, to be the a-geometric mean then:

Ga = [|_|7:1 Xi]% =a [|_|7:1 afl(Xi)]%
Ga = a (a7 () x a7t ()..a" (x,))7 |

In a similar way, we take oo = exponent, then the a-geometric mean can be interpreted as [10]:

1
n

Gexp = [(In x1 X Inxa... Inx,) ] (X >1).
Definition 2.1. [77] A set C = [a1, b1] C R is said to be convex if x,y € C, and
ax+(1-qyeC ()
for g € [0, 1].
Definition 2.2. [77] Let ¢ be defined on a real interval M. The function ¢ is convex if:
P(A1x + Aay) < Xd(x) + Xod(y), (6)

d(A1x + (1= A1)y) < Mo(x) + (1= X1)o(y), (7)
where \1 + Ao =1,V x,y € M and X1, \» € [0, 1].

Definition 2.3. [72] Let ¢ be convex function and uy, vi € R, then

P ( u + v1) < d)(ul)—i-d)(vl).

> > (8)

Proposition 2.1. [13] Let x; < y1,x2 < y», and ¢, be a convex function on an interval of real

positive values, then

Swly2 =y1) _ dwl(y2) = dwn)
Xo — X1 Xo — X1 '

(9)

Theorem 2.1 (Jensen-Steffensen inequality). [74] Let ¢ be a convex function defined on an interval

of the real line and let x;, p; € R, i=1,..m. If x1, ..., xm and p1, ..., Pm, Pm > 0, then

B px) < — 3 pidlx). (10)
Pm =3 Pm =5
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Theorem 2.2. [14] Let ¢ be a convex function on an interval S = [a1, by] C RT, where a1 < b;.

Let x = (x1, %2, ..., xn) and p = (p1, P2, ..., Pn), then
1 o 1
$r(ar+b1— — > pixi) < dular) + (b)) — — D picu(x:). (11)
Pn 1 Pn 1
Let py =3 i1 pi=1, then

dx(ar + by — ZP/X/ < ¢x(a1) + dx(b1) — Zpﬂbk Xi). (12)

i=1

Definition 2.4. [15] The definition of a p-convex set for an interval C is
(quP + (1 — q)vP)» € C, (13)
forall u,v € C and g € [0,1] .

Definition 2.5. [72,15,16] Let C = [ay, b1] be an interval on real numbers R. An expression
¢ : C =a1, bi] = R is p-convex if

1
d(quP + (1 — q)vP)r < qp(u) + (1 — q)d(v), (14)

VuveCandqcel01].

Definition 2.6. [15] Let ¢ be p-convex function and u, v € R, then

¢VWZW)i§am;¢wx

(15)

Definition 2.7. [15] Suppose the function ¢ : C = [x, y] — R is strongly convex and 3 > 1, then
(g2 + (1 - q)b) < qd(a) + (1 - q)é(b) — Ba(1 — q)(b - a)° (16)

forall a,b € C and q € [0, 1].

Definition 2.8. [75] A function ¢ : C = [x, y] — R is strongly p-convex function, if
1
$(aa” + (1 = q)b")» < q(a) + (1 = q)p(b) — Ba(1 — q)(b” — a*)?, (17)

for all a,b € C and g € [0, 1].

Definition 2.9. [75] In the event that an interval C is a harmonic convex set, then
uv
— | €C, 18
(CIU+(1—CI)V) o)
for all u,v € C and g € [0, 1].

Definition 2.10. [75] Let the function ¢ : C = [a1, b1] C RT and C = [ay, b1] be on an interval on
set RT without zero, then

uv

6|ty ) =@ 00+ astw) (19
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Definition 2.11. [75] Let C = (a1, b1] represent an interval on the p-harmonic convex set R without

zero. If a function ¢ : C = [a1, b1] C R is p-harmonic convex, it does not include zero if

) < (1 q)é(u) + gbv), (20)

quP + (1 —q)vP

¢

for all u,v € C and q € [0, 1].
In 1984, G. Toader defines m-convex function as follows [17]:

Definition 2.12. Let the function ¢ be a real R* on [u, v] and m € [0, 1], then m-convex function

is given as;
¢ [axi + m(1 — )] < gp(x1) + m(1 — q)p(x), (21)
for all x1,y1 € [u,v] and q € [0, 1]. Also, ¢ is m-concave if —¢p is m—convex.

Definition 2.13. Let the function ¢ be a positive real value on S = [u, v], then c-convex is repre-

sented by Luenberger (1969) as;

o[(1—a)x1 4+ gy] < c(1 — @)p(x1) + ad(y1), (22)

where ¢ € [0,1], for all x;,y1 € S and q € [0, 1].

3. ResuLTs AND DiscussioNs

In this section, all the results are presented in non-Newtonian form.

Definition 3.1. Let x,y € C and C = [a1, b;] CR" be a set. C must be convex if
X yn(®) e ¢, (23)
for t € [1, €.
Lemma 3.1. Let, x1,y1 € RT and ¢1 be a convex function. Then
P [Xlln(tl) ‘ylln(tll)] < 1 (x)"") - ¢1(Y1)In(%), (24)

for t; € [1, e].



Proof. Using equation (3), (1) and by convexity, we have

$1 [Xlln(tl) 'Yln(é)] =1 [X1>'<t1+y1>'<(t11)]
§¢1(X1)5<t1+¢1(Y1)5<(;)
<aatila)xa (m) et e0n)xa ()|
<a[mg1a) x In(e) + Inda) x ()|
< [0 It +n 1 ) ()]

S(eln(bl(xl))ln(h) . (elndn(yl))'n(%)
In(+) 1
91 [X'l”““ o ] <1 (x0)") - 1 (y1) "W,
as required. O

Lemma 3.2. Let a;, by € RT and ¢1 be a convex function, we have

(b1) ] _ #1(b1)
o [(31)] = $1(a1) )
Proof. Using equation (2) and by convexity, we have
b1 [ESS] =¢1 [(b1)—(a1)]
<¢1(b1)—¢1(a1)
<a a7 (@1(b1) o (g1 ()]
Se['“ ¢1(b1)—In¢1(ar)]
eln @1(b1)
< elndi(ar)
¢1(b1)
S<151(31)
(b)) ] _¢1(b1)
P [(31)] §¢1(31)’
as required. O

Lemma 3.3. Let ¢1 be convex and uy,vi € RT. Then

" [U12'V1] < ¢1(UI)é¢1(V1)‘ (26)
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Proof. Using equation (1) and by convexity, we have
- v 1 .
$1 [ 12 1] =$1 [2(U1+V1)]

:(¢>1(U1)+¢1(V1))]

3

IN
= NI~ NIRR N~ N -

a (ot (uiaton(w) |

_e(|n ¢1(u1)+In ¢1(V1))]

IN

IN

-eln ¢1(u1) | em ¢1(V1)]

<5 [f1(u1) - P1(v1)]
" [ul . vl] §¢1(U1) : ¢1(V1)v

2 2

as required.

Lemma 3.4. Consider an increasing function ¢. If p(v,) > ¢(vi) and v, > vy, then

H(v)") - Gy )"
(]§(Vy)|n(VX) . d)(vx)ln(vy) = 4,

Proof. Using equation (3) and (1), we have
()" - B(1,)") =(vs) X vk d(vy) % vy
=v X} (v, % d(vy)
<vex@(vy )+ vy xP(vx)
<ala M (w)xa ey ) e (y)xa g (w) |

<a[In(vx) x Ind(vy) + In(vy) x Inp(vy)]
Se[ln(vx)xln¢(vy)+ln(vy)><ln¢)(vx)]

Seln(vx)ln o(vy) . eln(vy)lnd)(vx)
< (e|n¢(vy))ln(VX) . (elnd’(vx))ln(v”

B(v2)") - (1)) <p(vy )" - ()N,

as required.

Lemma 3.5. Consider a decreasing function ¢. If p(vx) > ¢(v,) and vy > vy, then

B ") - (1, )70
By )T g5 =

or

B0 (1)) = (1)) - )",
7



The proof is similar to inequality (25), with inequality sign reversed.

Theorem 3.1. Let v;,zi € RT,i=1,..., k, and let ¢ be a convex function defined on a range of the

real line. If B, > 0, then

1\ [Ty (v 1\ M, o(v)nG)
‘| (&) <[] - (30)
By

Proof. Using equation (3) and by convexity, we have

1\ TS (v)e 1 K
b () =5 | g% [ Tex(w
1 k
<7' RS X
_BkXD(Z/)Xd)(V/)
1 k
<a a—1<§k)m—1|_|(z,->>'<a—1¢(v,->
=1
(In(Bi)lnHLl(zoxm(v,))
<e K
e Bk

( '“(1))|nﬂf1(z')x'”¢(v,)

1\ M1 (z) xIn ¢(v;)
=

>

)'n [y d(vy)nE)

as required. O

Definition 3.2. A set M = [a1, b1] C R* is a p-convex set, if

[160)21°0 - [(11)7)" D] € m, (1)
V x1,y1 € M andj € [1, €.

Lemma 3.6. Let x,y € M where M CR" and j € [1, €]. For a p-convex function ¢, we have

#6017 (021" D] < [80)]"™ - [90)] " (32
8



Proof. Using equation (3), (1) and by p-convexity, we have

®| [y [(n)ﬂ]'“(”F =¢ [<xl>pxj+<y1>ﬁ’>'<<}>]p
S¢<xl>>'<f+¢>(y1)>-<(j)
< [a[a_lcb(xl)Xa—l(j)+a—l¢(yl)xa_1(})]]
< [a[ln d(x1)x In(j)+In (y1)x |n(J1_)]]
< o[ Be0)ING)+n B3 In(H)]
;e'“d’(Xl)'nU) . e n(})
< (eln¢<xl>)'“0> _ (elncp(yl))'”(jl)
< [60)]" - [pr1)]"
6| ()"0 [(yl)f’l'”(f”]é <[60)]™ - [o00)]" D,

as required. O
Remark 1. The inequality (24) is obtained when p = 1.

Lemma 3.7. Let ¢ be convex and x1, y1 € RT. For a p-convex function, we have

Ga)?P- ()P _ d(xa) - d(x)
e

(33)

Proof. Using equation (1) and by p-convexity:

¢[<xl>p.<y1>f’]i: o[ R0+ ]
;

2
d(x1)+o(n)]

IN

IN

- (a0t a 0|

IN

o (In¢(x) + In () |

(lnq>(xl)+ln¢<y1))]

IN

(VAN
|\J\»—tl\)\r—ll\)\»—x I\J\l—* N~

endx) | gn ¢>(Y1)]

[¢(X1) ()]

(x1)P - ()PP _d(x1) - d(yv1)
o[l ]’ s
9




as required. ]
Remark 2. The inequality (26) is obtained when p = 1.

Definition 3.3. A harmonic convex set of an interval M is described, if

xIn(y)

—— e M, 34
Q) _yln(}) (34)

Vx,yeMandjell,e]
Lemma 3.8. Let the set W C Rt be a harmonic set. For harmonic convex function ¢, we have

Xlln()ﬁ) _ ¢(Xl)ln¢(y1)

— | < ERY (35)
xIn(an) -yln(ql) Blx)n(@) - g(yy)"ar)

¢

Vxi,y1 € Wand g1 € [1, e].
Proof. Using equation (3), (1) and by convexity, we have
In(y1)
Xl—i =¢[X1>'<Y14(<71>'<X1+(1)>'<J/1)]
In(a) () a1
X1 s
. . . N
<¢(x1)xp(y1)—(a X¢(X1)+(a)><¢()/1))
. . . : 1.
<a a9 ka0 (@7 (@)xa ) ta (ke 90u)|
<a [In d(x1) x Inp(y1) — (In(g1) x Ind(x1) + In(qll) X In d’(yl))]

e[m $(x1)xIn $(y1)—(In(g1) xIn $(x1)+In( L) xIn ¢>(y1))]

IN

o 90 xIn 6(32)— (I $(xa)xIn(ar)+1n (32 xIn( L))

IN

(eln ¢(X1))|n é(y1)

" (elnd(x))in(@) . (eln ¢(y1))|n(%)

X|1n()/1) B ¢(Xl)|n¢(yl)

Xlln(ql) .ylln(%) _¢X|1”(CI1) . ¢(yl)|”(%)’

proved. O

Definition 3.4. Let W be a subset on RT, then W is p-harmonic convex set if

1

[Xp]ln(y)" g
[[Xp]”(f) . [yp]n(j)] eWw, (36)

Vx,yeWandj €[l el
10



Lemma 3.9. Consider the p-harmonic convex set M = [a, b] C R*. If ¢ is p-harmonic convex

function, we have

T =

[(XI)P]In(h)P B [¢(X1)]In¢(y1)
[(x)P]InCa) - [(yl)p]ln(%l) - [6(x0)]0) - [cb(yl)]'”(ﬁ)’

V xi,y1 € Mandj; € [1, e].

(37)

Proof. Using equation (3), (2) and by p-convexity, we have

o ]° D :
b TR =<1>[(n)l’x(yl)f?—(ﬁx(xl)u(.1>x(y1>">]
()]G - [(y1)P] n(;) Nt
s«p(xl)m(yl);olm(xl)ﬂj.ll)xcp(yl))

<a [In d(x1) x Ingp(y1) — (In(1) x Ingp(x1) + In(i) x In q’)(yl)]

o[ 0 xIn 6(32)—(InGi) xIn @) Hn( ) xIn (3|

IN

o[ 0 xIn 6(32)— (I $xa)xInGi) +in @) xIn( L) |

IN

elln o) In¢(y1)]

A

() G . 90 InG)]
(B(x1))"¢00)
>~ ] 1
(B(x1))"0D) - ($(y1))"n

5 [ [(x1)P] N0 ]p - [(x1)]M o)

[(Xl)Plln(jl) . [(_)/1)p]|n(%l) - [¢(X1)]|”01) ' [¢(y1)]|n(%l) )

as required. O
Remark 3. When p = 1, the inequality (35) is obtained.

Definition 3.5. M is referred to as p-Jensen-Steffensen’s set if, it is a subset of R*, assuming that

1\ T (G0 C
[
Lemma 3.10. Let M C R™ be p-Jensen-Steffensen set. For p-Jensen-Steffensen’s inequality, we
have
1\ 17 (Ga)pyne) C 1\ N1y ¢
")[(Bn) ] < (s,) - 39

1"



Proof. Using equation (3) and by p-convexity, we have

1\ T ()P ’ 1.~ g
s(5) A ORO

gBlnx g<z,>>'<¢(x,->

<oz<ozl ll_lz, xa~ X,)

(In(Bln)Inrlf L(z)xIn d)(x,-))

IN

( n(& 1 ))mﬂr 1(Z)) xIn ¢(x;)

IA

1 In[ 721 (z) xIn ¢(x;)
B,

|

as required. O

IN

1
1 N[0, ()@ | P
¢ ()

1 b))
Bn )

-

Definition 3.6. Let the set W be a subset on RT, then W is strongly convex set if

(D) |n(%)2
[[u'“w] J] ew, (40)

where 4 > 1,V x,y € W and j € [1, €].

Lemma 3.11. Consider a convex set W C R™. For a strongly convex function ¢, we have

8 [xnia) . 2] < P90 - §(y)"s) 1)

= (2
I:[’ulm(q)]ln(é):l n

where 4w > 1,V x,y € W and q € [1, €].
12



Proof. Using equation (3), (1) and by convexity, we have
¢ [X'”(") ‘y'”(%)] =¢ X>'<q+y>'<(:7)]

<L )X i (L)

<a a—1q>'<a—1¢(x>+a—1<2)xa-lcp(y);a-l(u)m-1<q)m-1<;Mﬁ)?]

ein(@)Ing(x) . () Ine(y)
on(u)In(a) In(%)In(£)?)

(e'n¢(x))'”(") . (e|n¢(y))'n($>

(e'”(u))'”(q) In(3)In(%)?

IN

] <900 dy)"?

In(Zy
[[Mm(q)]'“(é)] "

proved. ]

Lemma 3.12. Consider the convex set W = [a, b] C R*. If ¢ is highly p-convex function, we have
6" - g(y)")

|:[M|n(j)]|n(j):||n(i)2 ,

1
d) [(Xp)m(f) . (yp)ln(jl)] p < (42)
where 4 > 1,V x,y e W andj € [1,e€].

Remark 4. When p = 1, the strongly p-convex function returns to strongly convex function. Thus

the inequality (41) is obtained.

Proof. Using equation (3), (1) and by p-convexity, we have

¢[(xp )n0) . In( )] )><¢(y) uxjx(j)x(§)2
<a [a1j>'<oc1¢(X)+a1(})*041(15()/);051(u)>'<a1(j)>'<a1(})>-<(i)2]
Se(ln(f)|n<i>(><)-&-|n(%)Ind)(y)—ln(p,)|n(‘,')|n(Jl_)|n(§)2)

() Ind(x) eln(Jl.)|n¢(y)
Sn() InG) In(3) In(%)?)
1 1
(e|n¢(x))'”°) . (eln¢(y))'”(f)

(eh() PO n(FYnCE Y

<

13



)'n(})

d,[(xp)ln(f).(yp)m(})]i§¢(X)'"U)-¢(yl i
[[wnu)]'”(})] ")

proved. O
Definition 3.7. Let the set W be a subset on R, then W is m-convex set if

X Jynim] " e 3)
where me [1,e|,V x,y e W and j € [1, e].

Lemma 3.13. Let the function ¢1 be m-convex and my € [1, €], then
|”(%) In(%)
o1 lxlln(tl) . [yin(m)] 1 ] < ¢1(Xl)|n(tl) . [¢1(yl)ln(m)] 1 (44)

forall x;,y1 € RT and t € [1, €].

Proof. Using equation (3), (1) and by convexity, we have

n(+) o . .
o1 lxlln(tl) ) [(yl)ln(ml)]l 1 ] =p1 [xlxt+m1><(y1)x(tll)]

<1 (x1) X t14+m >'<¢>1(y1)>'<(t11)

= a[al(pl(xl)xal(fl)—i‘a1(m1)>'<a1<l>1()/1)>'<a1(t11)]]

< _oc[ln ¢1(x1) x In(t1) + In(m1)x In 1 (y1) ¥ In(tll)]]

< [ elin @1 Gayxinten)-+ingmn) xin ¢1(y1)><ln(t11)]:|

< e[ln $1(x1) In(t1)+Inmy In ¢1(y1) |n(t11)]:|

S(eln ¢1(X1))|ﬂ(t1) . ((eln ¢1(y1))ln(m1))|n(%)

o lxlln(fl) . [(yl)'”(ml)]l”(b] §¢1(X1)In(t1) ' [(pl(yl)'”(ml)]ln(tll) |
as required. .
Definition 3.8. Let W C R, then W s said to be c-convex set if
Xlln(%) .yin(t) e )

where c € [1,e],V x1,y1 e W and t € [1, €].
14



Lemma 3.14. Let the function ¢1 be c-convex on W = [a, a1] and c € [1, €], then
In(ti) In(ti)
b1 [(Xl 1 'yin(t1):| < [d)l(xl)ln(c)] 1 '¢1()/1)|n(t1), (46)
Vxi,y1r€Wandt € [1, 6].

Proof. Using equation (3), (1) and by convexity, we have

n(+ 1 )
” [X|1 (tl) . (yl)ln(t1)] =1 [Xlx(tl)—i—(yl)xtl]

gcml(xl)ﬂjl)wl(yl)xn

< a[al(e)xa1¢1<xl>>'<a1(;>+a1¢1(y1>xa1<t1>1]

< -a[ln(c) X Ing1(x1) x In(tll) +1In¢1(y1) x |”(f1)]]

IN

_e[ln ¢10a)xIn(c)xIn(L)+In ¢1(y1)xln(t1)]]

[ lIn@10a) In(c) In()+n 61 (1) ln(n)}]

IN

In(%)

IN

'(elnzm(xl))ln(c)] - (eln9:01)yin(21)

1

1 _ In(L
o1 [Xlln(tl) . (yl)m(h)] < d)l(Xl)In(c)] n(z) 'd)l()/l)ln(tl)v

as required. O

4. CONCLUSION

In this paper, some classes of convex functions have been identified and presented. The pa-
per established some convexity properties and inequalities in non-Newtonian calculus and their

applications.
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