
©2024 Ada Academica https://adac.eeEur. J. Math. Anal. 4 (2024) 11doi: 10.28924/ada/ma.4.11
On the Stability of Hyers Orthogonality Functional Equations in Non-Archimedean Spaces

Wenhui Xu, Qi Liu, Jinyu Xia∗
School of Mathematics and Physics, Anqing Normal University, Anqing 246133, P. R. Chinaxuwenhuiwww@163.com, liuq67@aqnu.edu.cn, Y23060036@stu.aqnu.edu.cn

∗Correspondence: Y23060036@stu.aqnu.edu.cn
Abstract. In this paper, we investigate the stability of specially orthogonally functional equationsderiving from additive and quadratic functions
4f (x + y) + 4f (x − y) + 10f (x) + 14f (−x)− 3f (y)− 3f (−y) = f (2x + y) + f (2x − y)

and
f

(
x + y + z

2

)
+ f

(
x + y − z
2

)
+ f

(
x − y + z
2

)
+ f

(
y + z − x
2

)
= f (x) + f (y) + f (z)

where f is a mapping from Abelian group to a non-Archimedean space. By adopting a new method,we have made an attempt to prove the Hyers-Ulam stability in non-Archimedean spaces.

1. Introduction and preliminaries
The stability problem of functional equations originated from Ulam in 1940 when he posedthe group homomorphism problem "Given an approximately linear mapping f , when does a linearmapping T exist that approximates f ?" In 1941, Hyers [1] explored the scenario of approximatelyadditive mapping f : X → Y where X and Y are Banach spaces and f satisfies

‖f (x + y)− f (x)− f (y)‖ 6 ε

for all x, y ∈ X . Then there is a unique mapping additive L : X → Y satisfying
‖f (x)− L(x)‖ 6 ε

with the limit
L(x) = lim

n→∞

f (2nx)

2n
.

Rassias [14] weakened the bounded Cauchy difference proposed by Hyers in the map and ex-tended it to the unbounded Cauchy difference
‖f (x + y)− f (x)− f (y)‖ 6 ε(‖x‖p + ‖y‖p)
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Eur. J. Math. Anal. 10.28924/ada/ma.4.11 2where ε > 0 and p ∈ [0, 1), Hyers’ theorem was extended to approximately linear maps. R. Gerand J. Sikorska [7] restricted the conditions with (x, y) = 0 and investigated the stability of theCauchy functional
f (x + y) = f (x) + f (y) (1.1)

Of course it is easy to spot that the function f (x) = ‖x‖2 satisfies the functional equations (1.1)by the Pythagorean theorem. They founded that there exists a orthogonality additive mapping
g : X → Y such that

‖f (x)− g(x)‖ 6
16

3
ε

for all x ∈ X with restriction on definition domain (1.1) was denoted as a additive equations.Similarly, the equation was called as a quadratic equation which satisfies
f (x + y) + f (x − y) = 2f (x) + 2f (y). (1.2)

During several decades, mathematicians have achieved various fruits in studying the stability offunctional equations based one these two equations in the spirit of Hyers-Ulam-Rassias.Now let us introduce the concept of orthogonality ⊥ defined by Rätz [16]. Suppose X is a realvector space with dimX > 2 and ⊥ is a binary relation on X are characterized by the followingproperties:(i) totality of ⊥ for zero: x ⊥ 0, 0 ⊥ x for all x ∈ X;(ii) homogeneity: if x, y ∈ X , x ⊥ y , then λx ⊥ µy for all λ, µ ∈ R ;(iii) independence: if x, y ∈ X \ {0}, x ⊥ y , if and only if x, y are linearly independent;(iv) for any two-dimensional subspace P of X and for every x ∈ P , there exists λ, y ∈ P such that
x ⊥ y and x + y ⊥ λx − y .The pair (X , ⊥) is called an orthogonality space, which means an orthogonality space havinga normed structure. Various notions of othogonlity on a real normed space such as Roberts,Pythagorean, Isosceles, Birkhoff-James, Carlsson, Hermite–Hadamard (HH) type orthogonalitieson the basis of the fundamental properties.

Definition 1.1. [16] A function ‖·‖ :X → [0,∞) on a vector space over X a scalar field K with anon-Archimedean valuation | · |, is classified as a non-Archimedean norm if it meets the followingconditions:(i) nonnegativity: ‖x‖ > 0 and ‖x‖ = 0 if and only if x = 0;(ii) homogeneity: ‖λx‖ = |λ| ‖x‖ ∀λ ∈ K,∀x, y ∈ X;(iii) the strong triangle inequality
‖x + y‖ 6 max {‖x‖ , ‖y‖} ∀x, y ∈ X

Then (X,‖·‖) is called a non-Archimedean normed space.
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Eur. J. Math. Anal. 10.28924/ada/ma.4.11 3Gordji [9] investigated the stability of the traditionally functional equations
D(x, y) = f (x + y)− f (x)− f (y)

where f : X → Y X, Y are both non-Arohimedean Banach spaces. They established the existenceof functions ϕ,ψ : A× A→ [0,∞) such that
‖D(x, y)‖ 6 ϕ(x, y)
‖f (xy)− f (x)f (y)‖ 6 ψ(x, y)

for all x, y ∈ X , and they considered the case if there exists a constant 0 < L < 1 such that
ϕ(2x, 2y) 6 |2|Lϕ(x, y)
ϕ(2x, 2y) 6 |2|2Lψ(x, y)

Then there exist a unique ring homomorphis H : X → Y such that
‖f (x)−H(x)‖ 6

1

|2|(1− L)ϕ(x, x)

Kang [10] explored the stability of the orthogonally functional equation(1.3) through the classi-fication of the oddness and evenness of f within the same spaces
4f (x + y) + 4f (x − y) + 10f (x) + 14f (−x)− 3f (y)− 3f (−y) = f (2x + y) + f (2x − y) (1.3)

Park [12] investigated the stability of the orthogonally additive-additive and orthogonallyquadratic-quadratic functional equation(1.4) in non-Archimedean orthogonality spaces using con-ventional methods
f

(
x + y + z

2

)
+ f

(
x + y − z
2

)
+ f

(
x − y + z
2

)
+ f

(
y + z − x
2

)
= f (x) + f (y) + f (z)(1.4)

Drawing inspiration from [14], this paper we explore different spaces and employ new methodsto investigete the stability of the aforementioned equation(1.4) and (1.3).
2. Stability of the orthogonally additive-quadratic functional equation

In this section, we will use the following symbol
D1f (x, y) = f (2x + y) + f (2x − y)− 4f (x + y)− 4f (x − y)

−10f (x)− 14f (−x) + 3f (y) + 3f (−y)
(2.1)

we deal with the stability problem for the orthogonally additive-quartic functional equation for
D1f (x, y) = 0 by referring to the stability proof of [13, 14].
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Lemma 2.1. Assume f : G → X be a mapping with G be an Abelian group and (X, ‖ · ‖) be acomplete non -Archimedean normed space. For all x, y ∈ G and there is a constant C > 0 suchthat ∥∥∥∥f (2x)− 38 f (4x) + 18 f (−4x)
∥∥∥∥ 6 C (2.2)

Then we define
h(x, n) =

∥∥∥∥f (2x)− 2n + 12 · 4n f
(
2n+1x

)
+
2n − 1
2 · 4n f

(
−2n+1x

)∥∥∥∥
and

gn(x) =
2n + 1

2 · 4n f (2
nx)−

2n − 1
2 · 4n f (−2

nx) . n ∈ N

(1)Then we have
|h(x, n + 1)− h(x, n)| 6

2n + 1

2 · 4n C (2.3)
h(x, n) 6 C (2.4)

(2)and {gn(x)} is a Cauchy sequence, for every x ∈ G. Hence, the mapping g : G → X can bedefined as
g(x) = lim

n→∞
gn(x)

and then we get
‖f (2x)− g(2x)‖ 6 C (2.5)

Proof: Adding one and subtracting one with h(x, n + 1) for matching and then using the in-equality, we obtain∥∥∥∥f (2x)− 2n+1 + 12 · 4n+1 f
(
2n+2x

)
+
2n+1 − 1
2 · 4n+1 f

(
−2n+2x

)∥∥∥∥
6

∥∥∥∥f (2x)− 2n + 12 · 4n f
(
2n+1x

)
+
2n − 1
2 · 4n f

(
−2n+1x

)∥∥∥∥
+
2n + 1

2 · 4n

∥∥∥∥f (2n+1x)− 38 f (2n+2x) +18 f (−2n+2x)
∥∥∥∥

+
2n − 1
2 · 4n

∥∥∥∥f (−2n+1 · x)+ 18 f (2n+2x)− 38 f (−2n+2x)
∥∥∥∥

6

∥∥∥∥f (2x)− 2n + 12 · 4n f
(
2n+1x

)
+
2n − 1
2 · 4n f

(
−2n+1x

)∥∥∥∥+ C ·max{2n + 12 · 4n ,
2n − 1
2 · 4n

}
Next, it is easy to get

|h(x, n + 1)− h(x, n)| 6
2n + 1

2 · 4n C
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h(x, n) =

∥∥∥∥∥
(
n∑
i=2

h(x, i)− h(x, i − 1)

)
+ h(x, 1)

∥∥∥∥∥
6 C ·max

{
2 + 1

2 · 4 ,
22 + 1

2 · 42 , · · · ,
2n + 1

2 · 4n , 1
}

= CNext, we have to prove that for every x ∈ G, the sequence
gn(x) =

2n + 1

2 · 4n f (2
nx)−

2n − 1
2 · 4n f (−2

nx) n ∈ N

is convergent in G. Since X is complete, it is sufficient to show that (gn(x))n∈N is a Cauchysequence for all x ∈ G. By matching ‖gn+1(x)− gn(x)‖twice then we have
‖gn+1(x)− gn(x)‖ 6

2n + 1

2 · 4n

∥∥∥∥f (2nx)− 38 f (2n+1x)+ 18 f (−2n+1x)
∥∥∥∥

+
2n − 1
2 · 4n

∥∥∥∥f (−2nx)− 38 f (−2n+1x)+ 18 f (2n+1x)
∥∥∥∥

6C ·max
{
2n + 1

2 · 4n ,
2n − 1
2 · 4n

}
=
2n + 1

2 · 4n Cfor each n ∈ N . This easily implies that {gn(x)} is a Cauchy sequence. The mapping g : G → Xcan be defined as
g(x) = lim

n→∞
gn(x)Through the above results, we can obtain

‖f (2x)− g(2x)‖ = ‖h(x, n) + gn(2x)− g(2x)‖ 6 C

In this section, let G be an Abelian group and let ⊥ be a binary relation defined on G with theproperties:(i) x ⊥ 0, 0 ⊥ x , for all x ∈ X;(ii) if x, y ∈ X and x ⊥ y , then x2 ⊥ y
2 , 2x ⊥ 2y , 4x ⊥ 4y and −x ⊥ −y .

Theorem 2.1. Suppose f : G → X where f is a mapping from an Abelian group to a completenon-Archimedean normed space. For ε > 0, when x ⊥ y for all x, y ∈ G,we obtain
‖D1f (x, y)‖ 6 ε (2.6)

and
‖f (x) + f (−x)‖ 6 ε (2.7)Then there exists a unique mapping g : G → X such that x ⊥ y implies

4g(x + y) + 4g(x − y) + 10g(x) + 14g(−x)− 3g(y)− 3g(−y) = g(2x + y) + g(2x − y) (2.8)
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‖f (x)− g(x)‖ 6

7

2
ε (2.9)

for all x ∈ 2G = {2x : x ∈ G}.
Proof. For all x ∈ X , since 0 ⊥ x , x ⊥ 0 and 0 ⊥ 0, setting x = 0, y = 0 in (2.6), we obtain
‖24f (0)‖ 6 ε, respectively, setting y = 0 in (2.6),we obtain the following inequality:

‖2f (2x)− 18f (x)− 14f (−x) + 6f (0)‖ 6 ε (2.10)
By using the strong triangle inequality, we obtain
‖2f (2x)−18f (x)−14f (−x)‖ 6 max{‖2f (2x)−18f (x)−14f (−x)+6f (0)‖, ‖6f (0)‖} 6 ε (2.11)

By replacing x with 4x in (2.7) and applying the triangle inequality twice, we obtain
‖2f (2x)− 4f (x)‖ 6 max{‖2f (2x)− 18f (x)− 14f (−x)‖, 14‖f (x) + f (−x)‖} = 14ε (2.12)

Applying (2.7) and (2.12) to ‖3f (4x)− 8f (2x)− f (−4x)‖, we can conclude that
‖3f (4x)− 8f (2x)− f (−4x)‖

= ‖4[f (4x)− 2f (2x)]− [f (4x) + f (−4x)]‖

6 max {28ε, ε} = 28ε (2.13)
This means that ∥∥∥∥f (2x)− 38 f (4x) + 18 f (−4x)

∥∥∥∥ 6 72ε (2.14)
The next step resembles Lemma2.1, let

gn(x) =
2n + 1

2 · 4n f (2
nx)−

2n − 1
2 · 4n f (−2

nx) (2.15)
then we can define a mapping g

g : G → X g(x) = lim
n→∞

gn(x).

According to Lemma2.1, we obtain
‖f (2x)− g(2x)‖ 6

7

2
ε (2.16)

we consider the following inequality
‖D1gn(x, y)‖

6

∥∥∥∥2n + 12 · 4n D1f (2
nx, 2ny) +

2n − 1
2 · 4n D1f (2

nx, 2ny)

∥∥∥∥
6
2n + 1

2 · 4n ε (2.17)
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Eur. J. Math. Anal. 10.28924/ada/ma.4.11 7for all x, y ∈ G. Then we let n →∞, we get (2.8). Now, in order to prove g is unique, we assume
g′ as another mapping satisfying (2.8) and (2.9) that∥∥g(x)− g′(x)∥∥ = ∥∥g(x)− f (x) + f (x)− g′(x)∥∥

6 max
{
‖g(x)− f (x)‖,

∥∥f (x)− g′(x)∥∥}
= ε (2.18)

for all x ∈ 2G = {2x : x ∈ G}On the other hand, the mapping g − g′ satisfy (2.6) and(2.8)
g(2x)− g′(2x) =

2n + 1

2 · 4n
[
g
(
2n+1x

)
− g′

(
2n+1x

)]
−
2n − 1
2 · 4n

[
g
(
−2n+1x

)
− g′

(
−2n+1x

)] (2.19)
and therefore∥∥g(2x)− g′(2x)∥∥
6 max

{(
2n + 1

2 · 4n

)∥∥g (2n+xx)− g′ (2n+1 · x)∥∥ ,(2n − 1
2 · 4n

)∥∥g (−2n+1x)− g′ (−2n+1x)∥∥
6 max

{(
2n + 1

2 · 4n

)
ε,

(
2n − 1
2 · 4n

)
ε

}
=
2n + 1

2 · 4n ε (2.20)
for x ∈ G. By using the nonnegativity of norm and the forced convergence we can get that themapping g is unique on the set 2G.

�

3. Stability of additive-additive and orthogonally quadratic-quadratic functional equation
In this section, we substituted the equations with the orthogonally additive-additive and orthog-onally quadratic-quadratic functional equation concerning [12] in the same method and by referringto the stability proof of [13, 14], we define D2(x, y , z) as the followig

D2f (x, y , z) = f

(
x + y + z

2

)
+ f

(
x + y − z
2

)
+ f

(
x − y + z
2

)
+ f

(
y + z − x
2

)
− f (x)− f (y)− f (z)

Theorem 3.1. Suppose f : G → X where f is a mapping from an Abelian group to a completenon-Archimedean normed space. For ε > 0, when x ⊥ y for all x, y , z ∈ G,we obtain
‖D2f (x, y , z)‖ 6 ε (3.1)

and
‖f (x) + f (−x)‖ 6 ε. (3.2)
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Eur. J. Math. Anal. 10.28924/ada/ma.4.11 8Then there exists a unique mapping g : X → Y such that x ⊥ y implies
g

(
x + y + z

2

)
+g

(
x + y − z
2

)
+g

(
x − y + z
2

)
+g

(
y + z − x
2

)
= g(x)+g(y)+g(z) (3.3)

and
‖f (x)− g(x)‖ 6 ε (3.4)for all x ∈ 2G = {2x : x ∈ G}.

Proof. For all x ∈ G, since 0 ⊥ x , x ⊥ 0, and 0 ⊥ 0, setting x = 0, y = 0, z = 0 in inquality (3.1),we obtain ‖f (0)‖ 6 ε, then similarily setting y = 0, z = 0 in inequality (3.1), we obtain∥∥∥∥3f (x2)+ f
(
−x
2

)
− f (x)− 2f (0)

∥∥∥∥ 6 ε (3.5)
Then, by using the strong triangle inequality, we obtain∥∥∥∥3f (x2)+ f

(
−x
2

)
− f (x)

∥∥∥∥
6 max

{
‖2f (0)‖,

∥∥∥3f (x
2

)
+ f

(
−
x

2

)
− f (x)− 2f (0)

∥∥∥}
= 2ε (3.6)

By replacing x witn 2x in (3.6), we obtain
‖3f (x) + f (−x)− f (2x)‖ 6 2ε (3.7)

By using the strong triangle inequality twice, we can easily obtain
‖2f (x)− f (2x)‖

6 max{‖f (x) + f (−x)‖, ‖3f (x) + f (−x)− f (2x)‖} = 2ε (3.8)
By replacing x witn 4x in (3.2),then combining the following with (3.2)and(3.8), we can concludethat

‖3f (4x)− 8f (2x)− f (−4x)‖

= ‖4[f (4x)− 2f (2x)]− [f (4ẋ) + f (−4x)]‖

6 max{8ε, ε} = 8ε (3.9)
Then dividing both side of the inequality by 8,we obtain∥∥∥∥f (2x)− 38 f (4x) + 18 f (−4x)

∥∥∥∥ 6 ε (3.10)
The next step resembles Lemma2.1,

gn(x) =
2n + 1

2 · 4n f (2
nx)−

2n − 1
2 · 4n f (−2

nx) n ∈ N.

Let
g : G → X g(x) = lim

n→∞
gn(x).
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Eur. J. Math. Anal. 10.28924/ada/ma.4.11 9According to Lemma2.1, we obtain
‖f (2x)− g(2x)‖ = ‖h(x, n) + gn(2x)− g(2x)‖ 6 ε (3.11)

For the purpose of proving that g is orthogonally additive, firstiy, we apply the strong triangleinequality and the nonnegativity property for the following , we obtain
‖D2g(x, y , z)‖

=

∥∥∥∥2n + 12 · 4n D2f (2
nx, 2ny , 2nz) +

2n − 1
2 · 4n D2f (2

nx, 2ny , 2nz)

∥∥∥∥
6max

{
2n + 1

2 · 4n ε,
2n − 1
2 · 4n ε

}
=
2n + 1

2 · 4n ε (3.12)
for all x, y , z ∈ G with x ⊥ y and n ∈ N, n > 1. When we let n → ∞, we get (3.3). The rest ofproof resembles Theorem 2.1, according to (2.18)to (2.20) , we can get the mapping g is unique onthe set 2G similarly. �

Theorem 3.2. Suppose f : G → X where f is a mapping from an Abelian group to a completenon-Archimedean normed space. For ε > 0, when x ⊥ y for all x, y , z ∈ G,we obtain
‖D2f (x, y , z)‖ 6 ε (3.13)

and
‖f (x)− f (−x)‖ 6 ε. (3.14)

Then there exists a unique mapping g : X → Y such that x ⊥ y implies
g

(
x + y + z

2

)
+g

(
x + y − z
2

)
+g

(
x − y + z
2

)
+g

(
y + z − x
2

)
= g(x)+g(y)+g(z) (3.15)

and
‖f (x)− g(x)‖ 6

1

2
ε (3.16)

for all x ∈ 2G = {2x : x ∈ G}.
Proof. Our proof resembles Theorem3.1, the same step from (3.5) to (3.7), we get that

‖3f (x) + f (−x)− f (2x)‖ 6 2ε (3.17)
Adding (3.14) to (3.17) and using the triangle inequality, we can obtain

‖f (2x)− 4f (x)‖

6 max {‖3f (x) + f (−x)− f (2x)‖, ‖f (x)− f (−x)‖} = 2ε (3.18)

https://doi.org/10.28924/ada/ma.4.11


Eur. J. Math. Anal. 10.28924/ada/ma.4.11 10Hence, by using the result, there is
‖3f (4x)− 8f (2x)− f (−4x)‖

= ‖2[f (4x)− 4f (2x)] + f (4x)− f (−4x)]‖

6 max{4ε, ε} = 4ε (3.19)
The rest of proof is similar to the Theorem 3.1. �
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