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ABSTRACT. In this paper, we establish an extension of the Hardy-Littlewood-Sobolev theorem to the
setting of the Bourgain-Morrey space M2 ,(RY) (1 < g,p,a < o0), which theory goes back to
Bourgain in 1991. We also prove that Mg‘vp(Rd) is included in the closure of the Lebesqgue space
L% in the Morrey-type space F(q, p, ), which arises naturally in 2015 in the study of boundedness
properties of fractional integral operators. Therefore, we establish in MG, some approximation
results by compactly supported and/or reqular functions. As an application of these results, we
obtain an explicit solution in [L?(R?)]? of the equation div F = f whenever f is in M2, with d > 3,
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1. INTRODUCTION

Let d be a fixed positive integer. RY is equipped with its usual Hilbert space structure and the
euclidean norm of any element x of R? is denoted by |x|.
Recall that the classical Lebesque space L9 := L9(RY), with g € [1, 0], is defined to be the

set of all measurable complex functions f on R? such that

1f]lq := [/Rdlf(xﬂ"dx]q < 00

with the usual modification made when g = co. In what follows,

=

E| and xg denote the Lebesgue

q

Ioc denotes

measure and the characteristic function of any measurable set £ C RY, respectively. L
the set of all measurable complex functions f on RY such that fxx € L9 for any bounded measurable
subset K of RY.

For 1 < g, a < oo, the Morrey space Mg = Mg‘(Rd) is defined as the set of all elements f of

L. for which

1.1
IFllmg == sup  [QUx, )= [[fxqenll, < oo
X€ERY, r>0
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where
d r r
Q(X’r)_D[)g_Z,)g+2) , x = (x1,%, ...xq) €RY and 0 < r < oco.

Morrey spaces were introduced in 1938 by C. Morrey [11] in order to study both the reqularity
problem of solutions for quasi-linear elliptic partial differential equations and the calculus of vari-
ations. Note that, for 1 < g < a < oo, L? is included in Mg‘ and the inclusion is proper when
g < a < oco. Moreover, Morrey spaces describe local reqularity of functions more precisely than
Lebesgue spaces. However, some nice and useful properties of L* are not shared by Mg when
1 < g < a < oo For example, in this case, the set of all compactly supported and/or reqular
elements is not dense in Mg. Because of this unpleasant issue, several distinguished linear sub-
spaces of Morrey spaces have been considered for their easy use in Harmonic Analysis, specifically
in boundedness problem of classical operators.

The present paper focuses on Bourgain-Morrey spaces Mg , with 1 < g, a, p < co. Recall that,
a special case of these spaces was first introduced by Bourgain [2] in 1991 in order to study the
Stein-Tomas estimate. Later on, Bourgain-Morrey spaces have been used fruitfully in the study
of Fourier restriction, multipliers problems and partial differential equations, and in the proof of
refinements of Strichartz inequality (see [8—10] and the references therein). They are defined as

follows.

Definition 1.1. Let 1 < g, a, p < oo. The Bourgain-Morrey space Mg , := M‘C’,‘,p(Rd) is defined
as the set of all f € L} _ for which

7t 1= [{1Qumls 1xan,l

(k,m)EZIXZ|| o

where the sets

d
Qum=[ |[K2™ (ki +1)27), k= (ki ko, ... kg) €Z°, m€EZ
j=1

are the usual dyadic cubes of R and for any sequence {a;}cr1 included in C,

{ai}ietllgp == ( icl

sup |ajl if p=o0.
iel

1
P
Z|a,—|p) if p<oo

It is well known that, when 1 < g < o < p < 00, L* is properly included in ./\/lg"p, which is a

linear subspace of Mg. Actually we have

{ LYCME,CMS, CMS =M, 1<g<a<p<p <co. 0

MGp,CMg o 1< <g<a<p<oo
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Many useful results, well known for Lebesgue or Morrey spaces, have been extended to the
setting of Bourgain-Morrey spaces (see [8,9]). For instance, the boundedness of some classical
operators on these spaces has been investigated by Hatano et al. [8].

Let 0 <<y < 1. Define the fractional integral operator /y as

b0 =[x =y Ve )y

when the above integral makes sense.
Recall that the Hardy-Littlewood-Sobolev theorem of fractional integration is one of the most

important tools in the study of partial differential equations. It reads as follows.

Theorem 1.2. [14]Let 0 < v < é <1 and % = é — . Then there is a real number Ay~ such
that:
(i) when 1 < o

Iy fllp < Aanyllflla fel® (2)
(ii) when ov =1

Hf”%m <Ainlflli. fe Lt (3)
Recall that, for g € [1,00), |-} o, denotes the quasi-norm of the weak-Lebesqgue W L9 defined

by
1
weo = € the : 1F50 = s A€ R 1700] > X < o0].
A>0

The first aim of the present paper is to establish an extension of the above useful theorem to
the setting of Bourgain-Morrey spaces. Note that, our result refines that of Hatano et al., which
states that fractional integral operators map Bourgain-Morrey spaces into the same type spaces
(see [8, Theorem 4.4)).

Another Morrey-type space considered in this paper is the space F(q,p,a) (1 < g, a, p < 00),
which arises naturally in the study of boundedness properties of fractional integral operators.
It has been introduced in 2015 by Fofana et al. [/] Note that, recently in 2020, the space
F(q, p, o) has been studied also in [15], where it is called the Riesz-Morrey space and denoted by
RM_ 1 1 (RY). It is defined as follows.

Pa 5%

Definition 1.3. Let 1 < g, p,a < co. The space F(q, p,a) :=F(q, p, )(RY) is defined as the set
ofall f € L

e for which [|f|lp(q p.«) is finite, where

1_1 .
s [[{l@l=elifxalla} [ <o
{Q}ep ietller

HfH]F(q,p,a) = 11
sup Q[ 1([FXxq,llq if p= o0,
QeQ

with
e 0={Q(x,r) : (r.x) € (0,00) x R}
e P= {{Q,’}jeﬂ C Q : Iis countable and QN Q; =@ ifi 75]}.
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q

It is well known that the space F(q, p, @) is a linear subspace of L.

and a Banach space, when
endowed with || - [lr(g.p.a)- F(g,p, ) is nontrivial if and only if ¢ < a < p (see [7]). Moreover,
when 1 < g1 < g < a < p < p;, the following inclusion and equality relations hold:

{ L* =F(q, o @) C F(q, p, ) C F(q, p1, @) C F(g, 00, @) = M¢ )

F(q, p,a) CF(q1, p, ).

Note that (4) shows that the spaces F(q, p, &) provide a bridge connecting both Lebesgue spaces
and Morrey spaces. Many results, well known for Lebesgue or Morrey spaces, have been extended
in the framework of these spaces (see [5,7]). Furthermore, the relations (1) and (4) point out that
the spaces Mg , and F(q, p, @) satisfy almost the same inclusion relations. We also observe that
the norm structures of these two spaces are very similar. Thus, a natural question is that, what is
the link between the spaces Mg, and F(q, p, ) ?

The second aim of this paper is to study the above mentioned question. We succeeded in proving
that Mg‘yp is continuously included in F(q, p, &) and, when p < oo, Mg“p ts included in the closure
of L% in F(q, p, a). Therefore, we also establish in M¢ , some approximation results by compactly
supported and/or regular functions.

As an application of the above mentioned results, we obtain an explicit solution in (LP)9 of the

withd >3, 1<g<a<dand ;=2 -3

equation div F = f whenever f is in M¢ S

q.p’
The remainder of the paper is organized as follows. Section 2 contains a more detailed presen-
tation of our main results. Section 3 deals with some preliminary results on Mg ,. In Section 4
we prove the inclusion of Mg , in F(q, p, @) and also approximation results. Section 5 is devoted
to prove our main theorem showing the action of fractional integral operators on Mg ;. Section 6
contains an application to the divergence equation div F = f.
Finally, let us make some conventions on notations used in this paper.
e C> denotes the set of all infinitely differentiable functions on RY and C2° stands for the set of
all elements of C> with compact support in RY,
e Let ¢ be a fixed nonnegative element of C* such that its support is included in the unit cube

[0, 1]9 and satisfying / ¢(x)dx = 1. For any integer n > 1, we denote by ¢, the dilation defined
Rd
by

¢n(x) = n9p(nx), xeR?

e Let w be a fixed element of C™ satisfying XQ(0,1) < W < XQ(0,2)- For any integer n > 1, wy is
defined by

Wp(x) =w (%) . xeRY
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2. STATEMENT OF THE MAIN RESULTS

For 0 <<y < 1, the fractional integral operator / is known to be closely related to the fractional

maximal operator 91, defined by
M, F(x) = sup |Q|”_1/ If(y)|dy, fell. ., xeRd,
Q3x Q

where the supremum is taken over all cubes @ in RY containing x.

Our first result reads as follows.

Theorem 2.1. Let us assume that 0 < v < é <1 and % = é — . Then, for any element f of

T, we have
dl2-1 _
ol < 2°(5) 39 5)

Note that Theorem 2.1 refines [8, Corollary 4.5]. As an immediate consequence of this theorem,

we obtain the following result which refines [8, Theorem 4.4] and is our most significant result.

Theorem 2.2. Let us assume that 0 < v < é <1 and % = é—fy. Then there exists a real constant

C > 0 such that, for any element f of M ,, we have
I3l < € IFlluge, )

Since L* C Mg, C M, when 1 < g < a < p, Theorem 2.2 provides an extension of the
Hardy-Littlewood-Sobolev theorem (Theorem 1.2) to the setting of Bourgain-Morrey spaces.
From (1) and (6), we have

1 1 1
LQCM%pCB('Y:p), 0<’Y<a<1andE:a—fy, (7)

where
B(y.p)={f€Lli. : (f)eLP}, 0<y<1<p<oo.

We recall that, for 1 < g, p, @ < oo, the space F(q, p, &) arises naturally in the search of a
characterization of the set B(vy, p) in [7], where it is established that

1 1 1
B(v.p) CF(L,p.a)c CF(L p,a) CWB(y,p), 0<y<_ <land e Y (8)
with
(a9 ) = { £ €¥(0.0.0) i IF = £~ Vliqpey = O}

and

WB(v,p) = {f € Lise = Iy(If) eWLP}, 0<y<1<p<co
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Note that, it is proved in [7] that F(q, p, a)c is the closure of L* in F(q, p, &) if p < oo. It is clear
that the inclusion relations (7) and (8) yield what follows

1 1 1
T, CF(L,p a), O<fy<a<landE:a—fy. 9)

In the present paper we prove, without the use of fractional integral operators, the following

extension of the relation (9).

Theorem 2.3. Let us assume that 1 < g < a < p < oco. Then

d(1+i-141) g(i-1
IFllepe <320 e45) 220) pa . Fe il (10)

and therefore Mg"p is continuously included in F(q, p, o). Moreover, if p < oo then Mg,p is

included in F(q, p, @)c.

As done in [4,6] for some special subspaces of the Morrey-type space (L9, IP)%, usually called
the Fofana space and closely related to F(q, p, &), we investigate in Bourgain-Morrey spaces

approximation by smooth functions. We shall prove what follows.

Theorem 2.4. let1 < g< a < p< oo and f be an element oleloc. Then the following assertions
are equivalent :
(i) f belongs to Mg,
(it) lim ||f —f % @pl|pqa = 0, where f x ¢, is the convolution product of f and ¢,
n—oo q.p

(iii) T belongs to the closure in Mg , of the set
Cf.\?ttg;,p ={gec™: Pg e Mg, forany B in N},
where 8P g stands for the derivative of order 3 of g.

Note that Theorem 2.4 implies that both C** N Mg , and C{. are dense in Mg , if p < co. As
: a ,

a consequence of this theorem, we obtain the following approximation result.
Theorem 2.5. let1 < g<a < p<ooandf beany element of/\/l‘c’,"p. Then
nI|_)mOO |f — (fwn) * d’n”/vlgp =0.

It is easy to see that, for any integer n > 1, (fw,) * ¢, belongs to C°. Consequently, Theorem
2.5 implies that C° N Mg, is dense in Mg, if p < oo.

Let us consider the divergence equation
divF =f, fell,. (11)

To our knowledge, for a given p in [1,00), the characterization of the class of functions f for
which the equation (11) has a solution F = (F;)1<j<q in (LP)? is still an open problem. However,

Phuc and Torres proved that (see [13, Theorem 3.2)), for ﬁ < p < o0, the equation (11) has a
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solution in (LP)9 if and only if f belongs to the set B(%, p). This result combined with (7) shows

that, for 1 < o < d and % = é— %, a sufficient condition for the solvability in (LP)? of the equation

(11) is that f belongs to MY ,. Moreover, an application of Theorem 2.2 and Theorem 2.5 allows

us to obtain an explicit solution of the equation (11) in (LP)?, as shown below.

Theorem 2.6. Let us assume thatd > 3,1 < g<a <d, % = é — % and f is an element of Mg ,.

;f)) is a solution in (LP)9 of
i |)i<j<d

Then there exists a real constant c4 such that F = (Cd R, (/
the equation (11), where R; (1 < j < d) stands for the Riesz transform defined by

d+1
Rip(x) = (dfl ) lim / L)gltp(y)dy . xeRY pelP
1% 0t Jaoypze X = y[9T

3. PRELIMINARIES

This section is devoted to prove some preliminary results.

3.1. Equivalent norms on M7 ,. We begin this subsection by recalling the definition of classical

dyadic grids.

Definition 3.1. A dyadic grid is a countable collection D of cubes of R? which are dyadic translates
and dilations of the unit cube [0,1)9. More precisely, D may be characterized as follows :

(i) if Q € D then its side-length £(Q) = 2 for some m € Z

(ii) ifQ,PeDthenQNPe{oQ, P}

(iii) for each m € Z, the family D, = {Q € D / £(Q) = 2™} form a partition of RY.

Example 3.2. e The standard dyadic grid D° is defined by
D’ ={2"([0,1)7+k) /meZ, kez}.
e Each of the following 39 collections of cubes in RY
Dt={2"([0,1)¢ +k+t) /mez, kez}, te{-1/3,01/3}¢
is a dyadic grid.
The following property holds (see [3, Theorem 3.1] and its proof).

Proposition 3.3. For every cube Q of RY, there exists an element t of {—1/3,0,1/3}% and a cube
Q¢ of Dt such that Q is included in Q; and £(Q;) < 3 £4(Q).

Let us introduce the following definition.
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Definition 3.4. Llet 1 < g < a < p < oo. For any dyadic grid D and any element f of L

define
11 g J
1 Fllang oy = [[{ 1Q15 5 /Q ()| 9dx

We shall prove that, for any t € {—1/3,0,1/3}, the norms || - ||Mg¢'p('Dt) and [ - [[mg, are

loc’

QeDllgp

equivalent. In order to do this, we establish the following preparatory lemma.

Lemma 3.5. let1 < g<a<p<oo, D and D' are two dyadic grids. Then for any element f of
Lq

locs We have

i |

1l pme 0y <27V PHIFllma 0y if p <00
d

1l me ) < 2% Fllme (D)

Proof. Let f be any element of L} and fix m € Z.

We recall that both the families D,, = {Q € D / £(Q) =2"} and D}, = {Q' € D' / £(Q") = 2"}
form partitions of RY. Moreover, it is easy to see that, for any element Q of D,,, the subset
{QeD /QNQ # 2} of D' has at most 29 elements.

a) Suppose that p < co. We have

(/Q|f(x)|"dx)gz 5 /Qw|f(x)|qu

Q'eD;,

<238 5 (/QQQ,|f(x)|qu)g

Qep,

P

q

Consequently
p

- [Qlu (L|f(x)|qu)3]”:2”(;_3),3 > (/Qlf(x)|qu)q

Q€D QeDm

P

p_ l l q

S2c/(q 1 a q Z Z (/ |f(X)|qu)
QEDm QED,, QNQ'#o ‘7N

P

e PG L S (/Wv(x)mdx)q

Q'eD,, QREDy
< pd(8-1) pam(3-3)e x (/ |f(x)|qu)
1P
_pd(e- )Q’EZD’ [|Q| - (/ |f(x)|"dx) ]

and so

Q\’—‘
b\’—‘

d
1Ly 0y < 27672l oy
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b) Suppose that p = co. Then, for any Q € Dy,, we have

Qii(/-fxqmﬁq:<gi3 / F(x)|9dx
Q| Q|()| Q| > Qmel(”

QED,,
1 1
11 q q , 1_1 q q
<IQlTe } FO)l9dx | = ) |Q[=" £ (x)|9dx
Q'epy, \IRNY QeD;, N’
1
11 q
< X ([ irearax) < 2l o
Q€D QNQ'#D Q
and so
1fllmg o) < 27N Fllme -
The proof is complete. O

The above lemma leads to the following corollary.

Corollary 3.6. Let 1 < g < a < p < oo and t be in {—1/3,0,1/3}. Then for any element f of
Lq

loc: We have

d(l_l) d(l_l) )
2701 Fllag, < IFllag oty < 2703 |IFllpgg,  if p< oo

a.p —

27N llmg . < Nfllang oty < 270 Fllptg,

3.2. Continuity of the translation operator in M7 ,. This subsection deals with the continuity of
the translation operator in Bourgain-Morrey spaces. We shall use in the sequel the following

properties.

Proposition 3.7. [8] Let us assume that1 < g < a < p < .

1) If o < oo, then there exists C1 > 0 such that for all y € RY and f € ./\/lg"p, we have

17~ llpgg, < Co 1Fllasg,

2)If g < a < p < oo then the set L of all compactly supported bounded functions is dense in
MG .
3)If g < a < p<ooorp=oo then there exists C; > 0 such that for any element f of Mg ,, we

have
1Fll g, < Ca [l
A classical property of Lebesque spaces reads as follows.
Lemma 3.8. If1 < a < oo and f isin L* then we have

lim [|f — (- = y)[la = 0.
y—0
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This result can be extended to the setting of Bourgain-Morrey spaces and this extension will

play a key role in the proofs of our results.
Proposition 3.9. Let 1 < g<a < p<oo and f be any element of M7 ,. Then
i I = £ = )l g, =O.

Proof. If ¢ = a or a = p then Mg, = {0} and therefore, we have nothing to prove. Thus we

suppose that g < a < p. By Point 2) of Proposition 3.7, there exists a sequence (1)~ of elements

of L such that lim ||, — f[\sa = 0. Moreover, according to Point 1) of Proposition 3.7, there
n—o0 a.p

exists C1 > 0 such that
I = F)C = Vlaag, < Collfa— Fllang, . vy RS, n>1. ()

Let € > 0 be a fixed real number. There exists an integer N, such that

€
21+ Cy)

From (x), (%), Point 1) and Point 3) of Proposition 3.7 we have

(%)

e = Fllme, <

IF = FC = Dlladg, < IF ~ ullagg, + 1~ el = Mllagg. + 1 = I =)l
< = g, + I G~ 9) = Fullagg, +Co I — Fllagg,
< (14 Co) IF =l + (= ) = ol g,
€

According to Lemma 3.8, for any y € RY such that 0 < |y| < 1, we have

€
ol — ) — f &
v (- = y) =l < 2C,

and therefore we obtain
I == V)llpg, <e

This ends the proof. O

4. INCLUSION AND APPROXIMATION RESULTS

4.1. Inclusion of M , in F(q, p, a). This subsection is devoted to prove exclusively Theorem 2.3.

Proof of Theorem 2.3
1) ® We recall that Mg = Mg =TF(q, o0, o). Therefore, we have nothing to prove if p = oco.
o lf p<ooandae€{q,p}then Mg, = {0}. Thus the result is obvious.
e Assume that 1 < g < a < p < co.
Let f be in LL_and {Q, : i € 1} be a disjoint family of cubes of R€.

loc
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a) Let us consider an element i of . We can associate to i an element t of {—1/3,0,1/3}% and

an element R(/, t) of Dt such that Q; C R(/, t) and £(R(/, t)) < 34(Q;) (see Proposition 3.3). We
1_1 q
RGO ([ 1rcarax)
R(i.t)

Qil= (/Ql_lf(xﬂqu)é : (|R|(C/Qt)|)

)R, p)E (/R(,-,t) r0oleax)

have

RI=
Ql=

QM-‘

<3la-

b) Let us fix t in {—1/3,0,1/3}? and set

Rt ={ReD':3iel suchthat R(i,t) = R} .

Note that, for all R € R, we have
Viel, R=R(i,t) = £Q;) < UR) <3¢Q,) = |Qj| < |R| < 3%Q;|

> Qi <RI

iel, R=R(i,t)
This shows that the cardinality of the set {i €1 : R = R(i, t)} does not exceed 3¢.
c) We have

> (|Q|a‘(/ 0oleax]

il
- T X x (| 3[}y|f<x>|qu)3’)p
8

te{—1/3,0,1/3}¢ RER" ir R=R(i.t)

s XX

te{—1/3,0,1/3}¢ RER' i:R=R(i,t)

p
g3d(é—%)"3d > > (|R (/ |f(x)|"dx) ) ( by Point b) )

te{—1/3,0,1/3}¢ RER!

1\ P
3¢(=5)r Rpa- (/R|f(x)|qu)q) (by Point a))

LEP N

te{—1/3,0,1/3}¢ ReD!

<3z IR|&™4 (/ |f(x)|‘7dx) ) ( because of RY C DY).

Therefore
3 p% 11,1
1_1 q dl+-141%
[Z(Qi|°‘ “ (/_If(x)l"dx) ) ] <3¢lamit3) > 71| me (Do)
icl Qi te{—1/3,0,1/3}°

Since the above inequality is true for all disjoint family {Q; : i € 1} of cubes of R?, we have

g1 141
Fllzamer <3775 ST g oy
te{—1/3,0,1/3}¢
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Therefore, Corollary 3.6 implies that

1+1-141) 2d(

Qe
T I

d
1Flleape < 3° DL,

and consequently M , is continuously included in F(q, p, ).
2) Assume that p < oo and let f be any element of Mg ;. By Point 1), f is in F(q, p, @) and, for
any y € R?, we have

d(1+i-141) a1 1
IF = FC = Wliapay < 3°0H755) 22075) 7 = (= )

Therefore, Proposition 3.9 implies that
)!iLnO Hf - f( - y)”IF(q,p,a) =0
and consequently f belongs to F(q, p, @)c. Thus, we obtain the desired result.

4.2. Approximation in Mg . In this subsection, we investigate approximation of elements of Bourgain-

Morrey spaces by smooth functions. We shall use the following result.

Proposition 4.1. [8] Let us assume that 1 < g < a < p < oo with a < oco. Then there exists

C > 0 such that for all g € L' and f € M%

qp we have

1g * fHMg;p < Cllglh Hf”/vtg,p-
Propositions 3.7, 3.9 and 4.1 allow us to prove Theorem 2.4.

Proof of Theorem 2.4

e (1) = (/1) Assume that f € Mg , and n is a nonegative integer. For almost every x € RY,

f(x)—f*pn(x) = /]Rd f(x)p(u)du — /Rd f(x —y)ndq’)(ny)dy

- /]Rd f(x)d)(u)du—/Rd f (X— %) ¢(u)du
= /Rd [f(x) —f (x— %)]qﬁ(u)du.

Therefore, for any dyadic cube Q. m ((k, m) € Z9 x Z), the Minkowski inequality implies that,

= =) ot

q

I(F =7+ 8n) xau,l, < [

Rd
and so

If = £+ ball g, < /Rd ||f— - %)HM d(u)du.

q.p
According to Proposition 3.9, we have

lim ‘f—f(-—%)HMa ¢(u) =0, ueRrd?

n—oo
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Furthermore, by Minkowski's inequality and Point 1) of Proposition 3.7, we have
u d
[ (= D) g, 0@ = Q) L, 000, weR?, 01

Thus, an application of the dominated convergence theorem gives
nILmOO I|f —f % d)"”/vtg,p =0.

e (ii) = (iii) Assume that the assertion (/i) holds.

Let us fix an integer n > 1 and B € N9. Since ¢, € C°, f ¢, belongs to C* and by Proposition
41, f x @, is in M‘;"p. Furthermore, it is well known that 8° (fFx¢p) = B, and by noting
that 98¢, € L, Proposition 4.1 implies that 8 (f * ¢,,) belongs to MG - Thus f x ¢, belongs to

C/O\?lg,p and since, by hypothesis,
nllamoo Hf —fx d)nHMg'p =0,

we can conclude that 7 belongs to the closure in Mg , of C3a .
' a.p
e (iii) = (i) Since Cf\.flg,,, is a subset of M7 ,, it is obvious that its closure in Mg, is included in

MG , and therefore the claim follows. The proof is complete. [

We recall the following well known result in Lebesque spaces.
Lemma 4.2. [1]If1 <a <ooand f isin L* then we have

n—oo

where (Ep)n>1 is a nonincreasing sequence of measurable subsets of RY satisfying m E,l=0.
n>1

The next proposition shows that an analogous result holds for Bourgain-Morrey spaces.

Proposition 4.3. Let 1 < g < a < p < oo, f be any element of M, and (E,),>1 be a

nonincreasing sequence of measurable subsets of R? satisfying ﬂ En| =0. Then
n>1

n||—>moo H fXE”HMg.P =0.

Proof. If ¢ = a or a = p then M, = {0} and therefore we have nothing to prove. Hence we
suppose that 1 < g < a < p < oo. By Point 2) of Proposition 3.7, there exists a sequence (1) ,>;

of elements of LZ° such that
n||—>moo ||f,7 B fHMg,p =0
Let € > 0 be a fixed real number. From what precedes, there exists an integer N, such that

€

e = Fllag, < 5.
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This and Point 3) of Proposition 3.7 imply that, for any n > 1,
1xEpg, < IO = ) X g, + Il e, < IF = fillagg + e, g
€
< § + (o HfNGXEnHa :
Since fy, € L%, Lemma 4.2 implies that there exists an integer Np > 1 such that

€
> No = ||f; < 5=
12 Mo = lfuxe la < 3
Therefore
n> /\/0 = HfXEnHMf(;p < E.
This provides the desired result. ]
[1, Proposition 3.6] asserts that Proposition 4.3 is equivalent to the following dominated con-

vergence theorem.

Proposition 4.4. Let 1 < g < a < p < oo and f be any element of M ,. If (f,)p>1 is a sequence
of measurable functions satistying |f,| < |f| for all n > 1 and Ii_>m fn = g almost everywhere, for
n—oo
some measurable function g, then
Tim_|[fy — gllg, = 0.
Proposition 4.4 yields obviously what follows.

Lemma 4.5. Let 1 < g < a < p <oc. Then for any element f of M7 ,, we have

im 1~ ooy, =0

n—oo

We are now ready to prove Theorem 2.5.

Proof of Theorem 2.5
For any integer n > 1, we have, by Proposition 4.1,
I — (fwn) * ¢n||ngp < |IfF 1= d’n”/vlgp +[(F = fwn) * ¢n||Mgvp
< Hf —fx (l’)nHMgp +C Hf - fwn”/v[gp ”¢n||1

<|If — f*d’n”/vtgp +C||f — fwn”/vtg,p-

Notice that, for any integer n > 1, |f — fw,| < ‘f — fXQ(O,n)l and therefore we obtain

I = (fwp) * (pn”/vtg,p < —fx d’n”/\/lgp +C ”f - fXQ(O'”)HMg{p .
Thus, it follows from Theorem 2.4 and Lemma 4.5 that
n“—>moo I — (fwn) * d)””/\/lg‘p =0.

This finishes the proof.
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5. FRACTIONAL OPERATORS IN M7

This section is devoted to prove Theorem 2.1 and Theorem 2.2. In order to do this we need some
preparatory lemmas.

Let 0 < v < 1 and D be a dyadic grid. The dyadic fractional maximal operator EJJL? is defined
by

i)ﬁgf(x):sup{lQlw_I/ If(y)|ldy /QeD, xEQ}, fell, , xeR7.
Q

The following lemma is a consequence of Proposition 3.3.

Lemma 5.1. Let 0 <« < 1. For any element f of L _ we have :

loc

Myf(x) < 39(1=7) max dimgtf(x) , x€eRY.
te{-1/3,0,1/3}

Proof. Let us consider an element (f, x) of L} x R? and a cube @ of R containing x. By

loc

Proposition 3.3, there exist an element t of {—1/3,0, 1/3}d and a cube Q; of D! such that Q is
included in Q¢ and £(Q¢) < 3 £(Q). Thus, we have

d(y-1)
@ [ 1wty = 6@ [[jrwiar < [Se@o] " [ 1rwiay

< 390-M|Q -1 / F()ldy < 390-DP" £ (x).

t

Consequently

Myf(x) < 39(1=) max Dﬁgt f(x).
te{—1/3,0,1/3}

The proof is complete. O

Recall that the density of L2 in M , (see Point 2) of Proposition 3.7) has been proved in [8].

Here, we improve this result which will play a key role in the proof of Lemma 5.3.

Lemma 5.2. Let1 < g<a < p<ocoandf beany element of M7 ,. Then there exists a sequence

(fa)n>1 of elements of L N MG , such that (|fp])n>1 1 |f| almost everywhere and
nIme If = fallme, = 0.
Proof. Let us set, for any integer n > 1,
fo = sgn(f) min (If], nXq(0.2m)) »
where, for any x € R,
PO if f(x)#£0

Sgn(f)(x):{ gml if f(x)=0
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It is easy to see that (f;)n>1 is a sequence of elements of LZ° N M ) satisfying (|fs|)n>1 T |f]
almost everywhere and
[l < Il n=1

lim f, = f almost everywhere.
n—oo

Therefore, an application of Proposition 4.4 leads to
nIi_}moo I — fallpme, = 0.
This ends the proof. O

As a consequence of Lemma 5.2, the following result holds true.

Lemma 5.3. Let us assume that 0 <y < é <1 and % = é — . Then for any dyadic grid D and

any element f of M§ ,, we have

19T Fllp < 2 (1L,

Proof. If a =1 then Mg , = {0} and so the result is obvious. Thus, we assume that o > 1.
Let f be any element of M, and D be a dyadic grid.

1) Assume that f also belongs to L*°.
a) We have, for all cube Q of RY,

Q- /Q () 1dy < 1QI]IF

and
11 -
|Q|fv—1/Qf(y)|dy:|o|”—a|co|a 1/Q|f<y)|dy=|@|" * Il
Consequently,
lim Q”‘I/ Fy)ldy =0 *
K(Q)_ml | Q| »)ldy (*)

and, for all Q € Q,

- Iflloe Q) >1
Q" 1/ f(y dyS{
< Q' V) [fllpe Q) < 1.

Thus, for all x € RY,
M, F(x) <M with M = max (||f||oo, ||f||M?) .
Since MY < M, f, we have, for any x € RY,
MIf(x) < M. (%)
b) Assume that f # 0. By (xx), we have, for all x € RY,

MIf(x) € (0, M]. (¢ * %)
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(1) Let us consider an integer j > 0 and set

Ei={xeRT:MIF(x) € (277 M. 27 M]}
D; = {Q eD: Q"1 fQ If(y)|dy € (2—1—1,\/,,2_]/\/,]} |

We have, for all x € RY,

x€E = 3QeDj:xeQue=xc ] Q.
QED;

Thus B = ] Q.
QED;
Note that, by (x), sup {Z(Q) ONS Dj} < oo and let us denote by A; the set of maximal elements

(for the inclusion) of D;. It is easy to see that

Je=Ue=g
QEA; QeD;
v Q/, Q// € Aj, Q/ 75 Q// — |Q/ N Q”‘ =0.
Moreover, by the definition of E;, we have, for all x € Q € A},

@ [ 1rwldy <o <2om <21 [ 1Fldy

and therefore, for all Q € A},

[ 2rc0) ax <22 a) [ior- / |f(y)|dy]”:2p 101 / |f(y)|dy]p.

So we obtain

/E [Sﬁ,?f(x)]p dx = Z

QEAJ‘

<2y [106 [ irolar] . (o

QEeA;

/ [Dﬁgf(x)]p dx
Q

(ii) By (* * %), we have U E; = RY. Meanwhile, the definition of E;(j > 0) shows that
Jj=0

V) j" eN, with j/ # /" EyNEj» = 0.

Hence we have
D p D p
IRd [E))LY f(x)]" dx = Z/E [SDLY f(x)]" dx
Jj>0 7"
and therefore, by ( * s*x),

1
p

|DF, < 2 ZZ[mil/vady] B

>0 QEA;
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Note that, if // and j are two integer such that j” > j > 0 then
V(Q,QM) ehy x Ay, Q#Q"
and so
{Qk,m tQk,m € AJ-/} N {Qk,m :Qkm € Aj,,} —0 kez® mezZ
Therefore
Cr e[ L T e
K

>0 QEA; mezZ
20 Qehy keZ:Qy mE UAJ'

Jj=0

p
If(y)ldy]

< 1l
This inequality combined with (x x * % %) gives

IM2F < 2 1 Fllag

2) By Lemma 5.2, there exists a sequence (f;),>1 of elements of LZNMG ; such that (|f;])>1 1 [f]

almost everywhere and ILm |f = fallma, = 0. Thus, the result obtained in Point 1) implies that
n—oo '

Hmﬁv)fnup <2 ||fn||/vl‘fp <2 ||f||M<fp , n>1

0 (0%) ., TMEF and so ([MER],)  + e,

and therefore
190 Fllp < 2 1l asg,.
The proof is complete. O

Now we prove Theorem 2.1 thanks to Lemma 5.1, Lemma 5.3 and Corollary 3.6.

Proof of Theorem 2.1
Let f be in M7 ,. By Lemma 5.1 and Lemma 5.3, we have

max ith f

12y, < 390
te{-1/3,0,1/3}¢

<3y Py
p te{-1/3,0,1/3}¢

< 34(1=m) Z 2 Hf”M‘fP(Df) :
te{—1/3,0,1/3}¢

|p

Note that the hypotheses imply that p < co and so Corollary 3.6 leads to

1

Jomy i, < 39002275 ) e 1 ((-1/3,0,1/3)7)

1
= 2¢(275) 3G £y
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The proof is complete. [J
As an immediate consequence of Theorem 2.1 we can now prove Theorem 2.2.

Proof of Theorem 2.2
Let  be in MY . Note that the hypotheses imply that p < co. By [12, Theorem 1], we have

lfll, < D 19,

where D is a real constant not depending on f. Therefore, Theorem 2.1 provides the desired

inequality. O
6. APPLICATION

Theorem 2.2, Theorem 2.5 and the boundedness properties of Riesz tranforms in Lebesgue spaces

lead to the following result, which contains Theorem 2.6.

Proposition 6.1. Let us assume thatd > 3,1 < g< a < d, % == — % and f is an element of the

1
a
Bourgain-Morrey space Mg ,. Then

1) for 1 < j < d, the function F; = R; (/%f) belongs to LP

2) there exists a real constant c4 depending only on d and such that F = (Cd FJ-)1§J.<

n (LP)4 of the equation (11).

d is a solution

Proof. Note that, the hypotheses imply that 1 < g < a < p < cc.
1) Since Mg, C M7, (see (1)), Theorem 2.2 implies that /%f € LP. Furthermore, it is well
known that the Riesz tranform R; is bounded on LP, for 1 < j < d. Therefore, we deduce that
Fj = R; (1) belongs to L7,
2) a) Let ¢ be any element of CZ°. For 1 < < d, the boundedness properties of R; and /% show
that ¢; = R; (I%w) belongs to ﬂ L". Since ﬁ < 2, there exists a real number r such that
r>-4

d
% <r<2and y; € L". Therefore, we can use the Fourier transform to obtain ¢4 Z@fd}j = (,
where ¢y is a real constant depending only on d (see [14, Formula (17), p.125]). =

b) Fix an integer n > 1 and set f, = (fwp) * ¢,. Since f, € CZ°, the result of Point a) implies that
div F, = f,, where F, = (Fy,)1<j<d With
Fo, = caR; (/%fn) e (L', 1<j<d
r>-4
e According to Theorem 2.5, (f)n>1 converges to f in M§ .
e For 1 < j < d, the boundedness properties of R; and /% imply that (Fnj
caFy = caRy 11f) in L2,

)nzl converges to
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Therefore, for any element ¢ of C2°, we have

d
/Rd div F(x) p(x)dx = —j; /Rd cqFj(x) 0jo(x)dx
d
= lim | — Fn;(x) 8jp(x)dx

d
:nmmm/Rd ;@-Fnj(x) o(x)dx

= lim [Rd div Fr(x) @(x)dx

n—oo

= lim /]Rd frn(x) o(x)dx = /]Rd f(x) p(x)dx.

n—o0

Hence, div F = f. Thus, we obtain the desired result. O
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