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ABSTRACT. In this paper, we consider coupled Korteweg-de Vries equations that model the propagation
of shallow water waves, ion-acoustic waves in plasmas, solitons, and nonlinear perturbations along
internal surfaces between layers of different densities in stratified fluids, for example propagation of
solitons of long internal waves in oceans. The method of Lie group analysis is used to on the system
to obtain symmetry reductions. Soliton solutions are constructed by use of a linear combination of
time and space translation symmetries. Furthermore, we compute conservation laws in two ways
that is by multiplier method and by an application of new conservation theorem developed by Nail

Ibragimov.

1. INTRODUCTION

The dynamics of shallow-water waves, ion-acoustic waves in plasmas, and long internal waves in
oceans can be described by coupled KdV equations. The equations are derived from the classical
kdV equation. This section extends the previous study of kdV equations to that of a coupled

nonlinear system. From the Kortweg-de Vries equation

e + aqax + Baxxx = 0, (1)
for @ and B as constants, we let
q(t,x) = u(t, x)+iv(t, x), (2)
where /2 = —1. Then substituting (2) into (1) and separating the real and imaginary parts, we
obtain
A = ur + auuy — avvy + Buxxx = 0, Ao = vy + auvy + aviy + Bvyxx = 0, (3)
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which is a nonlinear system of coupled KdV equations. We perform Lie symmetry analysis on (3),
that is , we obtain Lie point symmetries, invariant solutions and conservation laws of (3).This paper
uses symmetry analysis method to construct exact solutions and conservation laws for a nonlinear

coupled kdV system (3).

2. PRELIMINARIES

In this section, we outline preliminary concepts which are useful in the sequel. In Euclidean
spaces R” of x = x' independent variables and R™ of u = u® dependent variables, we consider

the transformations
Te: X =¢' (X u* e, 0 =9, u%e), (4)

involving the continuous parameter € which ranges from a neighbourhood N/ C N C R of ¢ =0

where the functions ¢’ and 9 differentiable and analytic in the parameter e.

Definition 2.1. The set G of transformations given by (4) is a local Lie group if it holds true that
(1) (i). (Closure) Given T¢,, Te, € G, for €1,62 € N/ C N, then T, T, = Te, € G, €3 =
P(e1,€2) €N
(2) (ii). (Identity) There exists a unique Tp € G if and only if e = 0 such that T¢Tp = ToTe = Te.
(3) (iii). (Inverse) There exists a unique T.-1 € G for every transformation T, € G,
where e € NV CN and €' €N suchthat T.T,-1 = T.1 T = To.

Remark 2.2. Associativity of the group G in (4) follows from (1).

In the system,

B (X', U, ), - Um)) = Ba =0, ®)
the variables u® are dependent. The partial derivatives uy = {u?} u@) = {uf} ..., Uy =
{uf ; } are of the first, second, ..., up to the wth-orders.

Denoting
o} 0
D,zaxl—i-u,a@—i-ugw—i-, (6)

the total differentiation operator with respect to the variables x' and &/, the Kronecker delta, we

have

Di(x)) =6, u* = Di(u®), ul = Di(Di(u)), ..., 7)

)

where u® defined in (7) are differential variables [7].

Consider the local Lie group G given by the transformations

K= @l(x e, ¢ ) =x', 1" =9, u*€), Y~ EZOZUO‘, (8)

where the symbol , means evaluated on € = 0.
€=
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Definition 2.3. The construction of the group G given by (8) is an equivalence of the computation

of infinitesimal transformations

i — X/, 0%~y —f—?']a(Xi, Ua)E, ,lpoc

X x4+ (X uMe, @ .
€=

e=0 - Ua, (9)

obtained from (4) by a Taylor series expansion of ©'(x', u®, €) and 9'(x', u®, €) in € about € = 0
and keeping only the terms linear in €, where

09 (X, u* €) oY (X, U™ €)

Il 0y — ol 0y — 10
é(X,LI ) Oe e=0 N (X,U ) Oe =0 ( )
Remark 2.4. The symbol of infinitesimal transformations, X, is used to write (9) as
X (1+ X)X, 0%~ (14 X)u*, (11)
where
i i o o ar,i oo 9
X=X u*)z=+n*(x' u¥)z—= (12)

ox!
is the generator of the group G given by (8).

oue’

Remark 2.5. To obtain transformed derivatives from (4), we use a change of variable formulae
D; = Di(¢’)D;, (13)
where D; is the total differentiation in the variables x'. This means that
ot = Di(a®), aff = Dj(a}) = Di(a®). (14)

If we apply the change of variable formula given in (13) on G given by (8), we get

Di(y®) = Di(¢’), D;(0%) = 77" Di(y’). (15)

Expansion of (15) yields

(G‘P’ 5W)6 oy | pov”

ox! o B | T axi T am (16)

The variables 7* can be written as functions of X' u®, Uc1y, that is

U,"‘:@a(x/,uo‘,u(l),e), Ok = uf. (17)

e=0 !

Definition 2.6. The transformations in the space of the variables x', u®, U1y given in (8) and (17)

form the first prolongation group G,
Definition 2.7. Infinitesimal transformation of the first derivatives is
0* ~ u> + (e, where (= C,-O‘(x", u®, Uy, €). (18)

Remark 2.8. In terms of infinitesimal transformations, the first prolongation group Gl is given by
(9) and (18).
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Definition 2.9. By using the relation given in (15) on the first prolongation group G given by
Definition 2.6, we obtain [5]

Di(x + &e)(uf + (Fe) = Di(u* +n%€), which gives uf + (fe + uteDi& = uf* + Dine,

(19)
and thus
(F =Dji(n*) — u¥Di(¢), (20)
'j
is the first prolongation formula.
Remark 2.10. Similarly, we get higher order prolongations [8],
3 = DJ(C?‘) - U%DJ(EK), cee ,‘i‘ ..... i D/K(Cff ..... /K,l) - ug,lé,...,l‘,{,ljDin(Ej)' (21)
Remark 2.11. The prolonged generators of the prolongations Q[l] ..... g[‘] of the group G are
0 0
XW=xqpex— xW=xkllpca 2 px>1, 22
1 aula Il ..... /Klacg ’’’’’ I'K ( )

where X is the group generator given by (12).

Definition 2.12. A function (x', u®) is called an invariant of the group G of transformations given
by (4) if
F(x, 0% =T (x', u®). (23)

Theorem 2.13. A function T(x', u®) is an invariant of the group G given by (4) if and only if it

solves the following first-order linear PDE: [5]
or

XFZEI(XI,UQ)Q—F'UO‘(XI,UO‘ 8?20 (24)

From Theorem (2.13), we have the following result.

Theorem 2.14. The local Lie group G of transformations in R" given by (4) [/] has precisely n — 1
functionally independent invariants. One can take, as the basic invariants, the left-hand sides of

the first integrals
P(x' u*) =ac, ..., Yoo1(x', u%) = cpo1, (25)

of the characteristic equations for (24):

dx! du®
E00,08) (i) (20)
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Definition 2.15. The vector field X (12) is a Lie point symmetry of the PDE system (5) if the

determining equations

XA, A, =0 a=1, m = m>1, (27)

are satisfied, where means evaluated on A, = 0 and X[™ is the 7-th prolongation of X.

a=0
Definition 2.16. The Lie group G is a symmetry group of the PDE system given in (5) if the PDE

system (5) is form-invariant, that is
Ao (X', 8%, T1y, - - - emy) = 0. (28)

Theorem 2.17. Given the infinitesimal transformations in (8), the Lie group G in (4) is found by

integrating the Lie equations

_y 9 Nz, a®), o @ =u® (29)
e=0 ' de ' ' e=0 '

F ., ®

Definition 2.18. A vector space V, of operators [5] X (12) is a Lie algebra if for any two operators,
Xi, Xj € V; , their commutator

[Xi, Xj] = XiXj — X; X, (30)

isinV,forall/,j=1,..., r.

Remark 2.19. The commutator satisfies the properties of bilinearity, skew symmetry and the Jacobi

identity [5].
Theorem 2.20. The set of solutions of the determining equation given by (27) forms a Lie algebra [5].

The methods of (G'/G)-expansion method [20], Extended Jacobi elliptic function expansion [21]
and Kudryashov [22] are usually applied after symmetry reductions. Let a system of mth-order
PDEs be given by (5).

Definition 2.21. The Euler-Lagrange operator §/6u® is

o 0 0
5w~ aus T "V Pa o Dige Y
k>1 112 he

and the Lie- Béacklund operator in abbreviated form [5] is

0 0

g
X=¢ Gua

Remark 2.22. The Lie- Backlund operator (32) in its prolonged form is

X = 5’—+n —+Z<,1 ggE (33)

11 12 IK
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where

(= Di(W*) + ¢ug, o G =D W)+ j=1,..., n. (34)

i1.../n'

and the Lie characteristic function is
e T (35)

Remark 2.23. The characteristic form of Lie- Backlund operator (33) is

. 9 9
X = ¢D: a D. . a
€D, + W5 =+ Dip_ii(W )Guff,»z_,,,k (36)

Remark 2.24. Noether's Theorem is applicable to systems from variational problems

Definition 2.25. A function A* (xf, us, Uy, - ) = A%, is a multiplier of the PDE system given by
(5) if it satisfies the condition that [16]

N*Ay = D;T', (37)
where D;T' is a divergence expression.

Definition 2.26. To find the multipliers A%, one solves the determining equations (38) [3],

§
5o (\0a) = 0. (38)

The technique [9] enables one to construct conserved vectors associated with each Lie point

symmetry of the PDE system given by (5).

Definition 2.27. The adjoint equations of the system given by (5) are

vPAg) =0, (39)

® 9
A (x’,uoc’voc ,,,,, Ll(ﬂ),v(ﬂ)) :5?(

where v is the new dependent variable.
Definition 2.28. Formal Lagrangian £ of the system (5) and its adjoint equations (39) is [9]
L=v*No (X', u*, uqy, .. Uemy). (40)

Theorem 2.29. Every infinitesimal symmetry Xof the system given by (5) leads to conservation
laws [9]

D;T' =0, (41)
Aq—o
where the conserved vector
- - oL oL oL
I __ 1 (0 _ ) . .
T =¢L+W lauf" D; —aug + D;Dy GU,‘-j‘k . ] +
(42)
oL oL oL
(64 = . o o
D,wW )lauff Dy augk +...]+DJDk(W )laugk ]
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3. MAIN RESULTS

We now present our results in this section. An illustrative example with a simple kdV equation

can be found in [6]. The infinitesimal transformations of the Lie group with parameter € are

F=t+&(t,x, u v)e, x=x+E(t,x, u,v)e, T=u+n"(t,x u v, Vv=v+n'(t x, u Ve

(43)
The vector field
0 0 0 0

_ ¢t . X . u 7 v . 44
X =& (t, x, u, V)at +&(t, x, u, v)ax +n(t, x, u, v)au +n"(t, x, u, V)Gv' (44)

is a Lie point symmetry of (3) if
XBla, =0, XxBla, =0. (45)

A1=0, A>=0 A1=0, Ar=0

Expanding (45) and and splitting on derivatives of v and u, we have an overdetermined system of

ten PDEs, namely,

£,=0 £ =0 &=0 &=0 &=0 & =0 & =0 3-£§=0

(40)
3nY +2¢tv =0, 3an! +2afu— 3¢5 =0.

Solving the system (46) yields
€8 = A +3Axt, €= A2x + aAst + Ag, ' = —2Au+ Az, 0V = —2Asv, (47)

for arbitrary constants Ay, Az, A3, As. Hence from (47), the infinitesimal symmetries of the coupled

KdV Equations (3) is a Lie algebra generated by the vector fields

0 0 0 0 0 0 0 0
Xl—a, Xz—&, X3—ata+a, X4—3t§ +X&—2Ua—2Va (48)
The set of all infinitesimal symmetries of coupled KdV equations forms a Lie algebra and yield the

following commutation relations in Table 1.

[Xi, Xj] X1 X2 X3 X4
X1 0 aXo 3X;
Xo 0 0 Xo
X3 -aX>s 0 -2X3
Xa -3X1 -X5 2X3 0

Table 1: A commutator table for the Lie algebra generated by the symmetries of coupled KdV

equation.
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The following Lie groups, for i = 1,2, 3,4, are obtained

T, it=t+e, X=x, U=u, Vv=y, (49)
Te, t=t X=x+e, U=u, V=yv (50)
T, t=t X=x+oaest, I=u+e€3 V=yv (51)
Te, :E=1te%, X =xe%, 0=ue 2% V=yve ?% (52)

The symmetries obtained yield the following symmetry reductions.

0
X1 =—.
LT ot (53)
Solving the characteristic equations
dt dx du dv
T 0 o Y
associated to the operator X; gives the invariants
J1:X, J2:LI, J3:V. (55)
Hence, we have
u=@(x), v=19(x), (56)

for arbitrary functions ¢ and 7). Substituting the expressions for v and v given by (56) into the

system (3), we get a system of third order ordinary DEs namely,
a[e()e'(x) = Y)Y (x)] + B9 (x) = 0. a(p(x)¥(x)) +BY" (x) = 0. (57)
Integration of the system (57) yields;

2[00 = 9(0?] + B¢ () = €1, (59

a[p(x)P(x)] +BY" (x) = Ca, (59)
for arbitrary constants C; and Cyp. If we take
Ci=0Cr =0, (60)
the system (58)-(59) becomes

= [o)? —w()?] +B¢"(x) = 0, (61)

a ()Y ()] +BY"(x) = 0. (62)
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To find more solutions of the system (61)-(62), we determine its Lie point symmetries. Using the

Lie's algorithm for computing point symmetries, we see that the Lie point symmetries of (61)-(62)

are

Xl_&’ X2—an 2(’08(;) 2¢a¢.

Proceeding as above, we see that the symmetry X] yields the trivial solution
u=0, v=0.

The second symmetry X3 has the characteristic equations
dx dp  dy

x =20 =29’
which provides the invariants
Jl = X2(p, J2 = X2’lp.
Letting
A w
Y= X2 P = 2
substituting the values of ¢ and 9 into (61)-(62) and solving the resulting equations yield:

Case one. Taking

w=20
gives
A=0
or
12
-
ol
When

A=0, and u=0,

we also get the trivial solution (64). One can easily see that if

128
A——T, and =0,
then
126
P e V0

which is a solution of the system (61)-(62). Hence

128
=

ui(t, x) = vi(t, x) =0,

(63)

(64)

(65)

(66)

(67)

(70)

(71)

(73)

(74)
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is a solution of the coupled KdV system (3).

Case two. Taking

A= —@ (75)
o
gives
— i6—ﬁl (76)
a
with 2 = —1. Consequently,
6i06
t = — t = — 77
w(tx) = =% (e = 2o, 77)
and
60 6i06
us(t, x) = Tl v3(t, x) = Tl (78)

are solutions of the coupled KdV system . Hence Lie group analysis has given us three steady-state

solutions for the coupled KdV system under the time translation symmetry X; = %.

0
Xo = —. 7
27 ox (79)
Solving the characteristic equations
dt dx du dv
01 0 o (80
associated to X, gives the invariants
Ji=t, ,b=uJ3=yv. (81)
Therefore, the group-invariant solution is
u=¢(t), v=n(t), (82)

for arbitrary functions h and ¢. Substitution of the solutions from (82) into (3), we get a system of

first order ordinary DEs, namely,

¢'(t) =0, H(t)=0 (83)
which is integrated once with respect to t to yield,

d(t) =C1, h(t) =Co, (84)

for arbitrary constants C; and C,. Consequently, the space translation group-invariant solution of

the system (3) is

u(t,x) =Cy, v(t,x)=Co. (85)

0 0
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Solving the characteristic equations
dt  dx du dv

0 “at 1 0 %7
associated to Galilean boost gives the invariants
h=t h=v, = —ut o, t#£0. (88)
at
Thus the invariant solution of (3) is
X
=——g(t), v="»(0) ¢t
u="—g(t), v="F(1). t#0, (89)

for arbitrary functions f and g. Substitution of the values of u and v from (89) into the System (3),

we get a nonlinear system of coupled first order ordinary DEs, namely,

tg' (t) +g(t) =0, tf'(t)+f(t) =0, (90)
whose solutions are
C1 Co
g(t):T f(f):T. (97)

for arbitrary constants C; and C,. Hence the Galilean boost group-invariant solution of the system
(3) is

X+ A C2
u(t, x) o v(t, x) ; (92)
where A= —aC; and t # 0.
The scaling
0 0 0 0
Xy =3t—+x——2Uu— —2v— (93)

ot Ox ou ov
. By solving of the characteristic equations

dt_d7X_ du_ dv

=2 = =—0"=— 94
3t x 2u 2v’ (94)
associated to this symmetry, we obtain the invariants
x3
leT, Jo=ux? 3= vx2 (95)
Generally, the group-invariant solution pair is
f(\) g(N) x>
U(t,X) = 7, V(t,X) = 7, where X\ = T, (96)
and the functions f and g satisfy the system of third order nonlinear coupled ordinary DEs
20(g? — £2) = N°f' + 3aX(ff' — gq') + B(—24f + 24Xf" + 27X3f"") =0, (97)
—4afg — Ng + 3aX(fg) +B(—24g + 24xg +27X3¢"") =0. (98)

X = X1 + cXo. (99)
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We consider a symmetry X, which is a linear combination of the time and space translations

symmetries, that is,
X==+cz, (100)
for a constant c. The invariants associated to this symmetry X are
J=x—-ct, b=u J=yv. (101)
Hence, the invariant solution for the symmetry X is
u=f(x—ct), v=g(x—ct), (102)

for arbitrary functions f and g. Substitution of v and v from (102) into the system (3) yields a

system of nonlinear third order ordinary DEs, namely

—cf'(&) + a {F(O)F' (&) — 9(§)g (&)} +BF"(€) =0, —cg (&) + a(f(€)g(£)) +Bg"(€) =0
(103)

which on integrating once with respect to £ yields
1
—cf + Eoz.(f2 ~g)+Bf"+C1 =0, —cg+afg+Bg’+Co=0, (104)
for arbitrary constants C; and Co.

Remark 3.1. If we take the constants C; = C, = 0, then when the wave velocity ¢ = 0, we can

recover the stationary solutions given in (3).
Remark 3.2. Traveling wave solutions of the system (3) must satisfy the system (104).

Computation of conservation laws for the coupled KdV Equations (3) is done using two meth-
ods; the method of multipliers and a theorem due to Ibragimov. We seek local conservation law
multipliers for the system (3), whose determining equations are

] 4

50 [A'A; + AAs] =0, v [A'A; + AAz] =0, (105)
where
] 0 0 0 0 0
—=-——-Dt=— D + D2 - D3 1
Su Bu tou | Buy | XBlgy Ol (100
6 0 0 0 5 0 3 O
ov - ov Pav Pav T Penn T P T 107)
are the Euler-Lagrange operators and
0 0 0 0 0 0 0
D a +Uta +Vta +u txa + Vv txa +Utta +Vttav+", (108)
0 0 0 0 0 0 0
D a‘FUxa +VXE+UXXaiLIX_‘_VXXaiVX_FUtXaiUt—i—VtXain_‘_”‘ , (109)



Eur. J. Math. Anal. 1 (2021)

are total derivatives operators. We look for second order multipliers, that is,
A" = N(t, x, u, Uy, Uxx, V, Vx, Vxx), N=1,2. (110)

The determining Equations (105) become

0
50 [AM{ur + auux — avvy + Buxsx} + N {ve + auvy + aviy + B }] =0, (111)
0
5y [/\l{ut + auuy — avVy + Buxxx } + /\2{vt + auvy + aviuy -i-,BVXXX}] = 0. (112)

Expanding (111)-(112) and splitting on derivatives of u and v yields an overdetermined system of
22 PDEs, namely

Ny =0, Ny =0 AL, =0, N2, =0, AL, =0 A, =0 BA, —al

Vixx

:0,
=0, A2

Vxx Vxx

BNZ, +al, =0, AL, =0, A2, =0, Al

Vixx Vxx

=0, AL+A2=0,
N+a(Av+NANu)=0, Ai+a(Au—Av)=0 A;—-AL=0 A, =0 A =0,
M+, =0, A

Uxx Uxx

— A, =0, A, =0 A, =0.
(113)

Calculations reveal the solution of the system (113) as

o 1
A =— (C:-;{U2 — V2} + 2C4UV) + (C2t + C5)U + (Clt + C6)V + C3Uxx + CaVxx + C7 — aC2X,

20
N? :% (ca{v? = v?} —2czuv+) + (cit + co)u — (ot + C5)V + Callxx — C3Vix + Cg — éclx,
(114)
for arbltrarg constants ¢y, ..., Cs.

Remark 3.3. Essentially, the nonlinear coupled system of KdV Equations (3) has eight sets of local

conservation law multipliers.

Solving (105), we obtain conserved vectors corresponding to each set of multipliers as shown

below.
(1) The multiplier
1 A2} _ _ X
(NLA3) = (tvotu— =), (115)

has the conserved vectors

1
TH=tuv — %, =0 [t{vuxx + UVyx — Vxlx} + a{vx — XVXX}] +a [t (u2v — \;)] (116)

(it) The multiplier

(AA3) = (tu =2, —tv), (118)
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has the conserved vectors

Xu

t 1 1
= E{U2 v2} — — T —,6[ (uuxx — VVax + E{Vf — uf}) + a{ux — xuxx}] +

3

3
at [u - uv2] + %{v2 — ).

(it}) The multiplier
o ouv
(/\é, /\%) = (2[3{“2 _ \/2} + Uy, —{7 + Vxx}) ,

has the conserved vectors

3
Tstza(lg—uvz), T3 =

2B

N R

[(1? = v®)uex — VPvix ] — auvvex+

B o 2
> [uXX — VXX] + Uplix — VeV +

45[ {u* +v* = 30°v ]

(iv) The multiplier

auv afu? — v?]

(/\Alli/\?l) = ({ 5 +Vxx}r 20

has the conserved vectors

+UXX)1

a a
x =55 [(Pv = uv®)] + veux + upv + E(u2 — V) Vax + {aUV + By F .
(v) The multiplier
(N A2) = (1)

has the conserved vectors

1 v2 — 2 3
ngi{uz—vz}, TS =0 [ uuex — vvex + = X)+a(—uv2).
(vi) The multiplier
(A& A8) = (v.u),

has the conserved vectors

Té=uv, TE =0 (Vuxx + Uvxkx — UxVx) + (u2v— V;) _
(vit) The multiplier
(A7.A7) = (1,0),
has the conserved vectors

7—7t =u 7—7X = g{UZ - V2} + Buxx.

(119)

(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)
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(viii) The multiplier has

(A§.A3) = (0,1), (132)
the conserved vectors
Té=v, T{=auv+ Bv. (133)
Remark 3.4. It can be verified that
D:TF+ D, T a0 ms =0 (134)

fori=1,..., 8.
Remark 3.5. The expressions in (134) are eight conservation laws for the coupled KdV system (3).

Remark 3.6. The presence of multipliers
(A7.A7) = (1,0), (Ag.A3) =(0.1) (135)
manifest that the coupled KdV equations are themselves conservation laws.

At this point, we derive conserved vectors for coupled KdV equations (3) by a new theorem due to

Ibragimov. The adjoint equations for the nonlinear system coupled KdV Equations (3) are
I =fi+a ufy+avgy + Bfux =0, Azgt_anx‘i'ang +Bxxx = 0. (136)

The formal Lagrangian £ for the nonlinear coupled system of the KdV Equations (3) and its adjoint
Equations (136) is given by

L = f{us + auuy — avvy + Buxxx  + g{ve + auvy + avuy + Bvxxx }, (137)
where f and g are new variables. We shall use the Lie point symmetries of the system (3) ,namely
X1 =0, Xo=0x, X3=atdy+0,, Xs=3t0:+ xOx —2ud, —2vd,, (138)

to derive conserved vectors corresponding to each symmetry below.

Case (i) The symmetry X; = %, ylelds Lie characteristic functions given by
W= —up, W2 =—v. (139)
Hence by Ibragimov’s theorem [9], the associated conserved vector is given by
T{ =a [f{uux — v} + g{vix + uvie}] 4+ B{f thoox + gVixx},
T =a [f{—uus + vve} — g{vur + uvt}] (140)

"‘,B{fXUtX + GxVix — Utfxx — VeGxx — FlUtxx — thxx}-
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Case (it) The symmetry Xs = a%, yields Lie characteristic functions
Wi = —uy,, W2=—v,. (141)
Therefore by Ibragimov's theorem [9], the associated conserved vector is
T3 = —uxf — g, T3 =fur+ gve +B{—Usxfux — VxGxx + Fillxx + Gx Viex }- (142)

Case (iit) The symmetry

0 0
Xz =oat—+ = 143
37 %o * ou (143)
yields Lie characteristic functions given by
Wi =1—atu,, W5=—atv. (144)

Hence by Ibragimov’s theorem [9], the associated conserved vector is given by

T =f —at{uf + wg} ,

Fox (145)
T:;( =Q [fu + gv + t{utf + Vtg} +.Bt{a - Uxf;(x — Vx9xx + ﬁ(uxx + ngxX}] .
Case (iv) The symmetry
0 0 0 0
yields the Lie characteristic functions
W} = —2u — 3tu — xuy, WZ = —2v —3tve — xVy. (147)

Consequently by Ibragimov’s theorem [9], the corresponding conserved vector is given by

TH=a[Bt{fuuy — fvvy + guvx + gvux}] + B [3t{f txxx + gVixx }]
—2{fu+ gv} — x{fux + gv},

TA{( = X{fut + gvt} +:6 [3 (fox + gxVx + t{fxutx + gXVtX})]

(148)
-« [2 (F{u* — v?} +2guv) + 3t (f{uut —vvi} + g{vus + uvt})]
-p [X{Uxfxx + Ve Gxx — fxlxx — ngxx} + Q{fox + Vgxx}]

-0 [3t{fXXUt + Gxx Ve + FUixx + thxx} + 4{fuxx + ngx}] .
Remark 3.7. The appearance of arbitrary functions f(t,x) and g(t, x) in the conserved vectors

proves the existence of infinite conservation laws for coupled KdV system obtained by Ibagimov's
method.
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4. CONCLUSION

In this paper, Lie group analysis was employed in studying a nonlinear coupled kdV system.
A four-dimensional Lie algebra of symmetries was found for the nonlinear coupled system KdV
equations. This was spanned by space and time translations, Galilean boost and scaling symmetries
where the scaling symmetry acts on four variables. Associated to each symmetry, we obtained
symmetry reductions that gave six nontrivial solutions for the coupled system. All the group-
invariant solutions describe the various states of the system. The obtained solutions can be used
as a benchmark against numerical simulations. Lastly, we constructed infinite conservation laws of

a nonlinear coupled KdV system by using multipliers and a theorem proposed by Nail Ibragimov.
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