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ABSTRACT. In this article, we exhibit the behavior of the Schwarz algorithms for the Steady Stokes
equation in the case of two unbounded subdomains at the continuous level. The Schwarz methods have
received a lot of attention during the last decades with the vast development of parallel computing
devices. Hermann Amandus Schwarz, a German analyst, is considered to be the pioneer of the Domain
Decomposition methods. We will closely observe how the overlapping and non overlapping Schwarz
methods work for the steady Stokes problem. This problem has immediate practical application,
modeling the flow of an incompressible fluid. For the analysis, we rely on Fourier analysis techniques

and we provide comparison of the exhibited methods.

1. INTRODUCTION

Many people have been fascinated by the motion of fluids, and wonder how we are able to
simulate the motion of fluids with such an accuracy. Of course, the answer is simple but at the
same time complicated. Firstly, in order to model various phenomena, we use partial differential
equations( PDEs). PDEs are equations that involve partial derivatives and most of the times we
are not able to obtain solutions in closed form. As a result, we use numerical algorithms in order
to obtain the approximate solution of a PDE. This field is called Numerical Analysis of PDEs
and it is gaining increasing interest from mathematical and engineering communities worldwide.
Especially, the last two decades Domain Decomposition methods [7], [8], [9], [10] are gaining ground
due to the increased use of parallel computing. The pioneer of these methods was the German
analyst Hermann Schwarz [4], [5], [6] who devised an algorithm to solve the Poisson equation in
an irreqular domain (union of rectangle and a circle), in order to fix a glitch in Riemann’s mapping

theorem. The algorithm is
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Ql r2 > |_1 Qg

FiGure 1. Domain decomposition of the global domain into a union of a circle and a rectangle.

Having a close look at the above figure we notice the following: Firstly, the Poisson problem
is solved in the circle and then in the rectangle, going back and forth, passing the values at the
interfaces ['; and 5. This iteration process is repeated until the convergence is reached. The
index (k) denotes the iterations, and f is the source function. This is the so called Alternating
Schwarz algorithm proposed by Schwarz back in 1870. After a significant amount of time, the Fields
medalist Pierre Luis Lions [3], [13] proposed a modification in the Alternating Schwarz method (1).

After imposing this modification, the algorithm (1) takes the form

AR = —F in Oy Aug = —f, in Q
92 ety and ) = b, e 2
u%k) =91, on 01\ 1 Uék) =gz, on O\ 2.

In this iterative algorithm, the two local subproblems are solved in parallel passing the Dirichlet
values at the two interfaces. This algorithm (2) is known as the Parallel Schwarz algorithm. This
iterative scheme provides two great benefits. The first is balancing the computational cost by
breaking the global problem into smaller subproblems. The second benefit is that with the increas-
ing amount of computational resources, the Schwarz method (2) is ideal for parallel computations.
There has been an avalanche of new research results and there is a great avenue of research on
Domain Decomposition methods. In this article, we will observe the behaviour of the Schwarz
methods for the steady Stokes equation, for two unbounded subdomains using Fourier analysis
techniques which is a standard approach in the literature [1], [2], [11], [12], [14], [15], [16], [17]. The
steady Stokes equation is derived from the Navier-Stokes equation, which is a PDE for modeling
the flow of incompressible fluids. It is a generalization of the equations proposed by the Swiss
mathematician Leonhard Euler in the 18th century. In 1821, Claude-Luis Navier introduced the
element of the viscosity. Later in the mid 19th century, Sir Gabriel Stokes worked extensively on

the equation. The steady Stokes equation in strong form reads

-

—VAT+Vp=FfinQ=(—00,+00) X (=00, +0),
divii=0in Q,

: bounded at =+ oo,

p: bounded at + oo
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where v > 0 is the kinematic viscosity of the fluid, & is the velocity of the fluid and p is the
pressure field. The function f is called the sink term. The function spaces for the velocity field,
pressure field and sink term are (Hl(Q))2  Lo() , (L2(R2))? respectively. The space H(Q) is
classical Sobolev space, and L2(£2) is the space of square integrable functions. The (3), denotes
the incompressibility condition, with the divergence free velocity field. Furthermore as (3);, (3)4

suggest, the velocity and the pressure field stay bounded at infinity.

2. PARALLEL ScHWARZ METHOD-DIRICHLET IC

We decompose the domain Q = R? into two subdomains Q; = (—o0, H) x (—o0, +00) and

Q, = (0, +00) x (—o0, +00). The Parallel Schwarz method in strong form reads

[ AT ® 1+ 9p = Fin Q. [ VAR 1+ 9pl0 = Fin Q.
diviy®) =0 in Q, divis®) =0 in Qo,

F0R) = k=Dt x = H, cand 3 w50 = g(k—Vat x =0, (4)
w9 - bounded at — oo, w5k - bounded at + oo,

kpgk) . bounded at — oo, \pék) : bounded at + oo,

where two initial gquesses #O, BO are required to start the iterative process.

Theorem 1. The convergence factor of the Parallel Schwarz algorithm using Dirichlet transmission

conditions is given by the formula below

rpsmp(€ H) = (1 +2H2|EP7 + 2 ¢/ H2 (1 + H2|§|2)) e 2IEIH (5)

where & is the Fourier frequency and H > 0O is the size of the overlap.

Proof. In order to study the convergence behavior of the method, we go back to the local subproblems
in (4) and we consider the homogeneous counterparts taking f = 0. In addition, the velocity fields
in the two subdomains are uj(K) = (ugkl) uikg) and wk) = (uékl) uékz)) where the first indices
denote the subdomain and the second indices denote the component. Consequently, the Parallel

Schwarz method prescribed by (4) can be written in the following form
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(k) [ 524 (k) 2u (k) (k)

(524 (k) 2u (k) 5 0
6><2 + 82 :i gx in €, 8><2 + 82 :tll gx in 2,
82y (k) 82y (k) ) (k) 82y (k) 82y (k) ) (k)
6x2 + 8y2 = l]/- 8py in 2, 8x2 + 8y2 = 11/ apy in {2,
ou®  aul) _ oul  oul) _
s 3},2 =01iny, ot ai,z =01in o,
ngl) = ugkl Yoat x = H, uékl) = ugkl Yatx=0,

< ,and < (6)
uikz) = ugkz Yoat x = H, u§k2) = ugkz Yatx=0,
ngl) bounded at — oo, uékl) bounded at + oo,
ung) bounded at — oo, uékg bounded at + oo,
p( ) - bounded at — 0, pé ) - bounded at + o0.

. \

Going back to (4),, for f= 0, taking the divergence on both sides for the first subproblem, we

obtain
div (8T = = L pp(h)

K K k K
(e ) [l ol
Ox3 Oy x> dy3 OxOy?

=0in

exploiting the equation (4), (divergence free velocity in subdomain €2;). In the same fashion we

obtain that div (Auz(k)) =1 Ap(k) = 0 /n €23. As a consequence, we have to solve two Laplace

problems in each subdomam where the unknown is the pressure field. We deal with Ap(k)

0in Ql and by taking the Fourier transform in the y direction we obtain the homogeneous equation
62X2 — €125, p) = 0. The general solution of this equation is p( ) = Cgk)e_“ﬂx + ng)emx. By the
boundedness assumption of the pressure field in 2; as x — —o0, we obtain that ﬁ:(lk) = ng)emx.

We proceed to solve the equation Ap( ) =0in Qz, and the first step is to take the Fourier transform
|£|2 (k)

in the y direction. As a result, the equation 6X2
A(k) _ C(k)e—mx

= 0 has a general solution of the

D(k)emx By exploiting the property that the pressure field p( ) remains

59 — (R e

form p.
bounded as x — +oo, we obtain that p ~I€X The next move is to go to the two local

Schwarz subproblems in (6); and to take the Fourier transform in the y direction. This will give

_(k K
Gl QI 2 )
8x2 Y1 = v '

~(k) k) _
PO _ oy - G ®
Tox2 2.1 v '

We solve (7), (8) to obtain the two solutions in closed form
~(k k X ~(k
o = (B + Z-D{) elél, (9)

0§1) (B(k)+ - C(k)) o léx (10)
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We go back to (6); and by taking the Fourier trasform in the y direction and exploiting the solutions
(9), (10) we obtain

. i 1+ x|€ X

0 = (IﬁlBﬁk) + (2u’ |)D§k)) eléh, (11)
. i 1—x[¢ _lElx

a9 = ¢ (_|g|B§k)+ (21/' |)c§“) eI, (12)

We further proceed, substituting the solutions (9), (10), (11), (12) back to the interface conditions
(6)4, (6)5 to obtain the following equations

K, H S« k-1) , H -1} —
B+ 2D = (Bg . )) e 2lEIH, (13)
K 1+ H[¢| k k-1 1—HIEN -1\ -
€0 4 (zu o) = (gt + (L) o) e2em, g
By =B, (15)
(k) (k—1)
Ceir® L G epk-1) Dy
€18y + > €18, +721/ : (16)

We combine the equations (15), (16) to obtain ng) = Cékﬂ) - 4|£|uB§k+1). We substitute the
coefficients DY() back to equation (13) to obtain

BY D (2w — avH|g]) + HEH Y = BYF Moy 2élH | pelk—) e—2KElH, (17)
In the same spirit, we replace the iteration coefficients ng) back to (14) to get
BYY (2vle] + avHIEP) - ¢S (L4 HIgT) = 2vfglBY D e M 4 (g - 1)ef Ve M. (1g)
We take the two equations (17), (18) and write them in matrix form
[ (2v — 4vH|E]) H ] [ng+1>] B [ oye2kIH He2[ElH ] [B§“>]
(2vle] + avHIER) —(1+HIED] [cST ] [avigle2kIH (HIg| - 1)e2kIH] [c1 |
(19)

We recast the equation (19) in the form

BYT] [+ 2Hlgle2en = B (20)
C§k+l) 8UH|£|2672‘£|H (4H2\£|2 — 2H|¢| + 1) e—2l¢IH Cékfl)

Vpsu,p

where Wpsy p is the Schwarz iteration matrix. The Spectrum of Vpsyp is c(Wpsyp) =

{A+, A_}, where Ay and A_ are the corresponding eigenvalues given by the formulas

A= (142K 4 2 [6VAP (LT FRIER) ) e 2

A= (142K -2 [gV/HP (L + FPIEP) ) e 261
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Consequently, the convergence factor of the Parallel Schwarz algorithm is

tosmp = o(Wpsmp) = max{IA |, A=} = (14 2H2E2 + 2 [¢|y/HZ (1 + HR[ER) ) e 2lH

, where p(Wpsy p) is the spectral radius of the Schwarz iteration matrix, H is the size of the

overlap between the subdomains, £ is the Fourier frequency. ]

3. ALTERNATING SCcHWARZ METHOD-NEUMANN [IC

The interface conditions play critical role on the convergence of the Schwarz method. In this
section, we introduce the Alternating Schwarz algorithm employing Neumann interface conditions.
We go back to the iterative scheme prescribed by (4) and we modify the transmission conditions in

(4)3. As a consequence, the Schwarz method in strong form reads

—uAT R 4 Vp(k) =finQy, INTAQ S Vp( )= Fin Qo

divii® =0 in Q, divi® =0 in Qy,

WAL - p(k)n = vV — (k Viatx=H, {vvi®i— p(k)n = v — pgk)ﬁ at x =0,

M) - bounded at — oo, &) - bounded at + oo,

pgk) : bounded at — oo, pék) :bounded at + oo,

C

(21)

O 7 is required to start the

where 7 is the outward normal vector. The initial quess vV 13 7 — P>

iterative procedure.

Theorem 2. The convergence factor of the Schwarz algorithm using Neumann transmission condi-

tions is given by the formula below

262H2 2EIH ) 2V [EPHE £ 2IEPH + 8 [EPH? -2t

rasmn(€ H) = ’ 9 9

(22)
where £ is the Fourier frequency and H > 0 is the size of the overlap.
Proof. As a first step, we go back to the local subproblems in (21) and we consider the homogeneous

counterparts taking f = 0. We recast the method prescribed by (21) in the following form

(k)

i+ it = L e, ik + T = L in @,

Bzugg Bzugg - lapw a2u§52> 82ug<2) o l@pg‘)

ox? dy? — v 9y ox? dy?2 ~ v 9y

agikl) + au§2> =01in <y, 65';:1) 6U£2 =0 /n 0y,

J 6x U§k1) pgk) - Uax uékl Y pék_l) at x = H' | ax uékl) - pék) - UBX ugkl) pgk) at x = O’ (23)

Bx ng) — ox uég_l) at x = H, Bx §k2) — dx ung) at x =0,

ugkl) bounded at — oo, uékl) bounded at + oo,

ugg) : bounded at — oo, uékz)  bounded at + oo,

pgk) : bounded at — oo, pék) - bounded at + oco.
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We apply the Fourier transform in the y direction to the Schwarz subproblems prescribed by (23).
The Fourier transformed velocity components are given by the formulas (9), (10), (11), (12). The
Fourier transformed pressure fields are given by the relations: ﬁgk) = ng)emx, /Sék) = Cék)e_|5|x.
We plug in the Fourier transformed velocities and pressure fields back to the interface conditions

(23)4, (23)5 and by doing a little algebra we obtain

2w(¢|eIHBY) + DR (Hg| — 1)elélH = —ou|g| B Ve lélH — kD e lEH(1 4 Hig|), (24)

2B |¢2eléH 1 DIl (21¢] 4 H [¢]2) = 2u]¢PBY Ve M eV e lIH (g2 — 2)¢)

(25)
2v¢|B + ) = —20)¢1B%) + DI, (26)
vIgPBY) — [e|cs) = vBl¢f? + 1D (27)

We multiply (26) by —|£] then add (27), and solve with respect to the coefficient B:(Lk) obtaining
1 21

BK _ gk _ < (k) 28

1 3 2 3[/|£|C2 ( )

The next step is to obtain a formula for the coefficient D:(Lk)

(26) by |€| then add (27) to obtain

. In order to achieve that, we multiply

4 1
D = ZviglBy? - S, (29)

We substitute the expressions (28), (29) back to (24) and (25) and this yields
Bl (6u(¢| — avH|E)?) + S elé1H(3 + HIg|) = 6u|¢|BY Ve liH 4 3cl Vel (1 4 Hg)),
BV eIM (6ulgf? + avHIgl?) — CLOel (6]¢] + HIE) = bu|ePBY e M 4 3l Ve IM (Hg[2 - 2l¢)

We write the above equations in matrix form and by doing some algebraic manipulations we derive

the stationary iteration

B(k) —12vH|€]3—54v|¢|? H(H|€|+4) B(kfl)
[ 2 ]_ 54e2l¢lH|¢)2y 9e2l€lHy l 2 ]
- C(kfl)

2

l¢ v 4[ERH2=2IE|H+9 (30)

962\5“'/ 962\5“‘/

Vasm,n

where Wasp y is the Schwarz iteration matrix. The spectrum of Waspy v is o(Waspn) = {4+, w—1,

where p4 and p_ are the eigenvalues of the Schwarz iteration matrix provided by the formulas

L (2|£|2H2 20, |, 2V EFH 2P + BEPHP ) o2l
9 9 9 '

_ (2|£|2H2 C26H 2V EHT T AEPH + B [EPHR ) 2kl
9 9 9
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As a result, the reduction factor of the Schwarz method (Neumann Interface conditions) is given by
rasmn = P(Wasmn) = max{|u |, [u—[}

| ( PH 2H | 2V e T 2EPHR & B [EPH? ) el

9 9
]

4. NON-OVERLAPPING OPTIMIZED SCHWARZ ALGORITHM-RoBIN IC

The domain Q = R? is decomposed into two non-overlapping subdomains Q; = (—o00,0) x
(—00,+00) and Qp = (0, +00) X (—00, +00).The Optimized Schwarz methods employ mixed in-
terface boundary conditions, and more Precisely Robin. In this way, they facilitate both Neumann
and Dirichlet conditions and there is a tuning parameter to tune the method accordingly. The

Optimized Schwarz iterative scheme is given in strong form

—uAul(k) + Vp(k) =fin Q1,

divi;®) =0 in Q,

(k) =

L ovi i — pF 4y 6 = pv kD — (k D

w1 gt x =0, (31)

i+ Y3
1K) - bounded at — oo,

(k)

: bounded at — oo,

_UAUQ(k) + Vp(k) =fin 2o,
divis®) =0 in Qo,

(k D

vk — p( )i+ vy =y k- — A +yuk1 at x =0, (32)

U§<k> - bounded at + oo,

( ). . bounded at + oo,

where v is the tuning parameter of the method. Two initial guesses are needed for the iterative

method.

Theorem 3. The contraction factor of the non-overlapping Schwarz algorithm is given by the
mathematical expression

1302[€]2 — Av[€|y + |2
13v2[€]2 4 4v|€ly +v2|?

Bem(€, v, y) = (33)
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Proof. We recast the local Schwarz subproblems (31), (32) in the form

e
Tul L oul 1ol g,
ol L 22 g inay,
) U%Ug(l) - ng) + ’Yugf‘l) = u%ug(fl) - pékﬁl) + ’yugffl) at x =0, 34)
ol el =l +ufl D atx =
ngl) : bounded at — oo,
ugkg : bounded at — oo,
‘pgk) . bounded at — oo,
[ 52,0 2,,(K) k
o+ Tt = 125 in
2 2
86122'2 88;%2 - %aapf in <2,
Ul L 082 _ 0 iy,
T R LT T A
v — k3 = vguls ) —ufsV atx=0,
uékl) : bounded at + oo,
ugkg : bounded at + oo,
pék) : bounded at + oo.

\

We employ the Fourier transform for the local Schwarz subproblems (34), (35). The Fourier trans-
formed velocity components are given by the mathematical expressions (9), (10), (11), (12). The
Fourier transformed pressure fields are given by ﬁgk) = ng)emx, ﬁék) = Cék)efmx. We substitute
the velocities and pressure fields back to the transmission conditions (34),, (34)s, (35)4, (35)s, and

by doing some algebraic manipulations we obtain

B2y +2vig)) - DI = BS D (2y —2u¢] ) — e, (36)

B (2021¢2 + 2vy1¢]) + D 2uig] + ) = BY TV (202(¢7 — 2umylg]) + SV (y - 2vkg)),
(37)
B (2 + 2vj¢)) + K = BE I (2 — 20)¢)) + DY), (38)

B (2uyle] + 202(¢2) — 5 ule] + ) = B (20212 — 2u(¢]) + DV 2uig] - ).
(39)

We pick (38) and we obtain the coefficients

D = B 2y 4 20j¢) + Y — BII (2 — 20f¢)). (40)
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We substitiute the coefficients (40) back to (36) and we obtain

40BY = BITV 2y + 2vj¢)) + ¢V + BY D2y — 2vg]) — Y. (41)
The equation (40) can take the following form
40D = B 2y+2vfe) 2+ 2y+2vfé) - BV 2y-2vfg)?+f P (2y-2vf¢]) (42)
by employing (41). We take the relation (37), multiply with 4+, and then plug in (41), (42) to obtain
KBS ko8 = g BT 4 ek (43)
where ki, ko, k3, k4 are given by the relations below
k=12 (vigl+ 3) (Il + )2,
ko = 6°|€]% + Bu[Ely + 297,
ks = 12[¢0° — 4[€Pqv” — 1277w + 42,
ks = 6U°|€|% — 8u|€|y + 292

In the same fashion, we pick (39), multiply with 4+, and then exploit the expressions (41), (42) to
derive the equation

@ BSHD 4 ol — Bl 4 guele (44)
where g1, g2, G3, g4 are provided by the expressions

q1 = 12[¢[°v? + 4l¢[Pyv? — 120€l7°y — 4y°,

G2 = 6V2[€[* + 8Buy[€] + 277,

@ =12 (vlg| = 3 ) (vigl = )2,

qu = 62 (€7 — Byl +27°.

We take (43), (44) and after some algebraic manipulations we obtain a stationary iteration

B(k+1) 3v2[¢12—4v|ély+° 0 B(k_l)

2 _ | 3v21¢12+4v[€ly+v2 2 (45)
C(k+l) - 0 32 €12 —4v €|y +v2 C(k—l) ’

2 3L2[E[2+H4v|Ely+2 2

Vosm
The eigenvalue of the Schwarz iteration matrix Wosp of multiplicity two is provided by the formula
BV — 4vEly + 92
3V2[E[* + AviEly + v

As a consequence, the contraction factor is

d

R A 2 4 e e
osm = |kdl® = :
13021€]2 + 4v|€|y + 2|2
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5. NON-OVERLAPPING OPTIMIZED SCHWARZ ALGORITHM-SECOND ORDER |C

More Sophisticated Schwarz methods arise by the appropriate modification of the interface
conditions. We can employ the Optimized Schwarz algorithms imposing second order transmission
conditions. More precisely, we go back to the algorithm prescribed by (31), (32), go to the interface
conditions and instead of v we use the symbol S, where § = g (1 + 52).

Theorem 4. The contraction factor of the non-overlapping Schwarz algorithm (Second order IC) is

given by the mathematical expression

3U21E)2 — 4vi€lq (1+€2) + ¢ (1 +€2)° )2
13U2[€[2 + 4v|€]q (1 + €2) + g2 (1 + €2)7 |2

rbsm.soic(v, q,€) = (46)

where g > 0.

Proof. The calculations follow through in the same spirit as the Optimized Schwarz methods with
the Robin transmission conditions. Instead of -y, the symbol S is used and the convergence factor

is obtained naturally. O

Corollary 1. The reduction factor of The Parallel Schwarz method (Dirichlet IC) given by (5)
satisfies the following

1, H=0
0, [§] = +o0

resm,p(€, H) = 3 (47)
0, H— +o0

<1, £€>0.

Proof. The result (47); occurs by replacing H = 0 back to the formula (5). As a consequence, it
means that the Schwarz method stagnates without overlap, something which is very usual in the
literature. The (47), is obtained by taking the limit of (5) as the Fourier frequency tends to +oc.
The (47)5 is coming from the fact that when the overlap is sufficiently large, the convergence factor
turns to be zero. The ultimate result (47), comes from the fact that for non zero Fourier frequency,

the convergence factor is strictly less than 1. ]

Corollary 2. The reduction factor of the Alternating Schwarz method (Neumann IC) given by (22),
satisfies the relations

1, H=0
0, |£] — +o0

rasmn(€ H) = 5 (48)
0, H— 400

<1, £>0.
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Proof. The reduction factor is a function that depends on the size of the overlap and the Fourier
frequency. Consequently, for zero overlap, the function becomes one and this leads to stagnation of
the algorithm ((48);). When the Fourier number grows large, the function goes to zero as prescribed
by (48),. Moving to (48)5, a big overlap leads to better convergence because the contraction factor
rapidly tends to zero. Last but not least, for finite Fourier number, the convergence factor is strictly
less than one ((48),). O

Corollary 3. The contraction factor of the non-overlapping Optimized Schwarz method (Robin IC)
given by (33) satisfies the properties

( 1,y=0

1,7y — 40

BsmE v v) = {1, €] = +o0 (49)
<1, & €(0 +o0)

(0. v =4 = 3vlEly =v- = V¢l

Proof. The contraction factor depends on the kinematic viscosity, the Fourier frequency and the
parameter . The first three properties in (49) are straighforward to obtain. Taking the Robin
parameter to be zero or tend to infinity gives a stagnant Schwarz algorithm. In addition, when the
Fourier frequency tends to infinity, the contraction factor becomes 1. For finite Fourier frequency
(not growing to infinity) the reduction factor is less than 1. Lastly, the values of the Robin parameter
that make the contraction factor zero are y; = 3v|€| and y— = v|£| and can obtained by solving a

trinomial equation appearing in the numerator of the contraction factor. O

Corollary 4. If v = mv|€|, m € ZT — {1, 3}, then the convergence factor (33) does not depend on

viscosity and Fourier frequency.

Proof. By substitution, we obtain
3u2[€17 — avlély +7
3v2[€12 + 4v|Ely + 22
_ [3VRIEPP — aviglmulE] + mPIEPvR
[32|€)2 + 4v|€|mu €| + m?2|€|2v2|2
B V2[€)? (m? — 4m + 3) |2
|L2)€12 (m? 4+ 4m + 3) |2
_m? —4m+ 3P
|m2 +4m+ 3]2°

rBsm(& vy) =

O

Corollary 5. The contraction factor of non-overlapping optimised Schwarz method (Second order

IC) given by (46) satisfies the properties
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r1, g=20

1,9 — +x

Bsmsoic(v:a.8) = {1, [¢] > +oo (50)
<1, £ €(0,+00)

3
0. g=0q4 = 11'5‘52', qg=q- = 11‘%'2.

Proof. The first three relations in (50) can directly be derived by taking the appropriate limits for
the parameter g and the Fourier frequency £. For finite Fourier frequency, the reduction factor is
less than one. Ultimately, for the indicated parameters g— and g4+ the contraction factor becomes

zero. |

Corollary 6. If g = mv|¢|(1+€2)~Y, m € Z*T — {1, 3}, then the convergence factor (46) does not

depend on viscosity and Fourier frequency.

Proof. The proof follows by substitution of the g parameter back to (46). The expression obtained

is identical to the one appearing in the corollary 4. ]

6. NUMERICAL EVIDENCE-CONVERGENCE CURVES

In this section, the convergence curves are presented for each one of the Schwarz algorithms. In
the cases of Oprimised Schwarz methods with Robin and second order transmission conditions, we

consider vy = v and g = v. The convergence curves are presented below.

H=0.125

ol H=0.25
& ™
© H=0.5
2
© H=0.75
o
(]
=
c
]
O

0 2 4 6 8 10

Fourier frequency

Ficure 2. Convergence rate of Schwarz method using Dirichlet IC for varying overlap.
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Convergence rate

Fourier frequency

Ficure 3. Convergence rate of Schwarz method using Neumann IC for varying overlap.

Convergence rate

Fourier frequency

Ficure 4. Convergence rate of Schwarz method using Robin IC for varying viscosity.
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Ficure 5. Convergence rate of Schwarz method using second order IC for varying viscosity.
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Ficure 6. Comparison of convergence rates for all Schwarz methods.

Employing the graphs of the convergence rates in FIGURE 2 and FIGURE 3, we can compare

the Schwarz methods using Dirichlet and Neumann Interface conditions. We notice that when
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Neumann transmission conditions are imposed, the convergence rate decays rapidly for increasing
Fourier modes, whereas using Dirichlet conditions makes the convergence slower. In addition, it
is evident that when the overlap between the subdomains is larger then this enhances the overall
convergence which is the expected result when using the Classical Schwarz methods. In figures 4
and 5 we have the convergence curves of non-overlapping Optimized Schwarz methods (FIGURE
4-Robin IC, FIGURE 5-Second Order IC) for varying values of the viscosity. We notice that these
algorithms have better convergence for small Fourier frequencies but as the Fourier frequency
grows to infinity, the reduction factor tends to 1. We also notice that when we tune the parameters
of these Optimised methods, we can choose values to make the convergence rate equal to zero.
Last but not least, we compare all the convergence curves and obtain FIGURE 6, which indicates
that the Schwarz methods with Neummann and Dirichlet transmission conditions are slower for
low frequencies, and the Optimised methods perform better in this regime. However, the problems
occur when the frequencies are large which means that the reduction factor tends to 1, which is

not desirable when dealing with Schwarz algorithms.

7. CONCLUSIONS

In this work we focused on the convergence analysis of the Schwarz algorithms for Stokes-Stokes
configuration for varying interface conditions. We carried out the analysis using partial Fourier
transform and we obtained the contraction factors for each one of the methods introduced. After
conducting the convergence analysis, we notice that the Neumann conditions result in faster decay
of reduction factor when & grows sufficiently large compared to the Dirichlet IC. The Optimised
Schwarz methods have advantage in the low frequency regime, but as the Fourier number grows
the contraction rate tends to one which is not desirable behavior. The convergence analysis for
Stokes-Stokes configuration is useful for studying the behavior of Schwarz algorithms and getting
a general insight. So far there is such analysis for Stokes-Darcy coupling [18], as a result this

work could enrich the existing mathematical literature.

REFERENCES

[1] M.J. Gander, Optimized Schwarz methods for Helmholtz problems, in: Proceedings of the 13th International Con-
ference on Domain Decomposition, CIMNE (2001) 245-252.

[2] M.J. Gander, L. Halpern, F. Nataf, Optimized Schwarz methods, in: Proceedings of the 12th International Conference
on Domain Decomposition, ddm.org (2000) 15-27.

[3] P.L. Lions, On the Schwarz alternating method IlI: A variant for nonoverlapping subdomains, in: T. Chan, R. Glowinski,
J. Periaux, O.B. Widlund (Eds.), Third International Symposium on Domain Decomposition Methods for Partial
Differential Equations, SIAM (1990) 202-223.

[4] M.J. Gander, G. Wanner, The origins of the alternating Schwarz method, in: Domain Decomposition Methods in
Science and Engineering XXI, LNCSE, Springer-Verlag (2014) 487-496.

[5] M.J. Gander, Schwarz methods over the course of time, Elec. Trans. Numer. Anal. 31 (2008) 228-255.


https://doi.org/10.28924/ada/ma.5.6

Eur. J. Math. Anal.

[6] H.A. Schwarz, Uber einen Grenzubergang durch alternierendes Verfahren, Vierteljahrsschrift der Naturforschenden
Gesellschaft in Zurich 15 (1870) 272-286.

[7] V. Dolean, P. Jolivet, F. Nataf, An introduction to domain decomposition methods: Algorithms, theory, and parallel
implementation, SIAM (2016).

[8] G. Ciaramella, M.J. Gander, Iterative methods and preconditioners for systems of linear equations, SIAM (2022).

[9] B. Smith, P. Bjorstad, W. Gropp, Domain decomposition: Parallel multilevel methods for elliptic partial differential
equations, Cambridge University Press.

[10] A. Quarteroni, A. Valli, Domain decomposition methods for partial differential equations, Oxford Science Publications
(1999).

[11] O. Ernst, M.J. Gander, Why it is difficult to solve Helmholtz problems with classical iterative methods, in: I. Graham,
T. Hou, O. Lakkis, R. Scheichl (Eds.), Numerical Analysis of Multiscale Problems, Springer Verlag (2012) 325-363.

[12] M.). Gander, H. Zhang, Decomposition de domaine et probleme de Helmholtz: Thirty years after and still unique,
in: Domain Decomposition Methods in Science and Engineering XXVI, LNCSE, Springer-Verlag (2021).

[13] P-L. Lions, On the Schwarz alternating method. I, in: R. Glowinski, G.H. Golub, G.A. Meurant, J. Periaux (Eds.), First
International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia
(1988) 1-42.

[14] V. Dolean, M.J. Gander, A. Kyriakis, Optimizing transmission conditions for multiple subdomains in the Magnetotel-
luric approximation of Maxwell’s equations, in: Domain Decomposition Methods in Science and Engineering XXVI,
LNCSE, Springer-Verlag (2021).

[15] A. Kyriakis, Scalable domain decomposition methods for time harmonic wave propagation problems, Ph.D. thesis,
University of Strathclyde (2021).

[16] V. Dolean, M.J. Gander, A. Kyriakis, Closed form optimized transmission conditions for complex diffusion with many
subdomains, SIAM J. Sci. Comput. 45 (2023) A829-A848.

[17] A. Kyriakis, Analysis of Schwarz algorithms for a scalar elliptic problem, Adv. Appl. Math. Sci. 22 (12) (2023)
2227-2242.

[18] M. Discacciati, G. Giorda, Optimized Schwarz methods for the Stokes-Darcy coupling, IMA J. Numer. Anal. 38 (4)
(2018) 1959-1983.


https://doi.org/10.28924/ada/ma.5.6

	1. Introduction
	2. Parallel Schwarz Method-Dirichlet IC
	3. Alternating Schwarz Method-Neumann IC
	4. Non-overlapping Optimized Schwarz Algorithm-Robin IC
	5. Non-overlapping Optimized Schwarz Algorithm-Second Order IC
	6. Numerical Evidence-Convergence Curves
	7. Conclusions
	References

