On η -Local Functions in Ideal Topological Spaces

Junvon A. Almocera*, Lezel M. Tutanes

Department of Mathematics, College of Arts and Sciences, Bukidnon State University, Malaybalay City, Bukidnon, Philippines 1901103646@student.buksu.edu.ph, lezeltutanes@buksu.edu.ph *Correspondence: 1901103646@student.buksu.edu.ph

ABSTRACT. This study introduces and investigates a new local function called η -local function in ideal topological space (X, τ, I) by using the notion of η -open sets in topological space (X, τ) . The operator $(\cdot)^*_{\eta} : \mathcal{P}(X) \to \mathcal{P}(X)$ is defined as $(\cdot)^*_{\eta}(A) = A^*_{\eta} = \{x \in X : A \cap U \notin I \text{ for every } U \in \eta - O(x)\}$ for each $A \subseteq X$, where $\eta - O(x)$ is the set of all η -open subset of X containing x. This study establishes some properties of A^*_{η} including its relationships to the local function and local function Γ^* in ideal topological space (X, τ, I) . This study also introduces a new type of closure called the η -local closure in ideal topological space (X, τ, I) which is denoted by $CI^*_{\eta}(A)$ for each $A \subseteq X$. Furthermore, this study establishes some properties of the η -local closure.

1. INTRODUCTION

The concept of ideal topological spaces was first studied by Kuratowski [4] and Vaidyanathaswamy [9]. The notion of topological spaces with ideals were investigated by Jankovic [3]. Thereafter, the study of ideal topological spaces attracts the attention of many topologists. Recently, Alomari [1] have introduced and investigated the notion of local function Γ^* in an ideal topological space and showed that Γ^* is equivalent to the δ -local function due to Hatir et al. [2]. In this paper, the researcher defined a new type of local function called the η -local function in ideal topological spaces by using the η -open set of Subbulakshmi [8] and established some of its properties, including its relationship to the local function and local function Γ^* in ideal topological spaces. Subsequently, the η -local closure has been defined, and some of the properties are established.

2. PRELIMINARIES

Throughout this paper (X, τ) and (X, τ, I) denote a topological space and an ideal topological space, respectively. The members of τ are called open sets and their complement are called closed sets. For any subset A of X, the closure and interior of A are denoted by cI(A) and

Received: 4 Jun 2024.

Key words and phrases. Ideal topoloical space, η -open set; η -local function; η -local closure.

int(*A*), respectively. A subset *A* of a space (X, τ) is said to be η -open (resp. η -closed) [8] if $A \subseteq int(cl(int(A))) \cup cl(int(A))$ (resp. $A \supseteq cl(int(cl(A))) \cap int(cl(A)))$. The η -closure of *A* is defined by the intersection of all η -closed sets containing the set *A* and it is denoted by η -cl(*A*) [8]. A subset *A* of a space (X, τ) is said to be semi-open [6] if $A \subseteq cl(int(A))$. A subset *A* of a space (X, τ) is said to be regular-open [7] if A = int(cl(A)). The familiy of all η -open (resp. semi-open, regular open) sets in *X* is denoted by η -O(*X*) (resp. SO(X), RO(X)).

An ideal I [5] on a topological spaces (X, τ) is a nonempty collection of subsets of X, which satisfies (i) $A \in I$ and $B \in I$ implies $A \cup B \in I$; and (ii) $A \in I$ and $B \subseteq A$ implies $B \in I$. Then the triplet (X, τ, I) is called an ideal topological space. If $\mathcal{P}(X)$ is the set of all subsets of X, a set operator $(\cdot)^* : \mathcal{P}(X) \to \mathcal{P}(X)$ called a local function [3,9] of A with respect to τ and I is defined as follows: for $A \subseteq X$, $A^*(I, \tau) = \{x \in X : U \cap A \notin I$, for every $U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau : x \in$ $U\}$. $A^*(I, \tau)$ can simply be written as A^* . For every ideal topological space, there exists a topology $\tau^*(I, \tau)$ or briefly τ^* [3], finer than τ , generated by the $\mathcal{B}(I, \tau) = \{U \setminus J : U \in \tau \text{ and } J \in I\}$, however, $\mathcal{B}(I, \tau)$ is not a topology in general. Additionally, $CI^*(A) = A \cup A^*$ defines a Kuratowski closure operator [5] for τ^* . A subset A of an ideal topological spaces is τ^* -closed set or *-closed set [3] if $A^* \subseteq A$. Let (X, τ, I) be an ideal topological spaces and A be a subset of X. Then $\Gamma^*(A)(I, \tau) = \{x \in X : A \cap U \notin I$, for every $U \in RO(X)\}$ where $RO(X) = \{U \in RO(X) : x \in U\}$. $\Gamma^*(A)(I, \tau)$ can simply be denoted as $\Gamma^*(A)$ [1].

3. η -local functions

Definition 1. Let (X, τ, I) be an ideal topological space. Then the operator $(\cdot)^*_{\eta} : \mathcal{P}(X) \to \mathcal{P}(X)$ is defined as for $A \subseteq X$, $A^*_{\eta}(I, \eta - O(X)) = \{x \in X : A \cap U \notin I, \text{ for every } U \in \eta - O(x)\}$ where $\eta - O(x) = \{U \in \eta - O(X) : x \in U\}$ is called the η -local function of A with respect to I and $\eta - O(X)$. $A^*_{\eta}(I, \eta - O(X))$ can simply be denoted by A^*_{η} .

Example 1. Let (X, τ, I) be an ideal topological where $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$, and $I = \{\emptyset, \{c\}, \{d\}, \{c, d\}\}$. Then η - $O(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, c\}, \{b, c\}, \{a, b, c\}, \{a, c, d\}, \{a, b, d\}, \{b, c, d\}\}$. Now, let $A = \{a, b, d\}$. Then by Definition 1, $A_n^* = \{a, b, c, d\} = X$.

Theorem 1. Let (X, τ, I) be an ideal topological space and A, B be subsets of X. Then for any η -local functions, the following properties hold:

- (i) if $A \subseteq B$, then $A_{\eta}^* \subseteq B_{\eta}^*$; (ii) $(A \cap B)_{\eta}^* \subseteq A_{\eta}^* \cap B_{\eta}^*$; and (iii) $A_{\eta}^* \cup B_{\eta}^* \subseteq (A \cup B)_{\eta}^*$; (iv) if $A = \emptyset$, then $A_{\eta}^* = \emptyset$; (v) if $A_{\eta}^* \cap B \notin I$, then $A_{\eta}^* \cap B \neq \emptyset$; (iv) $(A_{\eta}^*)^* = A_{\eta}^*$
- (vi) $(A_{\eta}^{*})_{\eta}^{*} \subseteq A_{\eta}^{*}$;

- (vii) if $A \in I$, then $A_n^* = \emptyset$;
- (iix) if $I = \{\emptyset\}$, then $A_{\eta}^* = \eta$ -cl(A);
- (ix) if $I = \mathcal{P}(X)$, then $A_{\eta}^* = \emptyset$; and
- (x) $A_{\eta}^* \subseteq \eta cI(A);$

Proof.

- (*i*) Let $A, B \subseteq X$ and $A \subseteq B$. Suppose $x \notin B_{\eta}^*$, then there exist $U \in \eta$ -O(x) such that $B \cap U \in I$. Since $A \subseteq B$, $A \cap U \subseteq B \cap U \in I$, by Definition of ideal, $A \cap U \in I$. Hence, $x \notin A_{\eta}^*$.
- (*ii*) Let $A, B \subseteq X$. Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, by Theorem 1 (*i*), $(A \cap B)^*_{\eta} \subseteq A^*_{\eta}$ and $(A \cap B)^*_{\eta} \subseteq B^*_{\eta}$, respectively. Hence, $(A \cap B)^*_{\eta} \subseteq A^*_{\eta} \cap B^*_{\eta}$.
- (iii) Let $A, B \subseteq X$. Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, by Theorem 1 (i), $A_{\eta}^* \subseteq (A \cup B)_{\eta}^*$ and $B_{\eta}^* \subseteq (A \cup B)_{\eta}^*$, respectively. Hence, $A_{\eta}^* \cup B_{\eta}^* \subseteq (A \cup B)_{\eta}^*$.
- (iv) Let $A = \emptyset$. Suppose $A_{\eta}^* \neq \emptyset$. Then there exists $x \in A_{\eta}^*$. It follows that $A \cap U = \emptyset \cap U = \emptyset \notin I$ for every $U \in \eta$ -O(x). Since I is an ideal, $\emptyset \in I$ which is a contradiction.
- (v) Let $A_{\eta}^* \cap B \notin I$. Suppose $A_{\eta}^* \cap B = \emptyset$. Note that by definition of ideal, $\emptyset \in I$ for any ideal *I*. Now, since $A_{\eta}^* \cap B = \emptyset$ and *I* is an ideal, $A_{\eta}^* \cap B = \emptyset \in I$ implies $A_{\eta}^* \cap B \in I$, a contradiction.
- (vi) Let $x \in (A_{\eta}^*)_{\eta}^*$. Then, for every $U \in \eta O(x)$, $U \cap A_{\eta}^* \notin I$ and hence, by (ii), $U \cap A_{\eta}^* \neq \emptyset$. Now, let $y \in U \cap A_{\eta}^*$. Then, $U \in \eta - O(y)$ and $y \in A_{\eta}^*$. Hence, we have $U \cap A \notin I$. Note that $U \in \eta - O(x)$ and $U \cap A \notin I$. It follows that $x \in A_{\eta}^*$. Therefore, $(A_{\eta}^*)_{\eta}^* \subseteq A_{\eta}^*$.
- (vii) Let $A \in I$. Suppose $A_{\eta}^* \neq \emptyset$. Then there exists an element $x \in A_{\eta}^*$. Then $A \cap U \notin I$ for every $U \in \eta$ -O(x). Now, Since, $A \cap U \subseteq A \in I$ and I is an ideal, $A \cap U \in I$ which is a contradiction.
- (*iix*) Let $I = \{\emptyset\}$. Suppose that $A_{\eta}^* \neq \eta cI(A)$. Let $\eta cI(A) \subset A_{\eta}^*$, then there exists an element $x \in A_{\eta}^*$ and $x \notin \eta cI(A)$. It follows that for every $A \subseteq X$, since $x \in A_{\eta}^*$, $A \cap U \notin I$ for every $U \in \eta O(x)$. Since $I = \{\emptyset\}$, $A \cap U \neq \emptyset$ for every $U \in \eta O(x)$. Note that $U \in \eta O(x)$ means $x \in U$ where U is η -open set. Since, $x \notin \eta cI(A)$, $x \notin \bigcap \{K : K \text{ is } \eta c \text{ losed and } A \subseteq K \}$. It follows that $x \notin K$ for some η -closed set K such that $A \subseteq K$. Hence, $x \in K^c$ for some η -open set K^c such that $A \cap K^c = \emptyset$. It implies that there exists an η -open set K^c where $x \in K^c$ and $A \cap K^c = \emptyset$, a contradiction.
- (ix) Let $I = \mathcal{P}(X)$. Note that $A \subseteq X$, then $A \in \mathcal{P}(X)$. Since $I = \mathcal{P}(X)$, $A \in I$. Hence, by Theorem 1 (vii), $A_{\eta}^* = \emptyset$.
- (x) Let $x \notin \eta$ -cl(A). Then, $x \notin \bigcap \{K : K \text{ is } \eta$ -closed and $A \subseteq K\}$. It follows that $x \notin K$ for some η -closed set K such that $A \subseteq K$. Hence, $x \in K^c$ for some η -open set K^c such that $A \cap K^c = \emptyset$. It implies that there exists $K^c \in \eta$ -O(x) such that $A \cap K^c = \emptyset$, and by definition of ideal, $\emptyset \in I$ for any ideal I. Hence, $A \cap K^c \in I$ for some $K^c \in \eta$ -O(x). This shows that $x \notin A_{\eta}^*$.

Remark 1. Let (X, τ, I) be an ideal topological space and A be any subset of X. Then for any η -local functions, the following properties hold:

- (i) The reverse inclusion of Theorem 1 (iii) need not be true in general.
- (ii) Neither $A \subseteq A_{\eta}^*$ nor $A_{\eta}^* \subseteq A$ in general.
- (iii) A_{η}^* is an η -closed set iff $A_{\eta}^* = \eta$ -cl (A_{η}^*) .

In order to verify Remark 1 (i) and (ii), the following examples are shown.

Example 2.

- (i) Consider the ideal topological space (X, τ, I) , where $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{b\}, \{c\}, \{b, c\}, \{a, b, c\}\}$, and $I = \{\emptyset, \{a\}\}$. Then the η -open sets are \emptyset , X, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{a, c\}$, $\{a, c\}$, $\{b, c\}$, $\{b, d\}$, $\{c, d\}$, $\{a, b, c\}$, $\{a, c, d\}$, $\{a, b, d\}$, and $\{b, c, d\}$. Now, let $A = \{b\}$ and $B = \{c\}$, then $A \cup B = \{b, c\}$. Then by applying Definition 1, $A_{\eta}^* = \{b\}$, $B_{\eta}^* = \{c\}$, and $(A \cup B)_{\eta}^* \not\subseteq A_{\eta}^* \cup B_{\eta}^*$.
- (ii) Consider the ideal topological space (X, τ, I) , where $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{b\}, \{c\}, \{b, c, d\}\}$, and $I = \{\emptyset, \{c\}\}$. Then the η -open sets are \emptyset , X, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{b, c\}$, $\{b, c\}$, $\{b, d\}$, $\{a, b, c\}$, $\{a, b, d\}$, and $\{b, c, d\}$. Let $A, B \subset X$ where, $A = \{a, c, d\}$ and $B = \{a, b\}$. Then by Definition 1, $A_{\eta}^* = \{a, d\}$ and $B_{\eta}^* = \{a, b, d\}$. Obeserve that $A \nsubseteq A_{\eta}^*$ and $B_{\eta}^* \nsubseteq B$.

Theorem 2. Let (X, τ, I) be an ideal topological space and A, B be subsets of X. Then for any η -local functions, the following properties hold:

- (i) $(A \setminus B)^*_{\eta} \setminus B^*_{\eta} \subseteq A^*_{\eta} \setminus B^*_{\eta}$;
- (ii) if $B \in I$, then $(A \cup B)^*_{\eta} = A^*_{\eta} = (A \setminus B)^*_{\eta}$;
- (iii) $(A \setminus B)^*_{\eta} \cup (B \setminus A)^*_{\eta} \subseteq (A \cup B)^*_{\eta}$;
- (iv) if $U \subseteq X$, then $U \cap (U \cap A)^*_{\eta} \subseteq U \cap A^*_{\eta}$;
- (v) if $U \in I$, then $(A \cap U)_{\eta}^* = \emptyset$;
- (vi) if A is an η -closed set, then $A_{\eta}^* \subseteq A$;
- (vii) $(A \cap A_{\eta}^*)_{\eta}^* \subseteq A_{\eta}^*$;
- (iix) if $A \cup B \in I$, then $(A \cup B)_{\eta}^* = A_{\eta}^* \cup B_{\eta}^* = \emptyset$.
- (ix) $A_n^* = \eta cI(A_n^*) \subseteq \eta cI(A)$ and A_n^* is an η -closed set; and
- (x) if $A \subseteq A_n^*$, then $A_n^* = \eta cI(A_n^*) = \eta cI(A)$.

Proof.

- (*i*) Let $A, B \subseteq X$. Since $A \setminus B \subseteq A$, by Theorem 1 (*i*), $(A \setminus B)^*_{\eta} \subseteq A^*_{\eta}$ implies that $(A \setminus B)^*_{\eta} \setminus B^*_{\eta} \subseteq A^*_{\eta} \setminus B^*_{\eta}$.
- (*ii*) Let $B \in I$. Suppose $x \in (A \cup B)_{\eta}^*$. Then for every $U \in \eta$ -O(x), $(A \cup B) \cap U \notin I$. Note that $(A \cap U) \cup (B \cap U) = (A \cup B) \cap U \notin I$ implies that $(A \cap U) \cup (B \cap U) \notin I$. It shows that $A \cap U \notin I$

or $B \cap U \notin I$, or both, and as a result, $x \in A_{\eta}^{*}$ or $x \in B_{\eta}^{*}$, or both. Hence, $x \in A_{\eta}^{*} \cup B_{\eta}^{*}$. Now, note that $B \in I$, then by Theorem 1 (vii), $B_{\eta}^{*} = \emptyset$. Thus, $x \in A_{\eta}^{*} \cup B_{\eta}^{*} = A_{\eta}^{*} \cup \emptyset = A_{\eta}^{*}$. This implies that $x \in A_{\eta}^{*}$. Hence, it shows that $(A \cup B)_{\eta}^{*} \subseteq A_{\eta}^{*}$. In contrast, since $A \subseteq A \cup B$, by Theorem 1 (i), it implies that $A_{\eta}^{*} \subseteq (A \cup B)_{\eta}^{*}$. Consequently, as a result, $A_{\eta}^{*} = (A \cup B)_{\eta}^{*}$. Now, suppose that $(A \setminus B)_{\eta}^{*} \neq A_{\eta}^{*}$. Let $(A \setminus B)_{\eta}^{*} \subset A_{\eta}^{*}$. Then there exists an element $x \in A_{\eta}^{*}$ such that $x \notin (A \setminus B)_{\eta}^{*}$. Note that $x \in A_{\eta}^{*}$ implies that for every $A \subseteq X$, $A \cap U \notin I$ for every $U \in \eta$ -O(x). Now, since $x \notin (A \setminus B)_{\eta}^{*}$, there exists $U \in \eta$ -O(x) such that $(A \setminus B) \cap U \in I$. Note that $(A \setminus B) \cap U = (A \cap U) \setminus (B \cap U) \in I$ and $B \cap U \subseteq B \in I$. Now, since I is an ideal, $B \cap U \in I$ and $[(A \cap U) \setminus (B \cap U)] \cup (B \cap U) \in I$, respectively. Again, note that $[(A \cap U) \setminus (B \cap U)] \cup (B \cap U) \cup (B \cap U) \in I$. Since $(A \cap U) \subseteq (A \cap U) \cup (B \cap U) \in I$, it implies that $A \cap U \in I$. So, there exists $U \in \eta$ -O(x) such that $A \cap U \in I$ which is a contradiction.

- (iii) Let $A, B \subseteq X$. Note that $A \setminus B \subseteq A$ and $B \setminus A \subseteq B$. Then by Theorem 1 (i), $(A \setminus B)^*_{\eta} \subseteq A^*_{\eta}$ and $(B \setminus A)^*_{\eta} \subseteq B^*_{\eta}$, and so, $(A \setminus B)^*_{\eta} \cup (B \setminus A)^*_{\eta} \subseteq A^*_{\eta} \cup B^*_{\eta}$. Now, by Theorem 1 (iii), $A^*_{\eta} \cup B^*_{\eta} \subseteq (A \cup B)^*_{\eta}$. Hence, $(A \setminus B)^*_{\eta} \cup (B \setminus A)^*_{\eta} \subseteq (A \cup B)^*_{\eta}$.
- (iv) Let $U \subseteq X$. Since $U \cap A \subseteq A$, by Theorem 1 (i), $(U \cap A)^*_{\eta} \subseteq A^*_{\eta}$, and hence, $U \cap (U \cap A)^*_{\eta} \subseteq U \cap A^*_{\eta}$.
- (v) Let $U \in I$. Since $A \cap U \subseteq U \in I$ and I is an ideal, $A \cap U \in I$. Hence, by Theorem 1 (vii), $(A \cap U)_n^* = \emptyset$.
- (vi) Let A be an η -closed set. Then $A = \eta c/(A)$. Now, note that by Theorem 1 (x), $A_{\eta}^* \subseteq \eta c/(A)$. Hence, $A_{\eta}^* \subseteq A$.
- (vii) Let $A \subseteq X$. Since $A \cap A_{\eta}^* \subseteq A_{\eta}^*$, by Theorem 1 (i), $(A \cap A_{\eta}^*)_{\eta}^* \subseteq (A_{\eta}^*)_{\eta}^*$. Note that by Theorem 1 (vi), $(A_{\eta}^*)_{\eta}^* \subseteq A_{\eta}^*$. Therefore, $(A \cap A_{\eta}^*)_{\eta}^* \subseteq A_{\eta}^*$.
- (*iix*) Let $A \cup B \in I$. Since $A \cup B \in I$ and I is an ideal, $A \in I$ and $B \in I$. These imply by Theorem 1 (*vii*), $(A \cup B)^*_{\eta} = \emptyset$, $A^*_{\eta} = \emptyset$, and $B^*_{\eta} = \emptyset$. Therefore, $(A \cup B)^*_{\eta} = A^*_{\eta} \cup B^*_{\eta} = \emptyset$.
- (ix) Suppose that $A_{\eta}^* \neq \eta c/(A_{\eta}^*)$. Let $\eta c/(A_{\eta}^*) \subset A_{\eta}^*$. Then there exists an element $x \in A_{\eta}^*$ such that $x \notin \eta - c/(A_{\eta}^*)$. Note that since $x \in A_{\eta}^*$, for every $U \in \eta - O(x)$, $A \cap U \notin I$. Now, note that $x \notin \eta - c/(A_{\eta}^*)$. Then $x \notin \bigcap \{K : K \text{ is } \eta \text{-closed and } A_{\eta}^* \subseteq K\}$. This shows that $x \notin K$ for some η -closed set K such that $A_{\eta}^* \subseteq K$. This implies that $x \in K^c$ for some η -open set K^c such that $K^c \cap A_{\eta}^* = \emptyset$. Note that $x \in K^c$ and $K^c \cap A_{\eta}^* = \emptyset$, then it follows that $x \notin A_{\eta}^*$, and so, for some $K^c \in \eta - O(x)$, $A \cap K^c \in I$, which is a contradiction. Consequently, $A_{\eta}^* = \eta - c/(A_{\eta}^*)$, then by Remark 1 (iii), A_{η}^* is an η -closed set. Now, note that $A_{\eta}^* = \eta - c/(A_{\eta}^*)$ and by Theorem 1 (x), hence, $A_{\eta}^* = \eta - c/(A_{\eta}^*) \subseteq \eta - c/(A)$.
- (x) Let $A \subseteq A_{\eta}^*$. Suppose that $x \in \eta$ -cl(A). Then $x \in \bigcap \{K : K \text{ is } \eta$ -closed and $A \subseteq K\}$. This shows that $x \in K$ for every η -closed set K such that $A \subseteq K$. Note that by Theorem 2 (*ix*), A_{η}^* is an η -closed set. Now, note that since $A \subseteq A_{\eta}^*$ and A_{η}^* is an η -closed set,

 $A_{\eta}^* \in \{K : K \text{ is } \eta\text{-closed and } A \subseteq K\}$. This implies that $x \in A_{\eta}^*$. Hence, $\eta\text{-}cl(A) \subseteq A_{\eta}^*$. As a result, by Theorem 1 (x) and 2 (ix), $A_{\eta}^* = \eta\text{-}cl(A_{\eta}^*) = \eta\text{-}cl(A)$.

Theorem 3. Let (X, τ, I) be an ideal topological space where η -O(X) is closed under any two intersections. Then for any A, B subsets of X, the following properties hold:

- (i) $(A \cup B)_n^* = A_n^* \cup B_n^*$;
- (ii) for $U \in \eta$ -O(x), $U \cap A_n^* = U \cap (U \cap A)_n^* \subseteq (U \cap A)_n^*$; and
- (iii) $A_{\eta}^* \setminus B_{\eta}^* = (A \setminus B)_{\eta}^* \setminus B_{\eta}^* \subseteq (A \setminus B)_{\eta}^*$.

Proof.

(*i*) Let η -O(X) be closed under any two intersections. Suppose that $x \notin A_{\eta}^* \cup B_{\eta}^*$, then $x \notin A_{\eta}^*$ and $x \notin B_{\eta}^*$ implying that there exist $U, V \in \eta$ -O(X) such that $A \cap U \in I$ and $B \cap V \in I$. Note that $A \cap U \in I$, $B \cap V \in I$, and I is an ideal. Then $(A \cap U) \cup (B \cap V) \in I$. Since $U \cap V \subseteq U$ and $U \cap V \subseteq V$,

$$(A \cap U) \cup (B \cap V) \supseteq [A \cap (U \cap V)] \cup [B \cap (U \cap V)]$$
$$= (A \cup B) \cap (U \cap V).$$

It implies that $(A \cup B) \cap (U \cap V) \subseteq (A \cap U) \cup (B \cap V) \in I$. Again, since *I* is an ideal, $(A \cup B) \cap (U \cap V) \in I$. Now, note that by assumption, η -O(X) is closed under any two intersections, and so, there exists $U \cap V \in \eta$ -O(x) such that $(A \cup B) \cap (U \cap V) \in I$. This shows that $x \notin (A \cup B)_{\eta}^*$. Hence, $(A \cup B)_{\eta}^* \subseteq A_{\eta}^* \cup B_{\eta}^*$. Now, by Theorem 1 *(iii)*, therefore, $(A \cup B)_{\eta}^* = A_{\eta}^* \cup B_{\eta}^*$.

(ii) Let η -O(X) be closed under any two intersections. For $U \in \eta$ -O(X), suppose that $x \in U \cap A_{\eta}^*$. Then $x \in U$ and $x \in A_{\eta}^*$. To show that $x \in (U \cap A)_{\eta}^*$, let $V \in \eta$ -O(x). Since $x \in U$ and $U \in \eta$ -O(X), we can write it as $U \in \eta$ -O(x). Hence, by assumption, $U \cap V \in \eta$ -O(x). Note that since $x \in A_{\eta}^*$ and $U \cap V \in \eta$ -O(x), then $A \cap (U \cap V) \notin I$ for every $U \cap V \in \eta$ -O(x). Now, by associativity and commutativity,

$$A \cap (U \cap V) = (A \cap U) \cap V \notin I$$
$$= (U \cap A) \cap V \notin I.$$

This shows that for every $V \in \eta$ -O(x), $(U \cap A) \cap V \notin I$. It implies that $x \in (U \cap A)^*_{\eta}$. Hence, $U \cap A^*_{\eta} \subseteq (U \cap A)^*_{\eta}$. Now, note that $U \cap A^*_{\eta} \subseteq (U \cap A)^*_{\eta}$, then $U \cap (U \cap A^*_{\eta}) \subseteq U \cap (U \cap A)^*_{\eta}$. Since $U \cap (U \cap A^*_{\eta})$, by associativity again,

$$U \cap (U \cap A_{\eta}^{*}) = (U \cap U) \cap A_{\eta}^{*}$$
$$= U \cap A_{\eta}^{*}.$$

This implies that $U \cap A_{\eta}^* \subseteq U \cap (U \cap A)_{\eta}^*$. In contrast, note that $U \cap A \subseteq A$, then by Theorem 1 (i), $(U \cap A)_{\eta}^* \subseteq A_{\eta}^*$. Thus, $U \cap (U \cap A)_{\eta}^* \subseteq U \cap A_{\eta}^*$. Consequently, as a result, $U \cap A_{\eta}^* = U \cap (U \cap A)_{\eta}^*$. Note that $U \cap (U \cap A)_{\eta}^* \subseteq (U \cap A)_{\eta}^*$. This shows that $U \cap A_{\eta}^* = U \cap (U \cap A)_{\eta}^* \subseteq (U \cap A)_{\eta}^*$.

(*iii*) Let $A, B \subseteq X$. Note that $A = (A \setminus B) \cup (B \cap A)$. Thus $A_{\eta}^* = [(A \setminus B) \cup (B \cap A)]_{\eta}^*$. Note that by assumption, η -O(X) is closed under any two intersections, then by Theorem 3 (*i*),

$$A_{\eta}^{*} = \left[(A \setminus B) \cup (B \cap A) \right]_{\eta}^{*}$$
$$= (A \setminus B)_{\eta}^{*} \cup (B \cap A)_{\eta}^{*}.$$

So, $A_{\eta}^* = (A \setminus B)_{\eta}^* \cup (B \cap A)_{\eta}^*$. Now, note that $A_{\eta}^* \setminus B_{\eta}^* = A_{\eta}^* \cap (B_{\eta}^*)^c$, and since $A_{\eta}^* = (A \setminus B)_{\eta}^* \cup (B \cap A)_{\eta}^*$,

$$\begin{aligned} A_{\eta}^{*} \setminus B_{\eta}^{*} &= A_{\eta}^{*} \cap \left(B_{\eta}^{*}\right)^{c} \\ &= \left[(A \setminus B)_{\eta}^{*} \cup (B \cap A)_{\eta}^{*} \right] \cap \left(B_{\eta}^{*}\right)^{c} \\ &= \left[(A \setminus B)_{\eta}^{*} \cap \left(B_{\eta}^{*}\right)^{c} \right] \cup \left[(B \cap A)_{\eta}^{*} \cap \left(B_{\eta}^{*}\right)^{c} \right] \\ &= \left[(A \setminus B)_{\eta}^{*} \setminus B_{\eta}^{*} \right] \cup \left[(B \cap A)_{\eta}^{*} \setminus B_{\eta}^{*} \right]. \end{aligned}$$

Hence, $A_{\eta}^* \setminus B_{\eta}^* = [(A \setminus B)_{\eta}^* \setminus B_{\eta}^*] \cup [(B \cap A)_{\eta}^* \setminus B_{\eta}^*]$. Note that $B \cap A \subseteq B$, then by Theorem 1 (i), $(B \cap A)_{\eta}^* \subseteq B_{\eta}^*$ implies that $(B \cap A)_{\eta}^* \setminus B_{\eta}^* = \emptyset$. Now, since $A_{\eta}^* \setminus B_{\eta}^* = [(A \setminus B)_{\eta}^* \setminus B_{\eta}^*] \cup [(B \cap A)_{\eta}^* \setminus B_{\eta}^*]$ and $(B \cap A)_{\eta}^* \setminus B_{\eta}^* = \emptyset$, it follows that

$$A_{\eta}^{*} \setminus B_{\eta}^{*} = \left[(A \setminus B)_{\eta}^{*} \setminus B_{\eta}^{*} \right] \cup \left[(B \cap A)_{\eta}^{*} \setminus B_{\eta}^{*} \right]$$
$$= \left[(A \setminus B)_{\eta}^{*} \setminus B_{\eta}^{*} \right] \cup \varnothing$$
$$= (A \setminus B)_{\eta}^{*} \setminus B_{\eta}^{*}$$
$$\subseteq (A \setminus B)_{\eta}^{*}.$$

As a result, it shows that $A_{\eta}^* \setminus B_{\eta}^* = (A \setminus B)_{\eta}^* \setminus B_{\eta}^* \subseteq (A \setminus B)_{\eta}^*$.

Theorem 4. Let (X, τ, I) be an ideal topological space and $A \subseteq X$. Then for any η -local function, the following properties hold:

(i) $A_{\eta}^* \subseteq A^*$; (ii) $A_{\eta}^* \subseteq \Gamma^*(A)$; and (iii) $A^* \subseteq \Gamma^*(A)$.

Proof.

- (i) Let $x \in A_{\eta}^*$ and $U \in \tau(x)$. Since every open set is η -open set, $U \in \eta$ -O(x). Also, since $x \in A_{\eta}^*$ and $U \in \eta$ -O(x), $A \cap U \notin I$. Note that $A \cap U \notin I$ and $U \in \tau(x)$. Hence, $A \cap U \notin I$ for every $U \in \tau(x)$, and so, $x \in A^*$. Therefore, $A_{\eta}^* \subseteq A^*$.
- (ii) Let $x \in A_{\eta}^*$ and $U \in RO(x)$. Since every regular-open set is η -open set, $U \in \eta$ -O(x). Also, since $x \in A_{\eta}^*$ and $U \in \eta$ -O(x), $A \cap U \notin I$. Hence, $A \cap U \notin I$ for every $U \in RO(x)$, and so, $x \in \Gamma^*(A)$. Therefore, $A_{\eta}^* \subseteq \Gamma^*(A)$.

(iii) Let $x \in A^*$ and $U \in RO(x)$. Since every regular-open set is open set, $U \in \tau$. Also, since $x \in A^*$ and $U \in \tau$, $A \cap U \notin I$. Hence, $A \cap U \notin I$ for every $U \in RO(x)$, and so, $x \in \Gamma^*(A)$. Therefore, $A^* \subseteq \Gamma^*(A)$.

Remark 2. Let (X, τ, I) be an ideal topological space and $A \subseteq X$. Then for any η -local functions, the following properties hold:

- (ii) $A_{\eta}^* \subseteq A^* \subseteq \Gamma^*(A)$;
- (ii) if η - $O(X) = \tau$, then $A_{\eta}^* = A^*$; and
- (iii) if η -O(X) = RO(X), then $A_n^* = \Gamma^*(A)$

Theorem 5. Let (X, τ) be a topological space with ideals I_1 and I_2 on X and $A \subseteq X$. Then, for any η -local functions, the following properties hold:

- (i) if $I_1 \subseteq I_2$, then $A^*_{\eta}(I_2, \eta O(X)) \subseteq A^*_{\eta}(I_1, \eta O(X))$; and
- (*ii*) $A^*_{\eta}((I_1 \cap I_2), \eta O(X)) = A^*_{\eta}(I_1, \eta O(X)) \cup A^*_{\eta}(I_2, \eta O(X)).$

Proof.

- (*i*) Let $I_1 \subseteq I_2$ and $x \in A^*_{\eta}(I_2, \eta O(X))$. Then for every $U \in \eta O(x)$, $A \cap U \notin I_2$. Since $I_1 \subseteq I_2$, $A \cap U \notin I_1$ for every $U \in \eta O(x)$. Hence, $A^*_{\eta}(I_2, \eta O(X)) \subseteq A^*_{\eta}(I_1, \eta O(X))$.
- (*ii*) Let I_1 and I_2 be ideals on X. Note that $I_1 \cap I_2 \subseteq I_1$ and $I_1 \cap I_2 \subseteq I_2$. Then by Theorem 5 (*i*),

$$A^*_\eta\big(I_1,\eta-O(X)\big)\subseteq A^*_\eta\big((I_1\cap I_2),\eta-O(X)\big)$$

and

$$A^*_{\eta}(I_2, \eta - O(X)) \subseteq A^*_{\eta}((I_1 \cap I_2), \eta - O(X)),$$

and hence,

$$A_{\eta}^{*}(I_{1}, \eta - O(X)) \cup A_{\eta}^{*}(I_{2}, \eta - O(X)) \subseteq A_{\eta}^{*}((I_{1} \cap I_{2}), \eta - O(X)).$$

Next, let $x \in A_{\eta}^{*}((I_{1} \cap I_{2}), \eta - O(X))$, then for every $U \in \eta - O(x)$, $A \cap U \notin I_{1} \cap I_{2}$. This implies that $A \cap U \notin I_{1}$ or $A \cap U \notin I_{2}$. This shows that $x \in A_{\eta}^{*}(I_{1}, \eta - O(X))$ or $x \in A_{\eta}^{*}(I_{2}, \eta - O(X))$. Hence, $x \in A_{\eta}^{*}(I_{1}, \eta - O(X)) \cup A_{\eta}^{*}(I_{2}, \eta - O(X))$, and so,

$$A^*_\eta\big((I_1\cap I_2),\eta\text{-}O(X)\big)\subseteq A^*_\eta\big(I_1,\eta\text{-}O(X)\big)\cup A^*_\eta\big(I_2,\eta\text{-}O(X)\big).$$

As a result, thus,

$$A_{\eta}^{*}((I_{1} \cap I_{2}), \eta - O(X)) = A_{\eta}^{*}(I_{1}, \eta - O(X)) \cup A_{\eta}^{*}(I_{2}, \eta - O(X)).$$

4. η -Local Closure

Definition 2. Let (X, τ, I) be an ideal topological space. The η -local closure of A denoted by $Cl_{\eta}^{*}(A)$ is defined by the union of A and the η -local function of A, i.e, $Cl_{\eta}^{*}(A) = A \cup A_{\eta}^{*}$ for any $A \subseteq X$.

Example 3. Let (X, τ, I) be an ideal topological space where $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$, and $I = \{\emptyset, \{b\}\}$. Then the η -open sets of X are \emptyset , $X, \{a\}, \{b\}, \{a, b\}, \{a, c\}$, and $\{b, c\}$. Let $A = \{a, b\}$, Then by Definition 1 and 2, $A_{\eta}^* = \{a\}$ and $Cl_{\eta}^*(A) = \{a, b\} \cup \{a\} = \{a, b\}$, respectively.

Theorem 6. Let (X, τ, I) be an ideal topological space and $A, B \subseteq X$. Then the following properties *hold*:

(i) if $A \subseteq B$, then $Cl_{\eta}^{*}(A) \subseteq Cl_{\eta}^{*}(B)$; (ii) $Cl_{\eta}^{*}(A \cap B) \subseteq Cl_{\eta}^{*}(A) \cap Cl_{\eta}^{*}(B)$; (iii) if A is an η -closed set, then $Cl_{\eta}^{*}(A) = \eta$ -cl(A); (iv) if $A \in I$, then $Cl_{\eta}^{*}(A) = A$; (v) $Cl_{\eta}^{*}(A_{\eta}^{*}) = A_{\eta}^{*}$; (vi) $Cl_{\eta}^{*}(A) = \eta$ -cl(A); and (vii) $(Cl_{\eta}^{*}(A))_{\eta}^{*} = A_{\eta}^{*}$.

Proof.

- (*i*) Let $A, B \subseteq X$ and $A \subseteq B$. By Definition 2, $Cl_{\eta}^*(A) = A \cup A_{\eta}^*$ and $Cl_{\eta}^*(B) = B \cup B_{\eta}^*$. Since $A \subseteq B$, by Theorem 1 (*i*), $A_{\eta}^* \subseteq B_{\eta}^*$. This shows that $A \cup A_{\eta}^* \subseteq B \cup B_{\eta}^*$, and hence, $Cl_{\eta}^*(A) \subseteq Cl_{\eta}^*(B)$.
- (ii) Let $A, B \subseteq X$. Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, by Theorem 6 (i), $Cl_{\eta}^*(A \cap B) \subseteq Cl_{\eta}^*(A)$ and $Cl_{\eta}^*(A \cap B) \subseteq Cl_{\eta}^*(B)$. Hence, it implies $Cl_{\eta}^*(A \cap B) \subseteq Cl_{\eta}^*(A) \cap Cl_{\eta}^*(B)$.
- (iii) Let A be an η -closed set, then $A = \eta$ -cl(A). Now, suppose that $x \notin A$. It implies that $x \notin \eta$ -cl(A), then $x \notin \bigcap \{K : K \text{ is } \eta$ -closed and $A \subseteq K\}$. It follows that $x \notin K$ for some η -closed set K such that $A \subseteq K$. Hence, $x \in K^c$ for some η -open set K^c such that $A \cap K^c = \emptyset$. It implies that there exists $K^c \in \eta$ -O(x) such that $A \cap K^c = \emptyset$, and by Definition of ideal, $\emptyset \in I$ for any ideal I. Hence, $A \cap K^c \in I$ for some $K^c \in \eta$ -O(x). This shows that $x \notin A^*_{\eta}$, and hence, $A^*_{\eta} \subseteq A$. It follows that $Cl^*_{\eta}(A) = A \cup A^*_{\eta} = A$. Note that $A = \eta$ -cl(A). Therefore, $Cl^*_{\eta}(A) = \eta$ -cl(A).
- (iv) Let $A \in I$. Then by Definition 2 and Theorem 1 (vii), $Cl_{\eta}^*(A) = A \cup A_{\eta}^* = A \cup \emptyset = A$. Consequently, $Cl_{\eta}^*(A) = A$.
- (v) Let $A \subseteq X$. Then by Definition 2 and Theorem 1 (vi), $Cl_{\eta}^*(A_{\eta}^*) = A_{\eta}^* \cup (A_{\eta}^*)_{\eta}^* = A_{\eta}^*$. It follows that, $Cl_{\eta}^*(A_{\eta}^*) = A_{\eta}^*$.

- (vi) Let $A \subseteq X$. Suppose that $Cl_{\eta}^{*}(A) \neq \eta cl(A)$. Let $\eta cl(A) \subset Cl_{\eta}^{*}(A)$. Then there exists an element $x \in Cl_{\eta}^{*}(A)$ such that $x \notin \eta - cl(A)$. Note that since $x \in Cl_{\eta}^{*}(A)$, by Definition 2, $x \in A \cup A_{\eta}^{*}$ implies that $x \in A$ or $x \in A_{\eta}^{*}$, or both. Suppose $x \in A_{\eta}^{*}$. Then for every $U \in \eta - O(x)$, $A \cap U \notin I$. Now, Since $x \notin \eta - cl(A)$, $x \notin \bigcap \{K : K \text{ is } \eta - closed \text{ and } A \subseteq K\}$. It follows that $x \notin K$ for some η -closed set K such that $A \subseteq K$. Hence, $x \in K^{c}$ for some η -open set K^{c} such that $A \cap K^{c} = \emptyset$, and by Definition of an ideal, $\emptyset \in I$ for any ideal I. It implies that there exists $K^{c} \in \eta - O(x)$ such that $A \cap K^{c} \in I$, and hence, $x \notin A_{\eta}^{*}$. Also, note that since $x \in K^{c}$ and $A \cap K^{c} = \emptyset$, $x \notin A$. This shows that $x \notin A$ and $x \notin A_{\eta}^{*}$, a contradiction.
- (vii) Let $A \subseteq X$. Then by Definition 2 and Theorem 1 (iii), $(Cl_{\eta}^{*}(A))_{\eta}^{*} = (A \cup A_{\eta}^{*})_{\eta}^{*} \supseteq A_{\eta}^{*} \cup (A_{\eta}^{*})_{\eta}^{*}$. Note that by Theorem 1 (vi), $(A_{\eta}^{*})_{\eta}^{*} \subseteq A_{\eta}^{*}$, then $A_{\eta}^{*} \cup (A_{\eta}^{*})_{\eta}^{*} = A_{\eta}^{*}$. It implies that $A_{\eta}^{*} \subseteq (Cl_{\eta}^{*}(A))_{\eta}^{*}$. Now, let $x \in (Cl_{\eta}^{*}(A))_{\eta}^{*}$. Then for every $U \in \eta$ -O(x), $Cl_{\eta}^{*}(A) \cap U \notin I$. Now, by Definition 2, $Cl_{\eta}^{*}(A) \cap U = (A \cup A_{\eta}^{*}) \cap U \notin I = (A \cap U) \cup (A_{\eta}^{*} \cap U) \notin I$. It implies that $A \cap U \notin I$ or $A_{\eta}^{*} \cap U \notin I$, or both, and so, $x \in A_{\eta}^{*}$ or $x \in (A_{\eta}^{*})_{\eta}^{*}$, or both. It follows that $x \in A_{\eta}^{*} \cup (A_{\eta}^{*})_{\eta}^{*}$. Note that $A_{\eta}^{*} \cup (A_{\eta}^{*})_{\eta}^{*} = A_{\eta}^{*}$, and so, $x \in A_{\eta}^{*}$. Consequently, $(Cl_{\eta}^{*}(A))_{\eta}^{*} \subseteq A_{\eta}^{*}$. Thus, $(Cl_{\eta}^{*}(A))_{\eta}^{*} = A_{\eta}^{*}$.

Theorem 7. Let (X, τ, I) be an ideal topological space and $A, B \subseteq X$. Then the following properties *hold*:

- (i) $A \subseteq Cl_n^*(A)$ and $A_n^* \subseteq Cl_n^*(A)$;
- (ii) $Cl_n^*(\emptyset) = \emptyset$ and $Cl_n^*(X) = X$;
- (iii) $Cl_n^*(A) \cup Cl_n^*(B) \subseteq Cl_n^*(A \cup B)$; and
- (iv) $(Cl_{\eta}^{*}(A))_{\eta}^{*} \subseteq Cl_{\eta}^{*}(A) = Cl_{\eta}^{*}(Cl_{\eta}^{*}(A)).$

Proof.

(*i*) Let $A \subseteq X$. Note that $A \subseteq A \cup A_{\eta}^*$. Then by Definition 2, $A \subseteq Cl_{\eta}^*(A)$. Next, note that $A_{\eta}^* \subseteq A \cup A_{\eta}^*$, by Definition 2 again, it implies that $A_{\eta}^* \subseteq Cl_{\eta}^*(A)$.

(ii) By Definition 2 and Theorem 1 (iv), $Cl_{\eta}^{*}(\emptyset) = \emptyset \cup (\emptyset)_{\eta}^{*} = \emptyset \cup \emptyset = \emptyset$. Next, note that X is a universal set, then $(X)_{\eta}^{*} \subseteq X$. Hence, by Definition 2, $Cl_{\eta}^{*}(X) = X \cup (X)_{\eta}^{*} = X$.

(iii) Let $A, B \subseteq X$. By Definition 2 and Thoerem 1 (iii),

$$Cl_{\eta}^{*}(A \cup B) = (A \cup B) \cup (A \cup B)_{\eta}^{*}$$
$$\supseteq (A \cup B) \cup (A_{\eta}^{*} \cup B_{\eta}^{*})$$
$$= (A \cup A_{\eta}^{*}) \cup (B \cup B_{\eta}^{*})$$
$$= Cl_{\eta}^{*}(A) \cup Cl_{\eta}^{*}(B).$$

This shows that $Cl_{\eta}^{*}(A) \cup Cl_{\eta}^{*}(B) \subseteq Cl_{\eta}^{*}(A \cup B)$.

(iv) Let $A \subseteq X$. Note that by Theorem 6 (vii), $(Cl_{\eta}^*(A))_{\eta}^* = A_{\eta}^*$, and by Theorem 7 (i), $A_{\eta}^* \subseteq Cl_{\eta}^*(A)$. Hence, it shows that $(Cl_{\eta}^*(A))_{\eta}^* \subseteq Cl_{\eta}^*(A)$. Next, by Definition 2, $Cl_{\eta}^*(Cl_{\eta}^*(A)) = Cl_{\eta}^*(A) \cup (Cl_{\eta}^*(A))_{\eta}^*$. Note that since $(Cl_{\eta}^*(A))_{\eta}^* \subseteq Cl_{\eta}^*(A)$,

$$Cl_{\eta}^{*}(Cl_{\eta}^{*}(A)) = Cl_{\eta}^{*}(A) \cup (Cl_{\eta}^{*}(A))_{\eta}^{*}$$
$$= Cl_{\eta}^{*}(A).$$

It follows that, $Cl_{\eta}^*(A) = Cl_{\eta}^*(Cl_{\eta}^*(A)).$

Remark 3. The reverse inclusion of Theorem 7 (iii) need not be true in general as shown from the following example.

Example 4. Let (X, τ, I) be an ideal topological space where $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{c\}, \{d\}, \{c, d\}\}, and I = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then the η -open sets of X are $\emptyset, X, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{a, b, d\}, and \{b, c, d\}$. Let $A = \{c\}$ and $B = \{d\}$ such that $A \cup B = \{c, d\}$, Then by Definition 1, $A_{\eta}^* = \{c\}, B_{\eta}^* = \{d\}, and (A \cup B)_{\eta}^* = X$. Now, By Definition 2, $Cl_{\eta}^*(A) = \{c\}, Cl_{\eta}^*(B) = \{d\}, and Cl_{\eta}^*(A \cup B) = X$. Observe that $Cl_{\eta}^*(A \cup B) = X$ and $Cl_{\eta}^*(A) \cup Cl_{\eta}^*(B) = \{c, d\}$. These shows that $Cl_{\eta}^*(A \cup B) \nsubseteq Cl_{\eta}^*(B)$. Hence, the above assertion has been verified.

Theorem 8. Let (X, τ, I) be an ideal topological space and $A \subseteq X$. Then $Cl_n^*(A) \subseteq Cl^*(A)$.

Proof. Let $A \subseteq X$. By Definition 2 and Kuratowski closure operator, $Cl_{\eta}^{*}(A) = A \cup A_{\eta}^{*}$ and $Cl^{*}(A) = A \cup A^{*}$, respectively. Since by Theorem 4 (*i*), $A_{\eta}^{*} \subseteq A^{*}$, $A \cup A_{\eta}^{*} \subseteq A \cup A^{*}$. Hence, $Cl_{\eta}^{*}(A) \subseteq Cl^{*}(A)$.

Theorem 9. Let (X, τ, I) be an ideal topological space and A be any subset of X. Then A is an η -closed set iff $A = Cl_n^*(A)$.

Proof. Let *A* be an η -closed set. Then $A = \eta - cI(A)$ and by Theroem 6 (vi), $CI_{\eta}^{*}(A) = \eta - cI(A)$, respectively. Note that $A = \eta - cI(A)$ and $\eta - cI(A) = CI_{\eta}^{*}(A)$, then by transitive property, it implies that $A = CI_{\eta}^{*}(A)$. Now, on the other hand, let $A = CI_{\eta}^{*}(A)$. Note that by Theorem 6 (vi), $CI_{\eta}^{*}(A) = \eta - cI(A)$. Now that $A = CI_{\eta}^{*}(A)$ and $CI_{\eta}^{*}(A) = \eta - cI(A)$, by transitive property again, $A = \eta - cI(A)$. Therefore, *A* is an η -closed set.

Note that Theorem 7 *(i)*, *(ii)*, and *(iv)* satisfy three of the Kuratowski closure axioms. However, Theorem 7 *(iii)* did not satisfy one of the Kuratowski closure axioms because it is an inclusion property. As a result, the following remark is obtained.

Remark 4. The η -local closure, i.e, Cl_{η}^* , need not be a Kuratowski closure operator with respect to η in general.

Theorem 10. Let (X, τ, I) be an ideal topological space where η -O(X) is closed under any two intersections and $A, B \subseteq X$. Then $Cl_{\eta}^*(A \cup B) = Cl_{\eta}^*(A) \cup Cl_{\eta}^*(B)$.

Proof. Let η -O(X) be closed under any two intersections. Then by Definition 2 and Theorem 3 *(i)*, it follows that

$$Cl_{\eta}^{*}(A \cup B) = (A \cup B) \cup (A \cup B)_{\eta}^{*}$$
$$= (A \cup B) \cup (A_{\eta}^{*} \cup B_{\eta}^{*})$$
$$= (A \cup A_{\eta}^{*}) \cup (B \cup B_{\eta}^{*})$$
$$= Cl_{\eta}^{*}(A) \cup Cl_{\eta}^{*}(B).$$

Hence, $Cl^*_{\eta}(A \cup B) = Cl^*_{\eta}(A) \cup Cl^*_{\eta}(B).$

Note that Theorem 7 (i), (ii), (iv) and Theorem 10 using the condition, for any ideal topological spaces (X, τ, I) where η -O(X) is closed under any two intersections, satisfy the Kuratowski closure axioms. As a result, the following remark is obtained

Remark 5. Let (X, τ, I) be an ideal topological space where η -O(X) is closed under any two intersections, the η -local closure, i.e, Cl_{η}^* , is a Kuratowski closure operator (or Almocera closure operator) with respect to η .

Note that by Remark 5, CI_{η}^* is a Kuratowski closure operator (or Almocera closure operator) with respect to η for any ideal topological space (X, τ, I) where η -O(X) is closed under any two intersections. Now, let A be a τ_{η}^* -closed set iff $A_{\eta}^* \subseteq A$ in any ideal topological space (X, τ, I) where η -O(X) is closed under any two intersections. Then the following lemma is obtained.

Lemma 1. Let A be a τ_{η}^* -closed set iff $A_{\eta}^* \subseteq A$ in any ideal topological space (X, τ, I) where η -O(X) is closed under any two intersections. Then A is τ_{η}^* -closed set iff $Cl_{\eta}^*(A) = A$.

Proof. Let *A* be a τ_{η}^* -closed in (X, τ, I) where η -O(X) is closed under any two intersections. Now, since *A* is a τ_{η}^* -closed, by assumption, $A_{\eta}^* \subseteq A$. It follows that $A \cup A_{\eta}^* = A$. Now, by Definiton 2, $Cl_{\eta}^*(A) = A \cup A_{\eta}^* = A$. Therefore, $Cl_{\eta}^* = A$. On the other hand, let $Cl_{\eta}^*(A) = A$. Now, by Definiton 2, $Cl_{\eta}^*(A) = A \cup A_{\eta}^* = A$. So, $A \cup A_{\eta}^* = A$ implies $A_{\eta}^* \subseteq A$, and so, by assumption, *A* is τ_{η}^* -closed.

Theorem 11. Let (X, τ, I) be an ideal topological space where η -O(X) is closed under any two intersections. Let $\tau_{\eta}^* = \{J \subseteq X : Cl_{\eta}^*(J^c) = J^c\}$. Then τ_{η}^* is a topology for X such that $\tau^* \subseteq \tau_{\eta}^*$ and η - $O(X) \subseteq \tau_{\eta}^*$.

Proof. Let η -O(X) be closed under any two intersections. Note that by Remark 5, Cl_{η}^* is a Kuratowski closure operator with respect to η . Therefore, τ_{η}^* is a topology generated by Cl_{η}^* . Now, to show that $\tau^* \subseteq \tau_{\eta}^*$, let A be a τ^* -open. Then A^c is a τ^* -closed. Then by Definition of τ^* -closed,

 $(A^c)^* \subseteq A^c$. Hence, $CI^*(A^c) = A^c \cup (A^c)^* = A^c$ implies that $CI^*(A^c) = A^c$. Then by Theorem 8, $CI^*_{\eta}(A^c) \subseteq A^c$. Now, since $CI^*_{\eta}(A^c) \subseteq A^c$, by Theorem 7 (i), $CI^*_{\eta}(A^c) = A^c$. Hence, by Lemma 1, A^c is a τ^*_{η} -closed, and so, A is a τ^*_{η} -open. As a result, thus, $\tau^* \subseteq \tau^*_{\eta}$. Next, to show that η - $O(X) \subseteq \tau^*_{\eta}$, let A be an η -open. Then A^c is an η -closed and by Theorem 9, $A^c = CI^*_{\eta}(A^c)$. It follows that by Lemma 1, A^c is a τ^*_{η} -closed implies that A is a τ^*_{η} -open. Hence, η - $O(X) \subseteq \tau^*_{\eta}$.

5. Conclusion

The concept of the η -local function and the closure Cl_{η}^* has been introduced and demonstrated through illustrative examples. Additionally, certain properties have been studied and explored. It can be concluded that the closure Cl_{η}^* can only be a Kuratowski closure operator (Almocera closure operator) if η -O(X) is closed under two intersections. Under this condition, τ_{η}^* can form a topology, making τ_{η}^* a more generalized version of τ^* and η -O(X).

References

- [1] A. Al-Omari, T. Noiri, Local function Γ* in ideal topological spaces, Sci. Stud. Res. Ser. Math. Inform. 26 (1) (2016) 5-16.
- [2] E. Hatir, A. Al-Omari, S. Jafari, δ-local functions and its properties in ideal topological spaces, Fasciculi Math. 53 (2014) 53-64.
- [3] D. Jankovic, T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (4) (1990) 295-310.
- [4] K. Kuratowski, Topology I, Warszawa, 1933.
- [5] K. Kuratowski, Topology, Academic Press, New York, 1966.
- [6] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963) 36-41.
- [7] P.L. Powar, K. Rajak, Some new concepts of continuity in generalized topological space, Int. J. Com. Appl. 38 (5) (2012) 12-17.
- [8] D. Subbulakshmi, K. Sumathi, K. Indiran, η-open sets in topological, Int. J. Innov. Techno. Explor. Eng. 8 (10S) (2019), 276-282.
- [9] R. Vaidyanathaswamy, The localization theory in set-topology, Proc. Indian Acad. Sci. Sect. 20 (1944) 51-61.