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ABSTRACT. In this paper, first we focus on the slicing of negative plurisubharmonic currents which
are finite sums involving currents arising from analytic subsets with geometric complete intersection.
Next, we provide significant results on the integrability across analytic subsets, of the coefficients of

such currents and of their slices.

1. INTRODUCTION

In this paper, we let Q2 be a domain in C” such that the unit polydisc A" satisfies A" € €2 and
© be a plurisubharmonic function (psh for short), locally bounded on 2. We let N, k, p and n be
nonzero fixed arbitrary natural numbers such that k < p < n and we consider the n-complex space

C" with variables z such that
C'=CkxCrk z=(727") Zeck ' eck

Assuming that ¢ depends only on the variable z/ € C* and the support S, of the associated

Mong-Ampere measure
Ky = (ddC(P)k
is AK, then, the slice (or the p-slice) denoted (T, , a),, of a current T € 7,,,(Q2), at point a € Sy,
is studied and well defined in [10], such that
1
<T,ma>, (V) :=Ilim———— T A(dd @) AW, 11
o (V) e-0 Lyp(Br(a, €)) Jp,(ae)xcrk ( ) a1
The definition (1.1) makes sense as well as the limit exists in C for any test form W € Z,_ ,—)(S2),
where, ¢ = @ o stands for the composite of ¢ with the projection map
c" —s CK

’ (Z/,Z”> — 7
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and By(a, €) is the open ball in C* centered at point a and of radius € > 0.

In the present work we are concerned by topics studied in [9-12]. Particularly, we will study
topics based on the definition (1.1) recently investigated in [11], for negative psh currents of small
support. A fundamental result was provided showing that for any psh function v non identically
equals —oo, there exists a pluripolar subset E in C¥, such that the slice < v, m, a >, of v at point
a is well defined and is expressed explicitly by v(a, .) as well as the point a lies outside E.

As a consequence, an existence slicing result was deduced for negative psh currents having their
supports contained in a strip. In particular, for positive or negative closed currents with support
contained in a strip, it was established that the slices are well defined and are vanishing everywhere
as soon as they are vanishing outside a pluripolar subset.

In this paper, we shall develop the work in [11] by providing others slicing results for negative
psh currents which are arising from analytic subsets having suitable intersections.

Among several currents, we are interested on those written as finite sums of the form

> (oglfDIX] D wlXl Y Uy Al or 3 [X] AUy,
1</<N 1<<N 1</<N 1</<N
where (f;)1<j<n is a finite family of holomorphic functions non identically vanishing on A”, (Xj)1<j<n
is a finite family of analytic subsets all of pure dimension p, (Yj)1<j<n is another finite family of
analytic subsets such that each Y; forms a complete intersection with X; in A”, (vj)i<j<n is a
finite family of psh functions non identically —oo on A" and Ui is the Lelong-Skoda potential
associated to the current [Xj], (1 <j < N).

The first result describes properly the slices of the current Z (log |;1)[X;]-
1<EN
Theorem 1.1. Assume we have in A", a finite family (X;)i1<j<n of analytic subsets all of the
same pure dimension q > k and a finite family (fj)1<j<n of holomorphic functions non identically
vanishing such that for all 1 < j < N the hypersurface Yj = {f; = 0} yields a complete intersection
near the origin with X;. If o; : X; N 7r*1(a) — A" denotes the canonical injection, then, there
exist, a closed pluripolar subset E of A, an integer m € N and homogenous polynomials Q, ; on

X;, 1 <j < N, such that for all a € A¥ . E the slice ( Z (log|fi)[Xj]. ™, a)e is defined such
1<<N
that

(1) If o;*fi Z0 on Xjﬂﬂ_l(a), V1< <N, then
( Z (log|fiD[X)]. T, a)p = Z (logloj* 1) [X; N~ (a)],
1<<N 1<<N
(2) If 0;*f; =0 and QmJ|ijrl(a) #20, V1< <N, then
(> UoglfDIX).m a)p = > (logloj* Qmyl) [X; N7 (a)].

1<j<N 1<j<N
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The second result generalizes Theorem 1.1 to psh functions. It provides the existence and the

expression of the slices of a negative psh current of the form Z vi[X].
1<<N

Theorem 1.2. Assume we have in A", a finite family (X;)1<j<n of analytic subsets all of pure
dimension p and a finite family (vj)1<j<n of negative psh functions such that for all 1 < j < N the
set of singular points of v; is contained in a hypersurface Y; that yields a complete intersection
with X;. Then, there is a pluripolar subset E of Ak, such that for all a € A¥ < E, the current
>_1<j<n Yi[Xj] admits a slice expressed by

<Z v [Xi]. 7 a)e = Z Vj\xjmrl(a)-[xjﬂw—l(a)]-

1<<N 1<<N

Next, we let N(x) = —mlxlz% be the Newton kernel in C" and we let 1 be a positive
smooth function with compact support in Q such that 0 <7 <1, n =1 on a neighborhood of A"
For a given analytic subset X in A", we take the Lelong-Skoda potential Ujx] associated to the

current [X], as the (n— p — 1, n— p — 1)-negative current defined by the following integral
Upa(2) = [ mEING ~ X)) A (delz — )"
6 n

We prove the third result of this paper on the existence and the expression of the slices of the
wedge product current Z Uix;) A [Yj] introduced and studied in [9].

1<<EN
Theorem 1.3. Assume we have in A", finite families (X;)1<j<n and (Y1)i1<i<n of analytic subsets
such that for all 1 < j < N,, X is of pure dimension p and Y; is of pure dimension q and X;
yields a complete intersection with Y;. Then, there exists a subset E contained in a countable

union of analytic subsets of AX of dimensions < k — 1 such that for all a € A¥ < E, the slice of

Z Uix;) A Y]] at point a is given by
1<j<N

(2 Ugrlmae= ) iUxA[yna ()]
1SN 1</<N
In the sequel, we show that the above results enjoy interesting properties like the integrability of
coefficients of the above currents and their slices. For instance, the following Theorem 1.4 provides
an important integrability property for a given psh function v not identically —oo on A”. In fact, it
describes the integrability of the function exp(—v) across an analytic subset X. Consequently, we
get the following beautiful result in terms of slices, about the integrability of exp(—v) across the

intersection m~1(a) N X.

Theorem 1.4. Assume we have a finite family (v;)1<j<n of psh functions in A" such that for all
1 <Jj < N the set of singular points of v; is contained in a hypersurface X that yields a complete

intersection with another analytic subset Y in A". Then, there exist a constant & > 0 and a
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pluripolar subset E of AX, such that for any point a € AKX~ E, the function Z exp (_O‘Vj)\ymrl(a)
1<<N

. . 1
lies in Ly,

(Y nm=(a)).

Finally, as an other application we establish the following result valid for analytic subsets X

and Y yielding a complete intersection in .

Theorem 1.5. Assume we have analytic subsets X and Y of pure dimensions p and q respectively,
yielding a complete intersection in A". Then, there exist a constant & > 0 and a pluripolar subset
E in CK, such that for all a € A* . E, the coefficients of the current j5(Upx) A [Ynn=t(a)] lie in
Ly nn=1(a)).

loc

2. PRELIMINARIES

Let Q be a domain in C", we use the standard notations for the operators d = 8 + & and
d¢ = (0 — 8); the operator dd€ is then defined by dd® = 2/08. The space D}, ,(2) of (n—p,n—
p)-currents (of bidimension (p, p)) on Q, is the dual of the space Z,,(2) of smooth compactly
supported (p, p)-forms on Q. We say that a current T € 2}, ,(Q2) is positive, if for all smooth

1,0 -forms a1, ..., ap on Q, the product
P p
iAiozl/\al/\.../\iap/\ap

is a positive measure. The current T is said to be closed if dT = 0 and psh if dd“T > 0.

In particular, if p = n, then T is a psh function v on €2, that is a distribution such that

Z aazu_/dzj N dZy
1<j.k<n 202y

is a positive current of bidimension (n — 1, n — 1), the derivatives are taken here in the sense of
distributions.

We denote Psh(2) the set of psh functions on ©2 and L75.(£2) N Psh(2) the subset of elements
in Psh(Q2) which are locally bounded. The Kahler form on C” is denoted 3(t) = dd€|t|?. It can
be decomposed into the sum B'(t') + B"(t") where B8’ and 3" are Kahler forms on C* and C"~*

respectively. For a point a € C, we denote j, the map defined by

Crk — {a} xC"K

Ja:
T (a, 7))

3. PROOF OF THEOREM 1.1: SLICING OF THE CURRENT (log |f|)[X]

First of all, we require the following well known propositions:

Proposition 3.1. Let X be an analytic subset of A" and let m be its complex dimension. Then, the

following statements hold:
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(1) if m < k, then w(X) is contained in a countable union of analytic subsets of A¥ of dimen-
sions < m.
(2) If m > k, then the set

Z={ac A /dime(XN7T Y (X)) >m-k+1}
is contained in a countable union of analytic subsets of A¥ of dimensions < k — 1.
As a consequence of the expansion of holomorphic functions in power series we have:

Proposition 3.2. Let f # 0 be a non vanishing holomorphic function on A" such that for all
Z"" € A"k £(0,2") = 0. Then, there exist a natural number m > 1 and holomorphic functions
au(2") on A"k, such that, for all (Z';2") € AK x A"k, we have f(Z',2") = Y 2m Qi 2")

where Qm(2',2") = 3_yj=m 2% au(2") and |u| = p1 + - - + puc.

Now, given a psh function v on A” such that v is locally integrable on the analytic subset X,
then, for all test form W, for all fixed € > 0 and all a € Sy, we shall justify the well definition and
the finiteness of the quantity

/ VIX] A (dd°@)f A .
Bk (a,e)xCn—k

Proposition 3.3. Let X C A" be analytic of pure dimension p > k, let v € Psh(A") N L} (X) be

loc

negative and let o € Psh(AK)N LSS (AK) be given such that S, = AK. Then, for any point a € AK,

loc

for any fixed € > 0 and for any positive test form W € Z,_y ,—)(A"), we have

1
— —Vv[X] A (dd°@) AV < 0.

/Lw(Bk(arE)) By(a,e)xCn—k
Proof. The result is local. We may take a = 0, without loss of generality we may choose the test
form W such that W = 9(2)8"" % € Z(s—p n—p)(A"~¥) where 9 is a positive test function on A"k,

Let denote
1

B po(Bk(a €)) Bk(a,e)xCn—k

There exists a neighborhood U = U’ x U” C A¥ x AP~k x A"™P of 0 and a coordinate system

e : —VIX] A (dd@)< AW, (3.2)
(t,¢, Z") such that the projection
_ X NU— AP = AK x AP=K
((t.0).2") = (£.0)
is a ramified covering of X. Let Z be the ramification locus of mx and set

Xz =XN((UNZ)xU") C Xreg.

The restriction of

X, ! Xz—>U,\Z
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is then a covering with a finite sheet number. The expression of ['¢ given by (3.2) will be transformed
as

1
o= — 1 /
© 1o(Br(0,€)) Jx,nB,(0.6)xCr-k

We may choose € > 0 small enough, so that

Tx, (= v(dd @) A V). (3.3)

Us := X7 N Bi(0,€) x C" % B, (0, €) x AP™F x {0} cn-sp.

Then, the expression given by (3.3) can be written as

-t » o
e = /J,LP(B;((O,S)) /Bk(O,E) (t)(dd (p) ! (34)

where
w(©) = [ me (i) A k(C).
Furthermore, following [6] we have
Iw(dd“@)|lg,0.6) < IWllL1(Br0.260 1011 (8, 0.26)): (39)
the inequality (3.5) implies that w is a locally integrable function with respect to the positive
measure [, and hence the integral given by (3.4) is finite. O

Now we are ready to give the proof of Theorem 1.1.

Proof. The result is local. Without loss of generalities we may suppose N = 1. Furthermore, for

simplicity, we may consider the slice at point a =0. Put T = log |f|[Y] and

1 / N
_ TA C/dc(p AV, 3.6
5o (Br(0.9)) Jo,0epecn s 1999 (30

where W is a test form such that W = h(z)B""~k ¢ .@(n,q,n,q)(A”_k) where h is a positive smooth
function with compact support. We may find a neighborhood U = U’ x U” of 0 in Ak x A9~k x An—4

rE(T) -

and a coordinate system (t, {, z”) such that the projection

YNU— A9
((t.0).2") = (t.0)
defines a ramified covering of Y. Let Z be the ramification locus of m and Yz = YN((U'\Z)xU") C

Ty

Yreg- The restriction of Ty, : Yz — U’ \ Z is then a covering with a finite sheet number. Equality
(3.6) can be written as

1
o(Bi(0,€)) /YZﬂBk(O,e)xC"k
We have to find the limit, as € — 0, of (6.20). For € > 0 small enough, the set Ug := YzNB(0, €) x
C"~k can be viewed as By (0,€) x A97% x {0}cn-q. The integral in the right hand side of (6.20)

can be written such that

Me(T) = 7*(log |f|(dd @)k A W). (3.7)

1

Fe(T) = Lo (Bk(0,€)) Bi(0.€)

wh(t)(ddp)", (3-8)
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where
wh(t) = [perloglf(t, ¢ 0)[A(C,0)dNq—k ()
- szmrl(O) 109 [i5, 10y F (£, €, Z//)|i¢2mw—1(o)h(<' z"),
and iy,qr-1(0) YzN 7~ 1(0) — A" is the canonical injection. Let £ be the closed pluripolar subset
of A¥ defined by

E={achX :w(a)=—oc0 or w¢ L}, (uy) near a}.

By Theorem 1.1 in [11], for all a € AK . E, we have:
(1) U (y,nm1(0))*f # 0, then, as € — 0, the limit of the integral given by (3.8) will be

limesole = wp(0)
Jaa-«10g[£(0.¢, 0)|(C, 0)dAg—k(€)
= merl(o)("Yme—l(o))*['09 [l A W]
= ((ivynr1(0)) (g [FN[Y N7 1(0)], (iv,rm1(0))* (W)
(2) It (iy,nx-1(0))"f = 0, then by Proposition 3.2 applied with the function (iy,qr-1(0))*f on
A9 = AK x A9k, there exist an integer m € N, a non vanishing homogenous polynomial
Qm(t, ¢) and smooth functions (t, () = R(t, ¢) € €°(AX x A97K) such that

F(t,¢) = Qm(t, )+ tR(t,¢) on Bk(0,€) x APTK.

Thanks to Taylor's formula, the rest R(t,{) can be chosen such that |R(t, ()| < 1. This

with the triangle inequality legitimate the following inequalities

log [|@m| — [tR[| < log || (t. Ol = log|(iy,nr-1(0))"f(t, w,2")]
< log(|@ml +[tR]).

Since (t,¢) € B(0,€) x A% and |R(t,¢)| < 1, then, as € — 0, |t| — 0 and |tR| — O.

Hence, we get

limessoTe = wy(0)
= Jpos 10 [Qu(0, Q) (¢, 2")dAg—k(O)
= Jyoms(0)(rarm-10))* 109 |Qm(0, ¢ A W]
= (109 |(iyym-:(0)* @uD[Y NTHO)], (ivyrom-1(0) (W)

The proof is completed. O

The following example illustrates Theorem 1.1.

Example 3.4. InC3 we let f(z2) =22 +22 —z3, Y = {z1 = —z3}, k =1 and (') = |Z|> = |z1|%.
It is clear that the subsets X = {f = 0} and Y yield a complete intersection near 0. Hence,

according to [9], we deduce that log|f| € L} (Y). By Theorem 1.1, we have

loc

(log |f|.[Y]. 7, 0) = log |23} — z3|[z1 = z3 = 0].
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4. PROOF OF THEOREM 1.2: SLICING OF THE CURRENT V[X]

Proof. We use notations and arguments as in the proof of Theorem 1.1 and we may suppose N = 1.

We have
1

Ho(Bk(0,€))
Let X,eq be the set of reqular points of X. Assume that 0 € X4 and put

Fe(v[X]) = /B P VIX] A (dd°@)f A . (4.9)

Z1={ae Ak dimc(X N7 Y(a)) > p— k}.

Then, by Proposition 3.1, Z; is contained in a countable union of analytic subsets of A of dimen-
sions < k — 1. As the dimension m of the set Xs;,g of sinqular points, satisfies m < p — 1, then,
by Proposition 3.1, there exists a set Z» contained in a countable union of analytic subsets of AX
of dimensions < k — 1, such that for all a € Ak < Z5, Xsing Nm~1(a) is an analytic subset of AX of
dimension m — k (otherwise is empty). Put Z = Z; U Z> and denote T := 7x,.,. The expression

(4.9) can be transformed to

1
Fe(vIX]) = — =7 T [v(dd @)k A V. 410
€ M(p(Bk(a, 5)) Xreg~(F~1(Z))N(Bx(a,e) xC1k) ( )
In a local chart of coordinates (z1, ..., Zi, W1, ..., Wp_k), such that

Xreg ~ (F7H(Z)) N (Bi(a, ) x C") = By(a, €) x CP~K x {0}gnp,

when € > 0 is small enough, the integral (4.10), can be written as

1

" 1o(Bi(a.e)) (2 w)(ddp)k AW(Z w). (411
1o (BK(2.€)) Jar(r-1(2)n(Bu(ae) xCr) (2, w)(dd @) AW(Z', w) (4.11)

e

According to [11], since z’ — v(Z’, w) is locally integrable on X,eq \ (T~1(Z), then when € — 0,

we get the limit of (4.11), as follows

limeo Me(v[X]) = pr—k v(a, )(a, w)B"P~*
ere - Z)Nr—{a V(av ')w(av W)ﬁl/p_k
o \(T1(2)) {a}
= (Vixrr-1(a)- [ X NT7Ha)], (ixam-1(2) "W).
This finishes the proof. O

We illustrate Theorem 1.2 by the following example.
Example 4.1. In C* = C x C3, we take
v(z) =log(|2il® +|z5°). Y = {zs = 2028} (k=1 and o(2') = |2 = |z

The subset X = {z; = z3 = 0} that contains {v = —oo}, yields a complete intersection with the

subset Y near 0. By Theorem 1.2, up to a constant, we have

(v[Y],m,0) =log|z3|[z1 = zo = z4 = 0].
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For the next section, we will be concerned with points a € A* at which the slice (U A[Y], T, a)
of the current Ujx) A [Y], is well defined and how it can be expressed.

Remember that the wedge product Ujx) A [Y] was defined in [10] as a current on Y, as well
as, the analytic subsets X and Y yield a complete intersection in 2. Actually a necessary and
sufficient condition was established, by expressing that the current Ujx; has integrable coefficients
with respect to the trace measure of the current [Y], if and only if X and Y yield a complete
intersection in 2. The condition of complete intersection is optimal for the definition of this wedge
product in the weak sense of currents. Recall that, X and Y yield a complete intersection, if for any
irreducible components X; of X and Y of Y, we have Codim(X;NYy) = CodimX; + CodimY.

5. PROOF OF THEOREM 1.3: SLICING OF THE CURRENT Ujx] A [Y]

In order to avoid complications, we assume here that the function ¢ is smooth and hence the
measure L, can be considered as the Lebesgue measure on CX, with density a smooth function

denoted py,(2').

Proot. Let V € P4 q—nt1—k p+q—n+1—k) (A7) be a test form. We have to prove the existence of a
pluripolar subset £ of A such that for all 2 & E, we have

lim Te :/A SUpg ALY naHa)] Az (v)

e—0

where
1

B po(Bk(a €)) By (a,e)xCn—k

Since the potential Ujx) involved in (5.12), is a finite linear combination of forms with coefficients

e Upq A [YTA (dd@)< A, (5.12)

By 4(s, z) given by the following expression
B (s z) = /5 . n(EN(z - E)XI(€) ABP*(&) A2%iTdg A dE, (1| = U =5).  (513)
E n

We need to find limz—o Me(B) (s, z)), where T¢(By 4(s, z)) is given by

1

1o (B (2. )) Joyoeyecn s DS AIYIA (dd@) Aw. (5.14)

rE(B/'J(S, Z)) =

Since the current Upx A[Y] is well defined then, the functions z — B 4(s, z) are locally integrable

on Y, and hence '¢(By J(s, z)) given by (5.14), can be written as

e = re(BI,J(SrZ))
m f(&,z)e\/g n(§)N(z — 5)[X X Y](gz) A (ddC(P)k NF(€ z),

where

F(¢,2) = BP5(€) A 251" dg A dE A W(zZ) and Ve = C" x [By(a,€) x C"X].
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Let [X X Y] eg be the set of reqular points of X x Y. We may assume that 0 € [X X Y],eg. Put

Z1 = {ac A dimc(X xY)n(r~(a) xm~(a)) > p+q—k}

= {ae A :dime(XN7~l(a)) x (YNn7w~1(a)) > p+qg— k}.
Following Proposition 3.1, Z; is contained in a countable union of analytic subsets of A of
dimensions < k — 1. As the dimension m of the subset (X x Y)sjng of singular points, satisfies
m < p+ g — 1, then, again by Proposition 3.1, there exists a subset Z» contained in a countable
union of analytic subsets of AX of dimensions < k — 1, such that for any point a € AK \ Z», the set
(X X Y)sing N (77 1(a) x m~1(a) is analytic in A¥ of dimension m — k (otherwise is empty). Put

Z = Z1 U Z> and denote T := T|(xxy),.,, We have

e = T [n(€)N(z — €)(ddp)* A F (€, 2)]. (5.19)

/(XXY),eg\(Trl(Z))ﬂVs

We can find local coordinates

(€ z2)=( (2 w)) = (E.(Zl ----- Zk, Wi, ..., Wn_k)),

so that, for all € > 0 small enough,
(X X Y)reg ~ (F7HZ2)) N Ve = CP x {0}cnp x Bi(a,€) x CIK x {0}¢na.

Since wy(Bxk(a, €)) ~ woke? uy(a) as e — 0. Then, by an application of Fubini's theorem and

by the change of variables (¢,7') + (&, Zle_a), when £ > 0 is small enough, the equality (5.15)
can be transformed to the following
1
e = / uep(a+et)n(€)N((a+et,w) —&)F(E, (a+et,w))du(t, w), (5.16)
wakkkp(a) Jv
where V = CPt9=K x B,(0,1) and duv(t, w) = dXk(t) ® dXpsq_k(w). By letting e — 0 in (5.16),

we get
imesoTe = [ mEN(@ W)~ OFE (0. W) dhprg(w)
- MON((a. w) &) AF(E (2, w)

(XXY)regN(m=1(a)xm~1(a))

= n(§)N((a, w) — &) A F(&, (a, w))

(XNm=1(a))reg X (YT~ 1(a))reg
= / » By (s, (a,w)) AlY N t(a)] AW(a, Z")
= (J3(Bry(s,2)) ANIY Nt (@)l J5 (V).
The last equality holds true since we have
dim (X X Y)sing N (7 1(a) x 71(a))) < p+ g — k.
This achieves the proof of Theorem 1.3. O

Let illustrate Theorem 1.3 with the following example.
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Example 5.1. Consider in C° = C x C* X = {z =23 =22 =0} and Y = {zs = z52z5} take
k=1 and p(z') = |Z/|?> = |z1|>. Since X is smooth, then a potential of [X] is

_ log(| 22| + | z3|% + |za|?) dd log(| 2] + | 3] + | za )

U
|22]2 + |z3]2 + |za]?

As X and Y yield a complete intersection, then by [9] the current U A [Y] is well defined. The
current U A [Y] is given by the following

UN[Y] =i [|09(|Z2|2 + |z3]? + |2223|") dd€ log(| 2o |* + | z3|* + |2223|4)] _

12| + |z3]? + |20 23]*

We have
XNo ' 0)={zni=z=z=2z=0} and YN 1(0) ={z1 =z} — 2023 = 0}

It is clear that XN7~1(0) and YN7~1(0) yield a complete intersection in {0} xC*. If ¢ = Iy Am-1(0)s
then,

(UAY].7.0) = o [|09(|22|2 + |23 + |z223|*) dd€ log(|zo|? + | z3|* + |2223|4)] _

|22]% + |z3]? + | 2223|*
6. PROOFS OF THEOREM 1.4 AND THEOREM 1.5 WITH APPLICATIONS

This section aims to give the proof of Theorem 1.4 and the proof of Theorem 1.5. We may suppose
N = 1. Indeed, for the proof of Theorem 1.5, we use the fact that a finite union of pluripolar subsets
is pluripolar. In addition, Theorem 1.4 is an immediate application of the following Theorem 6.1.
In fact, if for all 1 < j < N, there exists a; > 0 for which Theorem 6.1 holds for the psh function
vj, then for a = mini<j<pn (aj), Theorem 1.4 can be deduced from Theorem 6.1 in terms of slices

and it works with the psh function v =3} ;.\ exp(—ay)).

Theorem 6.1. Assume we have a psh function v on A" such that its set of singular points is
contained in a hypersurface X forming a complete intersection with the analytic subset Y of A".

Then, there exists a > 0, such that the function exp (—av),y lies in LE (V).

Proof. The result is local, so it's enough to prove it near a singular point zp =0 € {v = —o0} C X.
We may suppose z is a reqular point of X NY. Let g be the dimension of Y at zg (1 < g <n-—1),
since X and Y yield a complete intersection near zp, then we may find a neighborhood V/(z) of

7o and local coordinates (z1, . . ., z,) such that
KNXNY CKNYN{zg=2gs1="=2,=0}, K=V(z). (6.17)

Let (vs)s>0 be a decreasing sequence of continuous psh functions such that lims_,o vs = v pointwise.

We choose a fixed dp > 0 small enough, such that

Vso(2) =1 <v(z) S vso(2), Yze KN XNY. (6.18)
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According to a classical result due to H. J. Bremermann and P. Lelong [4, 14], there exists (f;); a
sequence of holomorphic functions on A" such that the function vs, is the reqularized supremum
limit on K of (Jl log |zj|) . Which means that
J
Ve,(2) = [limj 00 sup } log 152"

_ , 1 (6.19)
= limeso SUP¢eB(z.e) [||mj—>oo 7 log |G(C)]r zeK.

For the compact K, in view of (6.18) and (6.19), we can find a natural number N that depends on

K, and analytic functions on A", fi, ..., fa, such that the function v and the function vy defined
by
1
v(z) = max = log |fj(2)], (6.20)

satisfy the following inequalities
vw—1<v<vy<0 on K~ XNY. (6.21)
We may suppose the compact K is sufficiently small so that
KNXNnYcKnyn{fi=0,,=1,..., N}.

By the Weierstrass preparation theorem (see [6]), for each indice 1 < j < N, one can write f; such

that

fi(z) = hi(2)Pi(Z', zn), (6.22)
where h; is an invertible holomorphic function on A" and Pj(Z’, z,) is a Weierstrass polynomial in
Zp, of the form

-1 mj—v

Pz zn) =27 +a1j(Z)zy" " 4+ an(Z)zn”  + o+ am, i (2), a,i(0) =0,

with m; > 1 is the vanishing order of f; at zo = 0 and (a,,,(Z'))1<u<m; are holomorphic coefficients
on the polydisc A" in C"1. Furthermore, forall 1 <j < Nandall 1 <v < m;, there is a

positive constant C; such that for all z’ € A""1, the following inequality holds
lav,i (2] < Gl |21 (6.23)

Therefore, by the triangle inequality, (6.23) provides the existence of a constant C, = C3(K) > 0
such that for all 1 <j < N and for all z = (Z/, z;) € K, the following inequality holds

P2 zn)| < Col| 21| ™. (6.24)

On the other hand, since {f; =0, j=1,..., N} ={P =0 j=1,..., N} and since the polynomial
F; vanishes at zg = 0, then there is a constant C3 > 0, such that for any point z = (Z/,z)) € K

sufficiently close to 0, the following inequality holds

|| < C3|Z']]. (6.25)


https://doi.org/10.28924/ada/ma.4.23

Eur. J. Math. Anal.

Hence, using the triangle inequality with (6.25) and reasoning by induction on the degree m; of
P;, 1 <j < N, we can find a constant C4 = C4(K) > 0, such that for all 1 < < N and for all

z = (2, zy) € K, the polynomial P;(Z’, z,) satisfies the following inequality
ClIZ|I™ < B2, z0)]. (6.26)

In addition, since for all 1 < j < N, the holomorphic function h; is invertible and N depends only

on K, then we can find a constant Cs = C5(K) > 0 such that for all z € K, the function defined by
1
/ . .
vy(z) = lrlyanN S log | hj(z)|

satisfies the following inequality

— Cs < vjy(z) <. (6.27)

If we denote By = mini<j<pn % and wy(z) = wy(Z', z4) = Bnlog ||Z||, then following (6.22) the

function vy defined by (6.20) is such that

w(z) = maxigjcn 7109 [Pi(Z, z,n)] + maxi<jcn 109 hj550(2)]
Bw log ||Z'|| + maxi<j<n Jl log |hj(z)| (6.28)
= wn(z) +vy(2) £0.

IN

Hence, in view of (6.21), (6.24), (6.26) and (6.28), we can find constants Cs = Cg(K) > 0 and
C7 = C7(K) > 0 such that for all z € K \ Y N X, the functions v and wy satisfy the following
inequalities

Cown(z) — C7 < v(z) < wp(z) <0. (6.29)
It is clear that (By )y is a positive and decreasing sequence. Hence it has a limit 3 > 0 as N — +oc.
In view of (6.17) and (6.29) we have B > 0. Indeed, if not, the function v will be bounded near 0
and then the point z is not a singular point of v. Therefore, by letting N — +o0 in (6.29), we can
find constants B > 0 and Cg = Cg(K) > 0 such that for all z = (Z/, z,) € K\ Y N X, the function

v satisfies the following inequality
exp (—v(2)) < Cell2'[|77. (6.30)

Taking o > 0 so that a8 € (0,2g — 2), hence z — W € L},.(C971), and investigating (6.17)
with (6.30), we get the following
dXg—
/ exp(—av(z)) < Cs/ %&Z) < 00. (6.31)
zEK\XNY zena1 |12]]

Consequently, our proof is achieved thanks to (6.31). ]

Remark 6.2. Theorem 6.1 generalizes a result in [9] showing that, if Y = {f = 0} is a hyper-
surface in Q2 given by a holomorphic function not identically vanishing and if Y yields a complete

intersection with another analytic subset X C , then there exists § > 0 such that the coefficients

146

loc (X). Moreover, there exists a > 0, such that the coefficients

of the current log |f|[X] lies in L
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of the current |f|~%[X] lie in L} (X). If we replace the hypersurface Y = {f = 0} by a positive

loc

(1, 1)-closed current of the form T = dd“v for some psh function v, then we provide Theorem 1.4.
Note that we invite interested readers to proceed defining and investigating quaternionic hyper-
surfaces and quaternionic analytic sets in the space H¢ recently studied in [13] and find similar

results as given in this paper.

In the direction of Theorem 1.3 and proceeding as in the proof of Theorem 3.3 in [9], we finally

give the proof of Theorem 1.5.
Proof. We consider the analytic subsets X N7~ 1(a), Y N7 *(a) and
E={acAf:dimc(Xn7ma) x (YNn7mL(a)>p+q—k}.

By Proposition 3.1, E is contained in a countable union of analytic subsets of AX of dimension
< k— 1. Therefore the set E is pluripolar. We work as in [9] ( proof of Theorem 3.3) around a point
a¢ E. O
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