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ABsTRACT. The meningitis epidemic has impacted lives negatively, especially in Sub-Sahara Africa,
dubbed the ‘Meningitis Belt. The epidemic has been a public health concern due to an improper
understanding of the disease’s dynamics. To implement a control measure that will help minimize the
epidemic, we introduce a non-linear Meningitis model that describes the dynamic behaviour of the
disease and explains the transmission trend. The model explores the condition that leads to local or
global asymptomatic stability of the equilibria. The model is subjected to a sensitivity analysis to find
the parameters that influence the Ro. The model is modified into an optimal control by adding time-
dependent controls. The control model is solved qualitatively using Pontryagin's maximum principle
and numerically using MATLAB and the fourth-order Runge-Kutta method. We provide a control

strategy that can be relied on for management decision-making based on the results.

1. INTRODUCTION

Meningitis, a deadly bacterial infection, is primarily attributed to Meningococcal meningitis.
Meningitis kills over 100,000 individuals each year and affects 1.2 million people from all over the
world. In Africa, especially the Sub-Saharan Africa meningitis belt, which extends from Senegal to
Ethiopia, 10,000 people are expected to die each year [2]. This disease is widespread across sub-
Saharan Africa, stretching from the meningitis belt in Senegal to Ethiopia. The illness reappears at
the start of each dry season and disappears at the start of the rainy season in Africa, a fascinating
pattern that warrants further study. Moreover, from the year 2003 to 2007, about 4100 cases
of cerebrospinal Spinal Meningitis(CSM) were confirmed in the United States (CDC, 2017) [3].

It is approximated that during most significant epidemics, over 1000 cases of the disease are
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reported, typically happening every 5 to 12 years [4]. The bacteria is transmitted from infected
individuals to susceptible ones through contact with respiratory and throat secretions like saliva
and mucus. However, unlike flu and common cold viruses, the bacteria are not highly contagious,
and it takes time before transmission occurs. Those at risk of contracting the disease are typically
individuals near the infected person, such as household members and roommates [5] The most
common signs of the disease include fever, headache and stiffness of the neck. Diagnosing the
disease is sometimes difficult since the symptoms are often similar to other diseases [6]. Currently,
a vaccine for meningitis exists, with the available vaccine primarily for bacteria such as meningitis.
Bacterial meningitis is fatal when not diagnosed early [17]. Generally, infected individuals recover
with permanent disabilities such as hearing loss and brain damage. These disabilities and the
disease itself are worsened when symptoms are not detected on time.

Meningitis, a bacterial illness, has been a global concern, affecting numerous parts of the world.
The disease has been endemic in several areas, with Sub-Saharan Africa being the hardest hit.
Since its emergence, numerous models have been developed to describe the disease’s transmission
patterns, yet there remains a need for further understanding of intervention strategies to curb the
disease in the Meningitis belt. In [15], and [16], the dynamical behaviour of the Meningitis disease
was studied; however, the study failed to provide enough intervention and treatment strategies to
minimize the disease. Against this background, we propose a non-linear mathematical Meningitis
model that would analyse the model’s stability and characterize a range of feasible control strategies
that would aid management decision-making to curb the disease. In[31], the transmission behaviour
of a meningitis disease is disclosed using an age-structured model that impacts the carriers’ input to
the model dynamics. The transmission behaviour of a Meningitis disease is revealed by building an
age-structured model that affects the carriers’ contribution to the model dynamics. [32] formulated
a compartmental meningitis model that predicted the behavioural pattern of individuals and the
population evolution by studying the dynamic trend of disease transmission. In their study, [33]
studied the risk factor of Meningitis in adults by employing fuzzy cognitive maps and multi-criteria
techniques to determine the ranks of the various scenarios. [34], determined the numerical solution
of the Meningitis disease by considering the methods of Euler, Heun, and the fourth-order Runge-
Kutta. In [35], the authors created a mathematical model to investigate the impact of shared
information on the dynamics of Meningitis disease. The authors in [36] modelled a co-infection
mathematical model of Listeriosis and Meningitis to unveil the parameters that impact the dynamics
of the co-infection model. In [37], the authors formulated a mathematical model of influenza-
meningitis co-infection that analysed the infected’s outcome on the model's dynamics. In the paper
by [39], the authors looked at a mathematical model of meningitis that attempted to explain the
infection dynamics of the disease in Jirapa District, Ghana. To better understand the disease’s

transmission mechanisms, the researchers in [38] developed a mathematical meningitis model. The
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model was subjected to a thorough stability study, with disease-free equilibrium indicating stability
when Rp < 1 and endemic stability when Rg > 1.

Optimal controls are extensively used in dynamical systems, specifically those related to non-
linear ordinary differential equations, and perceived as an intervention technique within control
theory [40-43]. Mathematical models that involve optimal control analysis are essential for un-
derstanding disease spread and play a vital role in the policy-making process concerning disease
control. The authors in [44] suggested a nonlinear mathematical model to see if public awareness
campaigns affect the spread of infectious diseases. The model evaluated the population’s response
to media awareness because diseases spread through interaction between infected and suscepti-
ble people. Thus, the ability of the susceptible individuals to avoid contact with the infectives.
Their analysis showed that infectious disease spread can be controlled by employing an aware-
ness program. However, due to human immigration, diseases will always remain endemic. In [44],
the authors explored the impact of media coverage on controlling disease spread by formulating a
mathematical model incorporating media coverage. The analysis indicates that, even though the
existence of media was not the sole factor in the attempt to eradicate the disease, its presence,
to some extent, can minimize the number of infections. In [45], the authors attempted to reduce
Ebola infection in the susceptible by constructing an optimal control theory from ordinary differ-
ential equation modelling of the Ebola virus. Two control functions, education and treatments,
were considered in modelling the control problem. The control system is solved by applying the
tool of Pontryagin’s maximum principle. The analysis of the numerical results showed the controls’
overall effect in reducing the disease. Also, the authors in [16] constructed a mathematical model
of syphilis transmission dynamics to aid in selecting the most effective syphilis screening choices
The model created was an agent-based dynamic model that simulated a critical population of 2,000
people. According to the model's results, increasing the frequency of syphilis screening to every
three months was very effective in reducing syphilis infection cases. In [46], the authors devel-
oped a mathematical model of COVID-19. To characterize a range of feasible controls that might
be effective in minimizing the disease, the model was changed to an optimal control problem. A
numerical simulation of the problem was performed using a forward-backwards sweep and fourth-
order Range-Kutta method. In [47], the authors created a mathematical model for the ongoing
coronavirus outbreak to determine intervention approaches to battle it. The model was turned into
an optimal control problem to provide a theoretical explanation for the disease, which was solved
qualitatively by utilizing Pontryagin’s maximal principle. MATLAB and an iterative technique were
used to solve the models numerically.

The objective of this work is to design a mathematical model to investigate meningitis transmis-

sion, to examine the equilibrium’s local and global stability, to conduct a sensitivity analysis of the
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model parameters to identify the parameters that significantly affect the Rg, to formulate a control
model for the Meningitis disease, and to perform a numerical simulation for the model.

The rest of the research is divided into the following sections: Section 2 focuses on formulating a
nonlinear model for Meningitis disease. Section 3 explores the qualitative properties of the model,
like positivity, solutions’ boundedness, basic reproduction numbers, and the existence of equilibrium
along with the local and global stability of disease-free and endemic equilibria. Section 4 centres on
examining the sensitivity of the model’'s parameters on Rg using the normalized forward sensitivity
index. In Section 5, the model is modified by adding time-dependent and solved with Pontryagin’s
Maximum Principle. Section 6 tackles computational investigations of the optimal control model
based on the three control strategies, and the results are illustrated. Then, finally, we provide

conclusions and discussions of the work in Section 7.

2. MATHEMATICAL MODEL

In the current section, a deterministic model for Meningitis disease that partitions the total
population into Syp, susceptible, Eyp, exposed, Ayp, asymptomatic, /yp, symptomatic, and Ryp,
recovered is formulated. The population N is given as N = Syp + Exyn + Ann + Iun + Ruyn. The
model assumes that people are recruited into the population by birth at the rate A. The susceptible
become exposed through contact with the symptomatic at rate 1;. The exposed leaves at a rate 7;
and enters the symptomatic while a fraction k; enters the asymptomatic. The asymptomatic and
symptomatic die at rates 73 and o, respectively. The asymptomatic can leave to recovery class
due to natural immunity at rate To. The symptomatic enters the recovered compartments at a rate
1. The recovered individuals could return to the susceptible class due to loss of immunity at rate

w. With all the compartments, natural death occurs at a rate u.
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FIGURE 1. Schematic of the Meningitis model
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%SHh =N—=uSun — Mm!IunSHn + WRHh,
%EHh = MIunSrn — kiTiEpn — (1 = ki)T1Epn — wEpn,
%AHh =(1—ki)T1Enn — (T2 + 73+ 1) Ann, (1)
%/Hh = kiT1Epn — (Y1 + 2 + 1)l Hn,
%RH,, = ToAun + V1Enn — (W + )Ry,
with:
SHhy 2 0, Enng = 0, Appg 20, IHpy = 0 and Ryp, > 0. (2)

3. QUALITATIVE PROPERTIES

3.1. Positivity and Boundedness.

Theorem 3.1. The set {Syn, Eqn, Arn, IHn, Run} being the solution of the state system (1) with

parameters which are non-negatives is positive with the initial condition given by;
{SHny >0, Expy =0, Appy >0, Inpy 20, Rppy > 0}

Proof. By inspection, the third equation of model (1) can be structured into a first-order differential
equation standard form as:

d

A+ (124 T3+ ) Anp = (1 — k)71 Epin. (3)

When equation (3) is solved with the integrating factor method, we get
t
Apn(t) = e~ (2tmtmt [AHh(O) +(1— k)71 / E(s)e_(T2+T3+“)5ds] .
0

The same method, when applied to the fourth equation, gives

t
Iyn(t) = e~ (hr1totu)t [/Hh(o) + lel/ E(S)e—(¢1+¢z+u)sd5] .
0

d d
Hence, we observe that EAH/’ > 0 at 1, E/Hh > 0 at tg. Thus, we can generalise that the other
state variables remain positive at t = 0. Hence, the state model system 1 is positively invariant in
5
R3. O

Theorem 3.2. The model equation (1) is bounded within the invariant region, 9 € RS given as;

® = {(Stn. Erin, Atin. Irn Run) € RS, Skn+ Epn+ Apin 4 Ihn + Run < N —uN} .
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Proof. We add the respective compartments to prove the boundedness of model system (1). Thus,

we get

N(t) =N = uSHn — T3AHR — WAHK — WEHK — Yalpn — wln — WRHp,

dN(t
dg ) =N —T3Apn — Yolun — uN. (4)
It follows that from equation (4), setting H to be a solution of (4), we have a unique initial value
problem,
d
—Hi(t) =N—puH.(t) t>0
de''t ! (5)
H1(0) = N(0).
The solution of (5) gives;
A
Hi(t) = N(0)e Mt + ﬁ(l — e(=Ht)), (6)

What happens next is that, from the comparison Theorem in [1], we notice that,
A
N(t) = N(0)e Mt + ;(1 — elHt))y, (7)

Therefore, from equation (7) the state variables (Sypn, Exn, Arn, [Hn, RHp) has the possible solution
set which bounded and the model equation (1) is invariant ¥ € R%. As a result, model (1) is

mathematically well-posed and epidemiologically feasible. O

3.2. Existence of Disease-free equilibrium (DFE) point. Model system (1) has a trivial point
(0,0,0,0,0), which is usually ignored in the model's analysis. The right-hand side of (1) is set to

zero and solved, the disease-free equilibrium becomes

50:(/\,0,0,0,0). (8)
n

3.3. Basic reproduction number. The basic reproduction number, R, is one of the things that
modellers look for when it comes to infectious disease modelling. The basic reproduction number
is sufficient for determining the condition of the disease. In a completely naive population, the
basic reproduction number is defined as the number of persons one infected person may infect. It
is denoted by Ro, and when Rg > 1, it means the disease will spread unless preventive strategies
are cautiously enacted. However, when Ry < 1, the infection dies without strenuous effort. The
derivation of Rg is important in modelling and can be derived by the method of [19]. The (9) is the

formulae guaranteeing Ro derivation.
Ro = p(FV ). (9)

The p is considered as the largest entry in the derivation of the next generation matrix of Rg =
po(FV~1), where F is the coming infection into compartment i and v. Thus, the transfer of indi-

viduals out of compartment / by death. Technically, the Rg becomes the largest eigenvalue of the
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matrix resulting from the partial derivative of (9). What happens next is the infected compartments

of model (1) are given by

d
—Enn =mIunSun — kiTiEnn — (1 — ki) T1Enp — wEwn,

dt

d

EAHh = (1= ki)T1Enn — (T2 + 73+ 1) A,
d

E/Hh = kiT1Enn — (Y1 + Yo + 1) hp.

We notice from the diseased compartment that,

N !HnSHA kiTiEnpn + (1 — ki)T1Exp + WEnn
F = 0 cand V= —(1—ki)TiEpp+ (2 + 73+ 1)Ann | - (10)
0 —kiT1Enp + (Y1 + Y2 + 1)l un

When F is evaluated at &, then Fg, becomes;

A

7
Fey = 0 0 0 (11)

0 O
Evaluate V' at &, which gives;
(k171+ﬂ+(1—k1)T1) 0 0
Ve, = —(1— k)71 (2 + 73+ 1) 0 : (12)
—k1T1 0 (Y1 + P2+ )

The basic reproduction number of model system (1) is determined by using the method of [19],

which gives;

NNk T

Ro= amtnt (- k)@ + 9t i)

(13)

3.4. Existence of an endemic equilibrium point (EEP). Endemic equilibrium exists when there is

a presence of infection. The model (1) has a unique endemic equilibrium given by;

E* = (Shn. Efin. Abins ians Rin). (14)
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where

*

N+ wRjy,
Hh = T [ %

Copmly,

M/ fnSkn

(w+71)"

(1 - k)T E},

(o +713+pu)

I, = kiTi Efy, ,
(Y1 + Y2+ p)

. _ TALsHED,

I (wtn)

* o
EHh_

*

Hh —

3.5. Stability of the disease-free equilibrium point. Here, the global and local stability analyses
of the Meningitis model (1) at the disease-free equilibrium are studied. The geometrical approach
of Lyapunov function theory by [20] would be used to prove that model (1) is globally asymptotically

stable at the disease-free equilibrium. The results are provided as follows;

[~ — Ml 0 0 —M1SHh w ]
N1l Hh —(keTi 4+ g+ (1 — ko)1) 0 M1SHh 0
J = 0 (1 — k)11 —(T2 4+ T3+ 1) 0 0
0 k1T 0 —(Y1 + Y2 +u) 0
| 0 0 T Y1 —(w+ ) |
(15)
Evaluating the Jacobian in (15) at the & gives;
_—u 0 0 —?71i w ]
/\M
0 —(kimi4p+(1—ki)Ti) 0 my 0
=10 (1— k)1 —(To+ T3+ ) 0
0 k171 0 —(1+ 2+ u) 0
| O 0 T2 (21 —(w+p)

clearly, A1 = —pu, Ao = —(w + 1), A3 = — (72 + 73 + ). The remaining matrix becomes;

A
.|~k p+ (1= k)7 m,
k1T —(¥1 + Y2+ u)

The characteristic equation is given by

N4+ bA+b=0 (16)
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where
by = (kami + p+ (1 = ki)T1 + (Y1 + 2 + ),
A
by = (ki1 +p+ (1 — ki)Ta(¥1 + Y2 + 1) — ;771/(17'1.
then
e, — —(b1) £ V'T1
34=—" 5

where 77 = b% —4bs. If A3 <0 and Mg <0, then the disease free equilibrium is stable. Otherwise,

it is unstable.

Theorem 3.3. When Ry < 1, the disease-free equilibrium &y for the Meningitis model (1) is
globally asymptotically stable in Ri-

Proof. We construct a Lyapunov function

where di = (ki1 + u+ (1 — ki1)71) and do = (Y1 + Yo + ). Taking the derivative of £ with
respect to Eyp and Iy gives;

% _ ! iE + ii/

dt ~ *\did | dt " dy g

dL T1 1

—— =ki | 5| (lunShn — kaTiEnn — (1 — ki) TiEnn — wEpn) + = (ki1 Enn — (W1 + %2 + ) lhn)
dt d1d2 d2

dl T1 1
P ki (dld2) (M !upStn — d1Enn) + A (kT1Enn — dalpn) -

A
It follows that Sy, = ; at tg. Hence

kiT kiT
dldzu)'rll/Hh - (117215/#7 + ;,7215/% — IHn,

E — A1
= (Ro—1)Iun.

dl ( TN

From the model equation (1), the system variables and parameters are all non-negative, implying
that % < 0 when Ry < 1, with % = 0 in the disease-free equilibrium. Hence, £ is a Lyapunov
function in 9. Hence, from [20] principle, (Egn(t), Inn(t)) — (0,0) as t — oo. 0

3.6. Stability of the endemic equilibrium point. Here, we study the global and local stability
of the Meningitis model (1) at the endemic equilibrium. The Lyapunov function method by [27]
is employed to prove the globally asymptotic stability of model (1) at endemic equilibrium. The
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underlying steps are, therefore, followed. The Jacobian evaluated at £* gives;

[~ —ml}, 0 0 ~mSh, w ]
nlyy, —(kimi 4+ p+ (1 — kp)71) 0 mSy, 0
J= 0 (1— k)7 (7o + T3 + ) 0 0
0 kiT1 0 —(Y1 + 2 + ) 0

i 0 0 To (21 —(w+p) |

(17)
We denote a = —pu — mlfy,, b = —mSh, ¢ = w, d = mlfy, e = —(kimi + u+ (1 — ki)71),
f=mSi, 9=0—-ki)T, h=—(2+7m3+u), i =kt,j=—1+vY2+u) k="1,1 =19,
and m = —(w + w). Then, the characteristics equation of model (1) is given by

Yo+ AY ALY+ AY2 + AsY + A3 =0 (18)
with

Av=(a+e+h+j+m),

Ai=ae+ah+a+eh+am+e +—fi+em+hj+hm+ jm,

A> = aeh+ bdi + aej — afi + aem + ahj + ahm+ ehj — fhi+ajm+ ehm+ejm—fim+ hjm,
Az =ehjm — fhim+ bdhi 4+ aehj — afhi — cdgk + aehm + bdim — cdil + aejm — afim + ahjm,

Ay = —cdgjk + bdhim — cdhil + aehjm — af him.

Based on the Routh-Hurwitz stability by [22], the condition for the characteristics equation (18) is
given by

Y1 Y3 Y5



https://doi.org/10.28924/ada/ma.4.21

Eur. J. Math. Anal.

The condition requires all the coefficients of the characteristics equation (18) to be positive, implying
that all eigenvalues have negative real parts. If the condition Y; is satisfied, we conclude that the

Meningitis model at the endemic equilibrium is stable and otherwise unstable.

Theorem 3.4. When Ry > 1, the endemic equilibrium £* of model 1 is stable when Sy, = S}y,

Enn = E}p Aun = ALy v = 1y, and Ry = Ry, otherwise unstable.
Proof. We construct a Lyapunov function
S E
Ly, = (sHh—s,:h— fin In (S”h) ) + (EHh_ Ebin — EhpIn (EHh) )
Hh Hh
* * AHh * * IHn
Hh Hh
R
+ (RHh— R%, — R (H”) ) .
Rin

The derivative of £, with respect to t gives;

L, _ (sHh — s:,h) dSmn (EH,, - E;;,,) dEnn (AHh _A;,h) dAu

dt Stn dt Eunp dt AHn dt
Tn =15, \ dlan Run — Ry, \ dRHun
: 1
+ ( [ dt + Run dt (19)

Hence, substituting d?;’”, d’j’;h, df}’;h, % and d';f” into equation (19) gives;

dC, [ Sun— Sk,
dt

= S ) (N —=uSHn — Mm!lunSHr + WRHR)
Hh

Ey, — EF

+ (W) (Mm!unSHn — kT1Epn — (1 — k1) T1Enp — WEHR)
Ayp — A*

+ (HhAHhHh) ((L = ki)T1Epn — (T2 + T3 + 1) Ann)

Iy — 1T
+ (Hh/HhHh) (kT1Epn — (Y1 + Yo + 1)l up)

N (RHh—-RLh

5 ) (T2AHR + Y1Epn — (W + w)Rph).
Hh

Hence, for Spp = S}y Enn = Efyp Ann = Afp The = 1, and Ryp = R}y,. We have that,

dﬁp ( 5/*4/7 ) ( (SHh - S,‘*-/h)z ) ( (SHh - S;i/h)2 )
95=p _ A _ A 2HD) _ o [ S2HD T 20 g — ) | S2Hh T 2HR)
It S w 5. Mm(Tun — 15p) S
Syp — S* Enn, — EF

HhHh) . (HhHh

(R — i) | 2 5 ) () St — S
Hh Hh

Eyn — Ef, )2 Enyn — EF, )2 Epp — EF,)2
. le (( Hh Hh) ) - (1 . k1)7'1 (( Hh Hh) ) —u (( Hh Hh) )
Ewn Ern Enn
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Arh = Al

(Aun — Afp)? )
AHn

) e B

+ (1 — ki) T1(Enn — Efyp) (

Iyn — I} Iyp — 15,,)?

s (B E) () = () (e
. (Run—R: . [Run—FR:

+ T2(Ann — Alin) (HhR,_,hHh) + Y1(Enn — Efjp) (W)

“onn (S )

We generate the below equation after thorough algebraic manipulations;

dl
] (20)

where

) (bt — 1) (St — Stn)

Spyp — SF Enn — E?
G1 = N+ w(Rup — RYyp) (’“Hh) +m (HhHh

SHn Enn
Ay — At Iy — I
(1 ) ma(Enn — Eg) | 22 20 ) s (B — ) (P
Hh Hh
Ryp, — R*
+T2(AHh_ T-Ih) (HhRHh) ’
Hh
and
S* S _ S 2 S — G* 2
G =N +p (Srn — i) +m(lhn = Tin) (hn — Siun)”
SHn SHn SHn
Ern—Efn)?\ [ (Ern — Efyy)? Arin = At)?
+k71((Hh Hh))u,((/‘/h Hh))+(T2+T3+M)((Hh Hh))
Enn Enn AHn
In — 1f,)? Run — R:,,)?
+<¢1+wz+u)(( tn ~ L) )+(w+u)(( H ~ Ri) )
IHn RHn

d
Hence, % = 0 when Sy = Si Enn = Efyp Arn = ALy Thn = 15, and Ry = Ry, It can

be shown that the inequality G; < G». Evidently, it can be verified that % < 0 when G; < Go.

Hence dTﬁgj = 0, when SHh = S*Hh' EHh = E;tlh' AHh == AT—Ih'IHh = /I:h and RHh = RT—Ih' This
indicates that the largest compact invariant set is a Singleton. Hence, from [20], £* is globally

stable. O

4. SENSITIVITY ANALYSIS OF Rg

Getting the correct estimation of the Rg in infection disease modelling is crucial because it
helps us in the decisions concerning the management of the infection. However, the possibility
of the parameters linked to the Rg to change makes sensitivity analysis an important subject in

epidemiology.


https://doi.org/10.28924/ada/ma.4.21

Eur. J. Math. Anal.

Definition 4.1. The normalized forward sensitivity index of Rog computed using the formula used
by [23] for a given parameter o is

o aal Ro- (21)

The parameters with positive indices contribute to the epidemic spreading since they enhance

the Rg. The parameters with a negative index, on the other hand, aid in disease control by lowering

Ro. From Table 1, A, 71, ¥1, M1, k1, &, and 1, are the parameters which are most sensitive on Ry.

TaBLE 1. Model Parameter Sensitivity Indices for the Reproduction Number

Parameter | Sensitivity Index
A 1.000
T1 —2.333
Y1 —0.526
Vo —0.473
m 1.000
W —1.000
k1 1.000

This is because, any increment in the parameter values of A, m1, and k; will lead to a 100% increase
in Ro. Also, an increase in u, 71, ¥1, and ¥», will decrease Ry by 100%, 233.3%, 52.6% and 47.3%
respectively. Therefore, effective measures must be put in place to decrease A, 11, and k; and to
increase u, 7191, and . Although intervention measures are geared towards increasing and/or
increasing the most significant parameters, it is paramount that the control of the other parameters

not be completely ignored.

5. OPTIMAL CONTROL ANALYSIS

In this section, model system (1) is modified by putting in three time-dependent controls, viz. per-
sonal protection, vaccination and treatment controls, to examine the impact of the control schemes
on the Meningitis disease. In model system (1), the associated infection force is lowered by a
factor of (1 — u1), where 1 is the personal protection control that ensures the attempt to reduce
room heat and avoid close contact with the infected. The rate of vaccinating susceptible individuals
against Meningitis is represented by the control function wp. As a result, the model assumes that
vaccinated individuals shift from the susceptible compartment to the removed compartment at any

time. Furthermore, we assume that the control function usz reflects the rate at which sick patients
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are treated. Hence, the modified nonlinear control system becomes;

d?/;h =N —uSpun — (1 — u)N!upSHn + WRHL — UsSHp,

dStHh = (1 — u1)m!ynSun — kT1Epp — (1 — k1) T1Exp — wEHp,

d?’:h = (1= k))TLEpn — (T2 + T3 + ) Ann, (22)
% = kT1Epn — (Y1 + Y2 + uz + W) pn,

dldi’:/h = ToAun + Y1Enn + sSpp + uslyp — (w + ) Rup.

To examine the efforts needed to control the disease, we define an optimal functional J that
minimizes the exposed, asymptomatic and symptomatic individuals and maximizes the recovery
through personal protection, vaccination and treatment controls of u;, up and ws. Hence, the

objective functional J is given by;

tr 1
J(ul,uQ,us») :/ [BlEHh+BQAHh+83/Hh+2(u%d1+u§d2+u§d3)] dt. (23)
0

Referring to (23), the quantities B, By, and Bz are the weight coefficients of the exposed, asymp-

wdy u3do uids

tomatic and symptomatic individuals. In addition, the terms =, 3% and 5= represents the cost

related to minimizing the exposed, asymptomatic and symptomatic individual. The control model
considers a quadratic cost on the controls as in other works. We target optimal control uj, u3, u3

such that
J(ui, u5,uz) = min{J (u1, up, uz) : (U1, Ua, u3) € U}, (24)
where
U={(u1,u,u3)l0<u <1,i=1,2,3 Lebesque measurable} (25)

With the method of Pontryagin’s maximum principle [24], system (22) and (23) are transformed into

a problem of Hamiltonian minimization H with respect to the controls u1, t» and us where;

1
H = [BlEHh + BsApp + Bslpp + E(u%dl + Ugdz + U§d3):| ,

+ A AN = uSpp — (1 — u1)mIunSHn + WRHn — U2SHA}

+ X {(1 — u)m!unShn — kT1Epp — (1 — ki)T1Enn — WEHAY (26)
+ A3 {(1 — ki)T1Exn — (T2 + T3 + L) AHn}

+ X {kT1Epp — (Y1 + Y2+ us + w)lpnt,

+ s {T2Aun + Y1Epn + taSpp + uslyp — (w + w)Ryh} .
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Theorem 5.1. There exists an optimal control U* = (uj, u3, u3) € U such that
*, *' * — N , ’ , 27
J(ug, u3, u3) [rjne'{}j(ul Uz, U3) (27)
subject to the control system 22 with the initial conditions.

Proof. The work of [25] would be considered the grounds for proving the existence of optimal control.
In minimizing the control problem, the necessary and convexity of the objective functional in u1, up
and us are satisfied. The control space U is also convex and closed by definition.

The optimal control system is bounded, which verifies the compactness necessary for the optimal
control. Also, the integrand in the functional (23) is convex on U. Therefore, we notice that there
exist a constant g > 1, positive numbers vy, tp and usz such that,

32

J(uy, o, u3) > 1 (|u1|2 + || + |U3|2) —u

O

Hence, there exists an optimal control. It follows that determining the optimal solution, the
Pontryagins’'s maximum principle by [26] is applied to the Hamiltonian (26) such that given (y, u)

is an optimal solution of the optimal control problem, then there exist a non-trivial vector function

A = (A1, , Xs) satisfying the below equation;
dy — OH(t.y.uA)
dt o '
OH(t,y, u,N)
0= 5 (28)
ax OH(t,y,u,N)
dt Oy '

Hence, the necessary condition related to the Hamiltonian (26) is applied.

Theorem 5.2. Given that S}, Efy, Ann, 1}y, and R}, are optimal state solutions with associated

optimal control variables (uj, u3, u3) for the optimal control problem (22) and (23), then there exist

adjoint variables \; for i =1, ..., 5, satistying;
dX1
ar (A1 = X2)(1 = un)milpp + (A2 — As)uz + pAg,
dXo
P —B1 4+ (A2 = A3)(1 — k1)1 + (A2 — Ag)kT1 + Az,
di
T: = —Bo + (T3 + w)A3 + (A3 — As) 72, (29)
di
(T: = —Bs+ (A1 = A2)(1 = u1)MmSHn + (Mg = As)Y1 + (Y2 + u)Aa + (Mg — As)us,
dXs
95 (g — A A
T (A5 — A1)w + pAs,

with boundary condition;
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and the optimal control uj, u5 and u3z are given by

/
up = min jl, max JO, ((>\2 - >\1)771Hh5Hh) }}

i dl
S
< Uék = min A 1, max 1 0,()\1—>\5)(7h}} (31)
2

3

- -] I
u3 = min 11, max -LO, (Mg — %5)$}}

Proof. The adjoint and transversality conditions are derived using the Hamiltonian (26). Thus we
equate Syp = S}y, Enn = Efyp Aun = ALy le = 1}y, and Ryp = R}y, and differentiating the
Hamiltonian with respect to Syp, Exp, Axn IHn and Ryp to obtain (29). Further, the equations

0 0

M _, M M

ouy Ous Ous

are determined on the interior of the control set, and using the optimality conditions and the

(32)

property of the control space u; and up, we can determine (22). From (22), we can characterize the
control found by solving the optimality system. In solving the optimality system, the transversality
and the characterization of the optimal control (u1, uo, u3) are used. The controls uf, u3 and v}

when substituted into the control system (22) gives;

(dS IS
Hh =N- ,Ll,SHh - (1 — min {1, max {0, (()\2 - >\1)anhHh) }}) nlthSHh

dt ar
S
—i—wRHh - (>\1 - >\5)di2hSHh,
dE IypS
Hh =(1—-min{1, max40, ()\2—>\1)w nlthSHh
dt d
—kT1Exp — (1 — ki)T1Exn — WEpp, @3)
N dA
d:/h = (1= ki)T1Exn — (T2 + 73+ 1) Ann,
d . S
E/Hh = leEHh - (1#1 + 'lPQ + min {1, max {0, ()\1 — >\5)C’I_2Ih}} + .U')/Hhv
d

. S
Run = 1Aun + Y1ExHs + min {1, max {O, (M — >\5)Cgh]»} Sun

/
+ min {1, max {O, (Mg — )\5)5/7}} Iyp — (W + )Ry
3

dt

6. NUMERICAL SIMULATION AND DISCUSSION

The present section focuses on obtaining a numerical solution for the model. Besides the qual-
itative analysis that has been carried out, it becomes imperative to find a numerical solution for
the model. Hence, our task here is to derive a numerical solution that solves the without and with
control models and evaluates the effectiveness of the considered control strategies. A numerical
algorithm uses a 4th-order Runge-Kutta method and MATLAB to solve the optimality system. Thus,

a numerical solution of the control optimality system involves running the adjoint system backwards
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and the state forward in time, with the associated boundary conditions and the controls. The pro-
cess involves continuously upgrading the controls and the characterization value until the earlier
results become close to the currently obtained value; then, the algorithm stops, and a solution is
obtained. The MATLAB simulation was done with values taken from the published work. Below

are the parameters considered for the simulation.

TABLE 2. Meningitis Model Parameters

Parameter  Description Range Estimated Reference
Value
A Recruitment rate (100 — 100000) 1000 [3]
T Modification parameter (0.001 —0.8) 0.3 [3]
To Rate at individuals leaves the (0.002 — 0.3) 0.03 [3]
asymptomatic class
T3 Disease induced death rate (0.002 -0.2) 0.2 [3]
2 Rate at which individuals leave (0.001 —0.1) 0.02 [27]
the infected class to the recov-
ered class
U Disease induced death rate (0.002 -0.1) 0.018 [3]
w Loss of immunity (0.01-0.1) 0.084 [48]
M Contact rate (0.1 -0.9) 0.5 [28]
W Rate at which individuals nat- (0.00001 —0.2)  0.0000391  [29]
urally leaves the compartment
k1 Rate at which individuals (0.01 —0.5) 0.3 [30]

leaves the exposed class

6.1. Strategy A : uz = 0. Strategy A uses the controls u; and up, with us set to zero. The graphs
of 2a, 2b, 2c and 2d Indicate the exposed, asymptomatic, and symptomatic people, as well as the
controls. The without-control graph of 2a showed a swift increase of an estimated 5000 in the first
20 days. Moreover, it remained at this level throughout the remaining simulated time. With the
asymptomatic non-control graph of 2b, we notice a gentle rise of the graph in the first 20 days to
4300 of the asymptomatic population. The asymptomatic control graph progressed steadily to a new
5000 in 140 days and retained it till the end of the simulation. The symptomatic non-control graph
of 2c increased smoothly and moved to the maximum height of 430 of the symptomatic population
in 130 days, which remained until the end of the simulation. Control figures of the exposed,
asymptomatic and symptomatic produced results with substantially minimized graphs. From the

exposed graph of 2a, the graph increases similarly but could not rise to the level of the without
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control plot. We see that the control graph has been dramatically minimized. The control figures
2b of the asymptomatic lie far below the non-control figure. The symptomatic control figure of
2c lay slightly above zero and maintained the level throughout the simulated time. Figure 2d is
the control profile plot of strategy A. The plot shows that the personal protection procedure u;
remained at the Upper bound throughout the simulation, while the vaccine control u» remained at

the upper bound until 178 days before dropping to the lower bound.

6.2. Strategy B : v, = 0. Strategy B sets u» = 0 and generates the exposed, asymptomatic, and
symptomatic graphs. From the exposed graph of a, we observed that the without control curve swiftly
raised to 5000 when t = 20. It moved gently to about 5100 for the next 20 days and remained
at that level for the remaining time. The asymptomatic without control curve steadily increased
in the early days of 20 to 4500, increased gently for the next 120 days to 5000, and maintained
the level for the remaining time. The symptomatic without control graph increased smoothly and
progressed to a height of 430 at the final time. The exposed, asymptomatic and symptomatic control
graphs produced graphs with desired results. Thus, we noticed a completely minimized exposure,
asymptomatic and symptomatic, with the control simulations. Figure 3d is the control profile graph.
The graph shows that the personal protection and treatment controls remained at the upper bound
until 100 and 98 when they dropped to the lower bound. The simulated plots of the exposed,

asymptomatic and symptomatic confirmed that strategy B is effective.

6.3. Strategy C : u; = 0. Strategy C uses the control u; = 0 and the remaining controls for
the simulated. The graphs of 4a, 4b, 4c, and 4d are the exposed, asymptomatic, symptomatic and
control profile plots of strateqy C. In the early days, the exposure surged swiftly for the without
control graphs but maintained a stable level after 40 days. The asymptomatic graph moved steeply
in the early days of 20 to 4500, increased further to 5000 for the next 120, and retained the level
for the remaining days. The symptomatic graph gently increased throughout the simulation and
maintained a steady progression. The exposed control plot showed a swift increase in the graph
in the early days and progressed gently for the entire simulated time. The asymptomatic control
graph smoothly increased in the early days and progressed with the same momentum for the rest of
the simulation. The symptomatic control curve was noticed to be minimized throughout the entire
simulation. The plot of figure 4d is the optimal control profile of strategy C. The vaccine (u») and
treatment (u3) controls remained at the upper bound throughout the simulation until 180 days,

when they decreased to the lower bound.

6.4. Strategqy D : 13 # 0, u» # 0 and us # 0. Strategy D considered the three controls in its
simulation and generated the exposed, asymptomatic and symptomatic plots. Without control, the
exposed graph sparked to 2000 at t = 0. The graphs increased steadily to 5000 in 20 days and

then retained it for the rest of the time. The asymptomatic graph also increased early in the first
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20 days to 4500 and then smoothly progressed to 5000 for the next 100 days and maintained the
level. The symptomatic level gradually rose from 10 in a day (1) to 430 in 180 days. With the
control application, witnessed the exposure raised 1000 to 1900 in 180 days. The asymptomatic
slightly raised slightly below 500 for the 1180 days. The symptoms could barely move above 10.
Plot 4d is the control profile plot of strategy D, We notice from the control plot that the personal
protection, vaccination and treatment controls remained at the upper bound until 180, 178, and

177 respectively when they dropped to the lower bound.

7. DiscussioN AND CONCLUSION

The study considered a non-linear compartmental model of meningitis disease to explain the
transmission dynamics. The compartmental Meningitis model was presented, with compartments
for Susceptible(S), Exposed(E), Asymptomatic(A), Symptomatic(/), and Recovered(R). The model's
equilibria and the basic reproduction number were determined. The model’s local stability at the
two equilibrium points, the disease-free and endemic, was determined by using the linearisation
approach. The global stabilities of the equilibria were investigated by employing the geometric
method of the Lyapunov function. In addition, a sensitivity analysis was carried out on the Ry
to determine the parameters that significantly affect the Rg. It was seen that the most sensitive
parameters on Rg are A, 71, ¥1, M1, k1, 4, and .

An optimal control model was formulated by adding time-dependent optimal controls. By defin-
ing time-dependent policies that might help decrease or eradicate the disease, the model was
changed into an optimal control problem. To discover the optimality conditions of the systems, the
control model was solved using Pontryagin’s maximum principle. Several works have been done on
meningitis transmission, but few have considered optimal control. As a result, we formulated the
Meningitis model that was modified to optimal control problems to characterise a range of possible
strategies to help control the disease. Therefore, we considered possible pairing of the controls to
examine their combined effect on the disease.

With strategy A, the controls of personal protection and vaccination were considered. The
graphs of 2a, 2b, 2¢c, and 2d denote the exposed, asymptomatic and symptomatic individuals and
the control profile. Without control, the graph of 2a showed a swift increase of an estimated 5000
in the first 20 days. Moreover, it remained at this level throughout the remaining simulated time.
With the asymptomatic non-control graph of 2b, we notice a gentle rise of the graph in the first
20 days to 4300 of the asymptomatic population. The asymptomatic control graph progressed
steadily to a new level of 5000 in 140 days and retained at that level till the end of the simulation.
The symptomatic non-control graph of2c increased smoothly and moved to the maximum height of
430 of the symptomatic population in 130 days, which remained until the end of the simulation.
Control figures of the exposed, asymptomatic and symptomatic produced results with substantially

minimized graphs. From the exposed graph of 2c, the graph increases similarly but could not rise
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to the level of the without control plot. We see that the control graph has been dramatically
minimized. The control figures 2b of the asymptomatic lies far below the non-control figure. The
symptomatic control figure of 2d lay slightly above zero and maintained the level throughout the
simulated time.

Strategy B considered personal protection and treatment control. From the exposed graph of
2a, we observed that the without control curve swiftly raised to 5000 when t = 20. It moved
gently to about 5100 for the next 20 days and remained at that level for the remaining time. The
asymptomatic without control curve steadily increased in the early days of 20 to 4500, increased
gently for the next 120 days to 5000, and maintained the level for the remaining time. The
symptomatic without control graph increased smoothly and progressed to a height of 430 at the final
time. The exposed, asymptomatic and symptomatic control graphs produced graphs with desired
results. Thus, we noticed a completely minimized exposure, asymptomatic and symptomatic, with
the control simulations.

Strateqy C paired the vaccination and treatment controls. We noticed that the exposure surged
swiftly for the graphs without control in the early days but maintained a stable level after 40 days.
The asymptomatic graph moved steeply in the early days of 20 to 4500, increased further to 5000
for the next 120, and retained it for the remaining days. The symptomatic graph gently increased
throughout the simulation and maintained a steady progression. The exposed control plot showed
a swift increase in the graph in the early days and progressed gently for the entire simulated time.
The asymptomatic control graph climbed gradually in the early days and continued throughout the
simulation. Throughout the simulation, the symptomatic control curve was found to be minimized.

Strategy D paired all three controls. Without control, the exposed graph rose to 2000 at t = 0.
The graphs increased steadily to 5000 in day 20 and then maintained that level for the rest of the
time. The asymptomatic graph also increased early in the first 20 days to 4500 and then smoothly
progressed to 5000 for the next 100 days and retained the level. The symptomatic level gradually
rose from 10 in a day (1) to 430 in 180 days. With the control application, we witnessed the
exposed raised 1000 to 1900 in 180 days. The asymptomatic slightly raised slightly below 500
for the 1180 days. The symptomatic could not move above 10. The simulated results showed that
the strategies significantly minimise the disease. It can be concluded that the combination of the
three controls or two controls can be employed when it comes to meningitis control. A cost-benefit

analysis of the combinations shown needs to be performed.
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