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ABSTRACT. In the present paper, we investigate the [p, g]-order of solutions of higher order linear

differential equations
Ac(2) FO L A (2) FE D o A2 P A (2) =0
and
Ac(@2)FO + A (@) FE D 4+ AL(2) F 4+ Ao (2) F = F (2),
where Ag (2), A1(2),...,Ac(2) Z 0 and F (z) # 0 are meromorphic functions of finite [p, g]-order.

We improve and extend some results of the authors by using the concept [p, g]-order.

1. INTRODUCTION AND MAIN RESULTS

In this paper, we assume that the reader is familiar with the fundamental results and the standard
notations of the Nevanlinna'’s value distribution theory of meromorphic functions (see [7],[9],[14],
[24]) . In addition, for any integers p > g > 1 and a meromorphic function f in the whole complex
plane, we will use py, g (f), pip.q (f) to denote respectively the [p, g]-order and the lower [p, q]-
order, X[p'q] (f —a) (or A\pp,q (f — a)) to denote the [p, g]-convergence exponent of the sequence of
distinct a-points (or of a-points) and X[, ¢ (%) to denote the [p, g]-exponent of convergence of the
poles, we refer the reader to see [12], [15], [16] and [25] . In particular for g = 1, pp, 17 (f) = pp (f)
is the iterated p-order, w17 () = pp (f) is the iterated lower p-order, A, 1) (Ff — a) = X, (f, a)
(or A1y (F = @) = Ap (f, a))

points (or of a-points), A, q (
[7],[11],[13], [14] and [24] for notations and definitions.

is the iterated convergence exponent of the sequence of distinct a-

%) = Xp (%) is the iterated exponent of convergence of the poles, see
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Several authors have investigated the growth of solutions of second order and higher order
homogeneous and non-homogeneous linear differential equations with analytic, entire or meromor-
phic coefficients, see ([1—3], [6], [8], [11], [13—16], [18], [20—21], [23], [25]). In the recent years,

many authors have studied the complex linear differential equations
FO L A () FR D o L AL (2) F 4 Ao (2) F =0, (1.1)

FO L A1 () FE D 4 b AL (2) P+ A (2) F = F (2), (1.2)

where Ao (z) #0, A1 (2), ..., Ak—1(2) and F (z) # 0 are meromorphic functions of finite iterated
p-order. In [2], Belaidi considered the growth of meromorphic solutions of equations (1.1) and
(1.2) with meromorphic coefficients of finite iterated p—order and obtained some results which

improve and generalize some previous results.

Theorem A ([2]) Let H C [0, +00) be a set with a positive upper density, and let A; (z) (j =0, 1, ...,
k — 1) be meromorphic functions with finite iterated p-order. If there exist positive constants
o > 0,a > 0 such that p = max{pp (A;) :J=1,...k =1} < 0 and |Ag(2)| > exp, (ar’) as
|z| =r € H, r - 400, then every meromorphic solution f # 0 of equation (1.1) satisfies

pp (F) = pp(f) = +00, ppy1(f) > 0.

Furthermore, if X\, (%) < oo, then i (f) = p+1 and

0 < pp+1(F) < pp(Ao).

Theorem B ([2]) Let H C [0, 400) be a set with a positive upper density, and let A;j(z) (j =
0,1,....k—1) and F (z) # 0 be meromorphic functions with finite iterated p-order. If there exist
positive constants o > 0,a > 0 such that |Ag (z) | > exp, (ar?) as |z| = r € H, r — 400, and
p = max{p, (Aj) G=1,...k—=1),p,(F)} < o, then every meromorphic solution of equation
(1.2) with A, (#) < o satisfies

Xp () = Ap(F) = pp(f) = o0, Xp+1 (F) = Xp+1(F) = pp+1(f).
Furthermore, if X, (%) < min{u, (), o}, then i(f) =p+1 and
X/9—|r1 (f) = Xp+1(F) = pp+1 (F) < pp (Ao) -

Recently, in [18] the authors have studied the growth of solutions of the equations (1.1) and
(1.2) when As(z) to dominate all other coefficients and they got some results about pp11 (f) as

follows.

Theorem C ([18]) Let H C (1, 4+00) be a set with a positive upper logarithmic density (or m; (H) =
+00), and let Aj(z) (j=0,1,...,k — 1) be meromorphic functions with finite iterated p-order.
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If there exist positive constants ¢ > 0,a > 0 and an integer s, 0 < s < k — 1, such that
|As (z) | > exp,, (ar) as |z| = r € H, r = +o0, and p = max{pp (A;) (j #5s)} < o, then every
non-transcendental meromorphic solution f # 0 of (1.1) is a polynomial with degf < s — 1 and

every transcendental meromorphic solution f of (1.1) with X, (%) < up (f) satisfies i (f) = p+1

wp (f) = pp(f) = +o0
and
0 < ppi1 (F) < pp (As).
Theorem D ([18]) Let H C (1, 4+00) be a set with a positive upper logarithmic density (or m; (H) =
+00), and let Aj(z) ( =0,1,...,k—1) and F (z) # O be meromorphic functions with finite iterated
p-order. If there exist positive constants 0 > 0, > 0 and an integer s, 0 < s < k — 1, such
that |As (2)| > exp, (ar?) as |z| = r € H, r — +o0, and max{p, (A;) (U #5s). pp(F)} <o,
then every non-transcendental meromorphic solution f of (1.2) is a polynomial with degf <s—1
and every transcendental meromorphic solution f of (1.2) with A\, (%) < min{o, up(f)} satisfies
i(f)=p+1
Ao (F) = Xp(F) = pp(F) = pp (F) = +o0
and
& < N1 (F) = Apra(F) = pprs () < pp (As).
Thus, the following question arises: can we have the same properties as in Theorems C and

D for the solutions of equations
A (2) FRO L A (2) FE D 4 AL (2) P+ Ap(2) F =0 (1.3)
and
Ac(2)FO 4 A (@) FE D 4 AL P + A (2) F = F(2), (1.4)
when the coefficients A; (j =0,1,..., k) are of [p, g] —order? In this paper, we proceed this way

and we obtain the following results.

Theorem 1.1 Let H C (1,4+00) be a set with a positive upper logarithmic density (or m;(H) =
+00) and let A;j(z) (j =0,1,..., k) with Ax(z) # 0 be meromorphic functions with finite [p, q]-
order. If there exist a positive constant o > 0 and an integer s, 0 < s < k, such that for
sufficiently small € > 0, we have |As (z)| > exp,. 1 {(0 —€)log,r} as |z| =r € H, r — 400 and
0 = max {p[p,q] (AJ-) U # 5)} < 0, then every non-transcendental meromorphic solution f # O of
(1.3) is a polynomial with deg f < s—1 and every transcendental meromorphic solution f of (1.3)

with X[, g (%) < U[p,q () satisfies

Pp,q)(F) = Hipq (F) = +00, 0 < pppi1,q1 (F) < ppp,qp (As) -

Remark 1.1 Putting Ax (z) =1 and g = 1 in Theorem 1.1, we obtain Theorem C.
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Corollary 1.1 Under the hypotheses of Theorem 1.1, suppose further that @ is a transcendental
meromorphic function satisfying p,11,q (@) < 0. Then, every transcendental meromorphic solution

f of equation (1.3) with A, g (%) < Wip.q (f) satisfies

o= X[p+1,<7] (f—) = Alp+1,q] (f—o)

= Plpt1.q] (F = ©) = Pppt1,q (F) < ppp.g (As) -

Considering the non-homogeneous linear differential equation (1.4), we obtain the following

results.

Theorem 1.2 Let H C (1,4+00) be a set with a positive upper logarithmic density (or m;(H) =
+00), and let Aj(z) (j =0,1,..., k) with Ay (z) # 0 and F (z) # O be meromorphic functions with
finite [p, q]-order. If there exist a positive constant o > 0 and an integer s, 0 < s < k, such that for
sufficiently small € > 0, we have |As (z)| > exp,. 1 {(0 —€)log,r} as |z| =r € H, r — 400 and
max {p[p'q] (Aj)) G#s), Plp.q] (F)} < o, then every non-transcendental meromorphic solution f
of (1.4) is a polynomial with degf < s — 1 and every transcendental meromorphic solution f of

(1.4) with \jp g (%) < min{o, .u'[p,q](f)} satisfies

X[p.q] (F) = Np.q(F) = ppp,q(F) = bip.q) (F) = +o0
and

7 < Mpi1.a) (F) = Aps1,a(F) = Pppr1,q1 (F) < ppp,q1 (As)

Remark 1.2 Putting Ax (z) =1 and g = 1 in Theorem 1.2, we obtain Theorem D.

Corollary 1.2 Let Aj(z) (j =0,1,...,k), F(z), H satisty all the hypotheses of Theorem 1.2, and
let @ be a transcendental meromorphic function satisfying ppp41,q (©) < o. Then, every tran-

scendental meromorphic solution f with X\, g (%) < min{o, Wip.q (F)} of equation (1.4) satisfies

0 < Apt1.g (F = ©) = Api1.q) (F —©) = pppi1.q) (F — ©) < pp.g) (As) -

Remark 1.3 In [17,19], the authors have studied the growth and the oscillation of solutions
of equations (1.3) and (1.4) when the coefficients A;(z) (j = 0,1,...,k) and F (z) are entire
functions of iterated p-order or of [p, g]-order. However, in the present paper the coefficients A; (z)
(J=0,1,...,k) and F (z) are meromorphic functions with reduction of the hypotheses in Theorems

1.1 and 1.2. So, this article may be understood as an extension and an improvement of [17, 19].
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2. SOME AUXILIARY LEMMAS

In order to prove our theorems, we need the following definition, proposition and lemmas. The

Lebesgue linear measure of a set E C [0, +oc) is m(E) = [dt, and the logarithmic measure of a
E

set F C [1,+00) is my(F) = [4E. The upper density of £ C [0, +00) is given by
F

dens (E) = limsup T E 0.

r—oo r

and the upper logarithmic density of the set F C [1, +00) is defined by

FNl1,
logdens (F) = lim supu.
F—s 400 log r

Proposition 2.1 ([2]) For all H C (1, +00) the following statements hold:
(V) If m;(H) =400, then m(H) = +o0;

(it) If dens (H) > 0, then m (H) = +oo;

(iii) If log dens (H) > 0, then m; (H) = +o0.

Lemma 2.1 ([5]) Let f be a transcendental meromorphic function in the plane, and let o« > 1 be
a given constant. Then, there exist a set E; C (1, 400) that has a finite logarithmic measure, and
a constant B > 0 depending only on o and (i,]) ((i,j) positive integers with i > j) such that for
all z with |z| = r € [0, 1] U E1, we have

f(2)

- <B
f(J)(Z)

(T(ar, ) (log® r)log T (ar, ) -

r

Lemma 2.2 ([4]) Let p > q > 1 be integers and g be an entire function such that py, 4 (g) < +oc.

Then, there exist entire functions u(z) and v(z) such that

9(2) = u(z)e"®,

Pip.q (g) = max {p[p,q] (U) . Pip.q) (eV(Z)) }

and

log, N (r, %)
u) =limsup —————.
p[p,q] ( ) r—>+ocE) |qu r

Moreover, for any given € > 0, we have

lu(z)| > exp {—expp {(P[p,q] (u) + 8) log, r}} (r¢ Es),

where E; C (1,400) is a set of r of finite linear measure.
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Lemma 2.3 Let p > g > 1 be integers. Suppose that f is a meromorphic function such that

Pip.q (f) < +oo. Then, there exist entire functions uy (z), uz2 (z) and v (z) such that

up (2) eV

uz (2)

f(z) = (2.1)

and
Plp.q)(F) = max {p[p,q](ul)' Plp.q (U2), P[p.ql(ev(z))} : (2.2)

Moreover, for any given € > 0, we have
exp {f exp, {(p(p'q) (f) +¢€)logq r}} <|f(2)]

< EXPp+1 {(p(p,q) (f) + 5) |qu I’} (r §E E3) ' (23)

where E3 C (1,+00) is a set of r of finite linear measure.

Proof. When p > g = 1, the lemma is due to Tu and Long [21]. Thus, we assume that p > g > 1 or

p = q > 1. By Hadamard factorization theorem, we can write f as f(z) = %, where g (z) and

d (z) are entire functions satisfying

Hip.q) (9) = Bip,q) (F) = 1t < Ppp,q) (F) = Ppp,q (9) < +o0
and
1
Ap.q) (d) = Ppp,q (d) = App.q) (f) < b

By Lemma 2.2, there exist entire functions u(z) and v(z) such that

g(z) = u(z)e"?, Pip.q] (9) = max {p[p’q] (), P, (ev(z))} _
So, there exist entire functions u(z), v(z) and d (z) such that

=z v(z)
f(2) = 22T d)(i)

and
Pip,q1(f) = max {P[p,q] () . oip,q1(d). Prp.q) (ev(z))} :

Thus (2.1) and (2.2) hold. Set f (z) = ul(z)eV(Z), where w1 (2), ts(z) are the canonical products

u(z)

formed with the zeros and poles of f respectively. By the definition of [p, g]-order, for sufficiently

large r and any given € > 0, we have

i1 (2)] < expp i {(ppp.q) (11) + 5) logq r}

(2.4)
U2 (2)] < exPps1 { (Pp,q) (42) + §) logq r} -
Since max {p[p,q](ul), p[p'q](UQ), p[p,q](e"(z))} = p[prq](f), then we obtain
£
v ()] < exppir { (Prpat () +5 ) loggr} (25)

12 (2)] < exPpir { (Pppt (F) + = ) toggr}. (2.6)
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< exppi1 {(p[p,q] (f) + %) log, r} . (2.7)

By Lemma 2.2, there exists a set £E3 C (1, +00) of r with a finite linear measure such that for any

(@)

given € > 0, we have

11 ()] > 0~ exp, { (Pt (02) + 5 ) togg 7}

Zexp{—expp{(p[p'q](f)—&—g) Iogqr}}, (r ¢ Es), (2.8)
|ux (2)| > exp {— exp, { (p[p,q] () + g) log, r}}
Zexp{—expp{(p[p,q](f)—i-%) Iogqr}}, (r ¢ E3). (2.9)

Then, by using (2.5), (2.7) and (2.9), we obtain for sufficiently large r ¢ E3 and any given € > 0

|u1 (2)][e?)]

luz (2)]

1f(2)] =
< SPot1 {(pro.q1 (F) + 5) logq r} exppi1 {(Ppp.g) (F) + §) logg r}
- exp {—expy {(pjp.q (F) + §) logq r}}
< exppr1 {(ppp.g (F) +€)loggr}. (2.10)
On the other hand, we have pp,_1 ¢ (V) = p[p.q] (eV(Z)) < ppp.q (f) and |e"(z)| > e~ V() Making

use of the definition of [p, g]-order, we obtain

V() < M v) < ey { (510 (V) + 5 ) 047}

< expp { (P[p,q] (f)+ g) log, r} .

Then, for sufficiently large r and any given € > 0, we have

ev(z)

_ €
> e V@l > exp {—expp { (p[p,q] (f)+ §) log, r}} : (2.11)
By (2.6), (2.8) and (2.11), we can easily obtain

_ |u (2)] €]

=L@

o P {—expp {(P1p.q) (1) + 5) logq r}} exp {— exp, {(ppp,q) (F) + 5)logq r}}
B EXPp+1 {(p[p,q] (f) + %) log, r} .

= oxp {300, { (s () + 3 ) loggr} }

> exp {—exp, {(ppp.q1 () +€)loggr}}.

Thus, we complete the proof of Lemma 2.3.

Lemma 2.4 Under the assumptions of Theorem 1.1 or Theorem 1.2, we have py, 5 (As) =08 > o.
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Proof. Assume that pf, o (As) = B8 < 0. According to the hypotheses of Theorems 1.1 or 1.2, there

exists a positive constant o > 0 such that for sufficiently small € > 0, we have

|As (z) | > exppy1 {(0 —€)log, r} (2.12)

as |z| =r € H, r = 400, where H C (1,400) is a set with a positive upper logarithmic density
(by Proposition 2.1, we have m; (H) = +0o0). By Lemma 2.3, we can find a set £3 C (1, +00) that
has finite linear measure (and so of finite logarithmic measure) such that when |z| = r ¢ E3, we

have for any given € (0 < 2e < 0 — )
|As (z) | < exppy1 {(B+€)log,r}. (2.13)
By (2.12) and (2.13), we obtain for |z| =r € H~\ E3, r = 400
exppi1 {(0—€)logy r} < |As(2)| < exppyq {(B+¢)log, r}

and by € (0 < 2¢ < o — ) this is a contradiction. Hence py, 4 (As) =8 > 0.

Lemma 2.5 (Wiman-Valiron, [10], [22]) Let f be a transcendental entire function, and let z be

a point with |z| = r at which |f (z)| = M (r, ). Then the estimation

f0) (2)
f(2)

_ (”fz(r) )J (1+0(1)) (j=1is an integer)

holds for all |z| outside a set E4 of r of finite logarithmic measure, where v¢ (r) is the central

index of f.

Lemma 2.6 ([12]) Let f be an entire function of [p, q]-order and let v (r) be the central index of

f. Then

(F) = liminf 29227 ().

gp f(r)
Plp.q) (F) = Ilmsup r—+oo  loggr

——+o00 lo gq r [p d
The following two lemmas were given in [4] without proof, so for the convenience of the reader,

we prove them.

Lemma 2.7 Let f (2) = % be a meromorphic function, where g(z), d(z) are entire functions

satistying fip g (9) = Bip.q) (F) = 1 < Pp.q (F) = Pp,q (9) < +o0 and N g (d) = ppp,q) (d) =
B = Ap.q] (%) < w. Then, there exists a set Es C (1,+00) of finite logarithmic measure such that
forall |zl =r ¢ [0,1]UEs and |g(2)| = M (r,g), we have

F0) (z) _ (22
f(z) z

where vg (r) denote the central index of g.

)n(l—I—o(l)), neN
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Proof. By mathematical induction, we obtain

(n) n-t / (m \ 7
g g d d
F =2+ > Cips () XX ( d ) : (2.14)

Jj=0 (1--Jn)

where Cj;, ;. are constants and j + j1 +2j> + -+ + nj, = n. Hence

) _ (2.15)

f( g ' dl I

Z Z JJlJn(d) X“'X(d
J=0 Ut1-.dn)

From Lemma 2.5, there exists a set E4 C (1, +00) with finite logarithmic measure such that for a

point z satisfying |z| = r ¢ E4 and |g (2)| = M (r, g), we have

0) J
gg(S) - (”gz(r)) (1+0(1) (=12 ..n), (2.16)
where vg (r) is the central index of g. Substituting (2.16) into (2.15) yields
(n) n
= () o)
n—1 j—n I\ (n) Jn
3 (2] o) ¥ G (§) ks (dd ) e
j=0 Ut---Jn)

Since pyp, g1 (d) =B < u, then for any given € (0 < 2¢ < u — B) and sufficiently large r, we have
T (r.d) <exp, { (B + g) log, r}
By using Lemma 2.1, for oo = 2, there exist a set £; C (1, +00) with m;(E1) < oo and a constant
B > 0, such that for all z satisfying |z| = r ¢ [0, 1] U E;, we have
dm (2)
d(z)

m—+1

< BITCr.d)™ < B[exp, { (B+ 2 togg 2n}]

<exp, {(B+¢€)logyr}”, m=1,2,..,n. (2.18)
By Lemma 2.6 and up, 1 (9) = Wip,q (f) = w, it follows that
vg (r) > exp, {(1n—€)log, r}

for sufficiently large r. Thus, by using j1 +2j> +--- + nj, = n — j, we obtain

v (V" [\ d " Texp, {(—e)loggr} ]
( gZ ) (d) x---x(d) S[ r
x [exp, {(B +¢€)logq r}]™™

n—j

_ rexpp{(5~|—s) log, r} o 2.19)
expp {(u —¢€)log, r}

as r — +oo, where |z| = r ¢ [0,1]U Es, Es = E; U E4 and |g(z)| = M (r,g). From (2.17) and

(2.19), we obtain our assertion.
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Lemma 2.8 Let f(z) = 28 be a meromorphic function, where g(z), d(z) are entire functions
satistying pip,q) (9) = Kip,q) (F) = B < Ppp.q (F) = Ppp.q) (9) < +00 and App g (d) = ppp,q (d) =
Alp.dl (%) < W. Then, there exists a set Eg C (1,+00) of finite logarithmic measure such that for
all |zl =r ¢ [0,1]UEg and |g(2) | = M (r, g), we have

f (Z) 2s
‘f(s)(z) <r*, (seN).
Proof. By Lemma 2.7, there exists a set Es of finite logarithmic measure such that the estimation
£(s) s
f(ij) = (ng(r) ) (14 0(1)) (s>11isan integer) (2.20)

holds for all |z| = r ¢ [0, 1] U Es and |g (z)| = M (r, g), where vg (r) is the central index of g. On
the other hand, by Lemma 2.6, for any given € (0 < € < 1), there exists R > 1 such that for all

r > R, we have
vg (r) > exp, { (1 —€)log, (r)}. (2.21)

If w = 400, then u — € can be replaced by a large enough real number M. Set E¢ = [1, R] U Es,
Im(Ee) < +o00. Hence from (2.20) and (2.21), we obtain

‘ f(z)
£(9) (2)

z |° 1 - rs < o
vg (r)| 11+0()] = (exp, {(k—€)logy (N})” ~

where |z| =r ¢ [0,1]UEg, r — +oo and |g(2)| = M (r, g).

Lemma 2.9 ([6]) Let ¢ : [0, +00) — R and ¢ : [0, +00) — R be monotone nondecreasing functions
such that o(r) < Y(r) for all r ¢ (E7z U[0,1]), where E7 is a set of finite logarithmic measure.
Let a > 1 be a given constant. Then, there exists an 1 = ri(a) > 0 such that o(r) < P(ar) for

all r > rq.

Lemma 2.10 ([19]) Let f(z) = Zg; be a meromorphic function, where g(z), d(z) are entire

functions. If 0 < Plp.q] (d) < Hip.q] (f), then Hip,q] (9) = Hp,q] (f) and Plp.q] (9) = Plp.q] ().
Moreover, if pp, q (f) = +00, then pp11,41 (9) = Pppt1,q] () -

Lemma 2.11 Assume that k > 2 and Ao, Ai1,...,Ax # 0, F are meromorphic functions. Let
p = max{ppq (A) U=0.1,...k).,ppq (F)} < co and let f be a meromorphic solution of
infinite [p, g]-order of equation (1.4) with X g (+) < tip.q (). Then, pppy1.4(F) < p.

Proof. Let f be a meromorphic solution of infinite [p, g]-order of equation (1.4) with A, (%) <

Kip.q) (f) . So, we can use Hadamard factorization theorem and write f as f(z) = %, where g(2)

and d(z) are entire functions satisfying u(, g (9) = Wip,q () = 1 < pp.q) (F) = Ppp.q1 (9) < +00
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and A g1 (d) = ppp.q (d) = Mgl (%) < w. By Lemma 2.3, there exists a set £5 C (1, +00)

of r with a finite linear measure such that for all |z| = r ¢ E3 and any given € (0 < 2¢ <

Wip.q) (F) = Ppp.q (d)), we have

[Aj (2) | < exppys {(p(p,q) (Aj) +e)logqr}

<exppi {(p+€)loggr}, j=01,.., k-1, (2.22)
Ak (2) | = exp {—expp {(0(p,q) (Ak) +€)logg r}}
> exp{—exp, {(p+¢€)log,r}} (2.23)
and
IF ()] < exppir {(0(p.q) (F) +€)loggr} < exppyi {(0+€)loggr}. (2:24)

By (2.24), for all z satisfying |z| = r ¢ E3 at which |g(z)| = M(r, g) and any given
e(0<2e< Bip.gl (F) = Ppp.q) (d)), we obtain
‘Fc>:|F&n
f(z)|  lg(2)l
_ OPpi1 {(pp.q (d) +€)log, r}exppir {(0+€)log, r}
N expps1 { (bpp,q (F) —€)logg r}
< exppr1 {(0+€)log,r}. (2.25)
By Lemma 2.7, there exists a set Es C (1, 400) of finite logarithmic measure such that for all
|zl =r ¢[0,1]UEs and |g(z)| = M (r,g), we have

|d (2)]

() y J
ff(i;) _ ( gZ(f’)) (1+0(1), j=1,...k (2.26)
We can rewrite (1.4) as
£ (2) 1 - 9 (2)
) <m4a<A“”+' ‘ Z;A() )>' -
By substituting (2.22), (2.23), (2.25) and (2.26) into (2.27), we obtain
A6 L
[14+0(1) < exp {—exp, {(p+ ) logg r} } x
g ()]
<{ - 1+ou)}“%ﬂ{@+€N%a4

+exppy1 {(0+€)logg r})

Vg(r)j
z

k—1

‘[2+Z 1+o(1)]»exp{?expp{(pﬂ)'ogqf}}-
j=1

Hence

g (N1+0(1) < (k+1)r|l+o(1)|exp{2exp, {(p+€)log,r}} (2.28)
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holds for all z satisfying |z| = r ¢ [0,1] U Es U Es and |g(z)| = M (r,g), r — +oo. By (2.28),
we get
lim sup |ng+1 I/g (r)
F—+00 logq r
Since € > 0 is arbitrary, by (2.29) and Lemma 2.6, we obtain p[,;1,4 (9) < p. Since p, g (d) <

<p+te. (2.29)

Wip.q (f), so by Lemma 2.10, we have p[p11,4) (9) = P[p+1,q (F) - Thus, pjpy1,g) (f) < p. Therefore,

Lemma 2.11 is proved.

Lemma 2.12 ([19]) Let Aj(z) G =0,1,..., k), Ac(2) (#0), F (z) (# 0) be meromorphic functions

and let f be a meromorphic solution of (1.4) of infinite [p, q]-order satisfying the following condition
b=max{ppps1.4 (F). Pps1,q (A) G=0,1, .. )} <Py, (F).
Then
Ap+1,9)(F) = Apt1.q1(F) = o1, (F) -
Lemma 2.13 Let H C (1,+00) be a set with a positive upper logarithmic density (or infinite
logarithmic measure), and let A; (z) (j = 0,1, ..., k) with A (z) # 0 and F (z) # O be meromorphic
functions with finite [p, q]-order. If there exist a positive constant ¢ > 0 and an integer s,

0 < s < k, such that for sufficiently small € > 0, we have |As (2)| > exp,.1 {(c —€)log, r} as

|z| =r€H, r— +oo and

max {ppp.q (Aj) U #9). P (F)} <o

then every transcendental meromorphic solution f of equation (1.4) satisfies py, 4(f) > 0.

Proof. Assume that f is a transcendental meromorphic solution of equation (1.4) with py, 5(f) < 0.
From (1.4), we have

k R
F fU)
A= 56 ZO A (230)
T

Since max{pp.q (Aj) U #5). pp.g (F)} < o and p, 4 (f) < o, then from (2.30) we obtain
that

1= Plp.q) (As) < max{pp.q (A) G#9) ppq (F). ppq(f} <o
By Lemma 2.3, for any € (0 < 2¢ < 0 — p1), there exists a set £3 C (1,4o00) with a finite linear
measure such that

|AS (Z)| < E€XPp+1 {(p(p,q) (As) + 8) lqu I’} = €XPp+1 {(,01 + 5) lqu I’} (2.31)

holds for all z satisfying |z| = r ¢ E3. From the hypotheses of Lemma 2.13, there exists a set H
with log densH > 0 (or m; (H) = 4o00) such that

|As (2)] > exppiq { (0 —€)log, r} (2.32)
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holds for all z satisfying |z| =r € H, r = +o00. By (2.31) and (2.32), we conclude that for all z

satisfying |z| =r € H~ E3, r — 400, we have

exppy1 {(0—€)log, r} < exppy1 {(p1+¢€)log,r}

and by € (0 < 2e < 0 — p1) this is a contradiction as r — +o00. Consequently, any transcendental

meromorphic solution f of equation (1.4) satisfies py, 4 (f) > 0.

Lemma 2.14 ([23]) Let p > q > 1 be integers. Let f be a meromorphic function for which
Pip.ql (f) =B < +o0, and let k > 1 be an integer. Then for any € > 0,

£(k)

m|r,—

— | =0(exwp 1 {(B+e)10g,r}).

holds outside of a possible exceptional set Eg of finite linear measure.

Lemma 2.15 Let Ap, A1, ..., Ax Z 0, F # 0 be finite p, q]-order meromorphic functions. If f is a
meromorphic solution with py, 1 (f) = 400 and pyy11,4q (f) = p < +00 of equation (1.4), then
Ap.al (F) = Njp.a)(F) = ppp.q) (F) = +00 and Npi1,g (F) = Api1.q/(F) = pppi1,q(F) = o,

Proof Let f be a meromorphic solution of (1.4) with infinite [p, g]-order and p,11 ¢ (F) =
p < +oc. Note first that by definition, we have Xjpi1.q) (F) < Apr1.q1 (F) < pppt1,1 (F) . Then, it

remains to show that

Plp+1,q] (f) < X[p+l,q] (f) < Alp+1,q] ().
We rewrite (1.4) as

£(K) f(k=1) /

1 Ak(Z)T"i‘Ak—l (Z) 7 +-+ A (Z);-FAO (Z) . (2.33)

1
fF

By using Lemma 2.14 and (2.33), for |z| = r outside a set Eg of a finite linear measure and any
given € > 0, we get

k

(@)
m (r}lc) <m (r,{_) JrJ‘:lrn (rff +FZOm(r,Aj)+O(1)
1 K
<m (r,,_.) + ) m(r,Aj)+ O (exp, {(0+¢)log,r}). (2.34)
j=0

On the other hand, by (1.4), if f has a zero at zy of order a (o > k), and Ag, A1, ..., Ak are all

analytic at zg, then F must have a zero at zp of order at least a — k. Hence,

O I R et

Jj=0
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and
1 o1 1) | <
N(r,f)SkN(r,f)+N(r,F)+jZON(r,Aj). (2.35)
Therefore, by (2.34) and (2.35), for all sufficiently large r ¢ Eg and any given € > 0, we have

k

T(r,f)=T(r %) +0(1)<T(r,F)+ ZT (r. Aj)
j=0
— 1
+ kN (r, f) + O (exp, {(p+€)log,r}) . (2.36)

Noting ¢ = max {pp.q (Aj)) U =0.1,.... k), ppp.q (F)} . Then, by using the definition of the [p, g]-

order, for the above € and sufficiently large r, we have

T(r.F)<exp,{(c+e)log,r}, (2.37)
T (r Aj) <exp,{(c+e)log,r}, j=0,1,... k. (2.38)
Replacing (2.37) and (2.38) into (2.36), for r ¢ Eg sufficiently large and any given € > 0, we
obtain
— 1
T(r,f) < kN (r, f) + (k+2)exp, {(c+ &) logy r} + O (exp, {(0+€)log, r}). (2.39)

Hence, for any f with p, 4 (f) = 400 and p,11,4/(f) = p, by (2.39), we have

Apoal (F) = ppp.g) (F) = +00, Apy1.q (F) = pppiq (F)
SO

Plp+1.q (F) < X[p+1,q] (F) < Apta,q (F) -

And the fact that Xjpi1.q) (F) < Api1,g) (F) < pppr1,q (F) . we obtain
AMp+1.q (F) = Api1.q1 (F) = Pppra,q (F) = p.

3. PROOF OF THEOREM 1.1

Assume that f # 0 is a rational solution of (1.3). First, we will prove that f must be a polynomial
with degf < s — 1. For this, if f is a rational function, which has a pole at zy of degree m > 1,

or f is a polynomial with deg f > s, then f(5)(z) # 0. By (1.3) and Lemma 2.4, we obtain

K
0 < Plp,q(As) = p[p,Q](ASf(s)) = Plpa | — Z AifU)
J=0, j#s
< omax | Aepa (A)}

which is a contradiction. Therefore, f must be a polynomial with degf < s — 1.
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Now, we assume that f is a transcendental meromorphic solution of (1.3) such that A, ¢ (%) <
Wip.q (). By Lemma 2.3, for any given € (0 < 2¢ < 0 — p), there exists a set £3 C (1, +00) with

a finite linear measure (and so of finite logarithmic measure) such that

Ai(2)| < exppyi {(p+€)log,r}, j=0,1,...k j#s (3.1)

holds for all z satisfying |z| = r ¢ Es. In view of Lemma 2.8, there exists a set E¢ C (1, 4+00) of
finite logarithmic measure such that |z| = r ¢ [0,1] U Eg, |g(2)| = M (r, g) and for r sufficiently

large, we have

f(z)
f(s) (2)
According to Lemma 2.1, there exist a set £1 C (1, +00) with m;(E1) < oo and a constant B > 0,

< r? (s> 1is an integer) . (3:2)

such that for all z satisfying |z| = r ¢ [0, 1] U E1, we have

£U) (2)
f(2)

From the hypotheses of Theorem 1.1, there exists a set H C (1, +00) with m; (H) = +o0, such

<B[TQ@rAOI™, j=1,2.. .k j#s. (3.3)

that for all z satisfying |z| = r € H, r = 400 and sufficiently small € > 0, we have

|As (2)| > exppy1 {(0 —€)log,r}. (3.4)

Now, by rewriting equation (1.3) in the form

k .
f £U)
Al < || | 1Al + DA | (35)
f = f
J#s

and substituting (3.1), (3.2), (3.3) and (3.4) into (3.5), for all z satisfying |z| = r € H~ ([0, 1]U
E1UE3UEg), r — 400, we obtain

exppy1 {(0 —€)logy r} < Bkr®exp, 1 {(o+€)logg r} [T (2r, f)]FT.
Since 0 < 2e < 0 — p, then we have
exp {(1 —o(1))exp, {(0 —¢)log, r}} < Bkr®* [T (2r, f)]kJrl : (3.6)
From (3.6) and Lemma 2.9, for any given v > 1 and sufficiently large r > R, we get
exp {(1—0(1))exp, {(c —€)logy r}} < Bk (yr)** [T (2yr, F)]**!
which gives

p[p,q](f) = Kip,q] (f) = +o0, 0 < Plp+1.q] (f). (3.7)

By using Lemma 2.4, we have

max {ppp.q (A7) 1/ =01, ...k} = ppp.q (As) =B < Fo0.
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Since f is of infinite [p, g]-order meromorphic solution of equation (1.3) satisfying X[, ¢ (%) <

Wip.q (f), then by Lemma 2.11, we obtain

Plor1.q) (F) < max{ppp,q (A)) :J = 0.1, ... k} = pjpq) (As) . (38)
By (3.7) and (3.8), we conclude that wp, 4 (f) = ppq (f) = +oo and 0 < pppi,q (F) <
Plp,ql (As) :
4. ProoF oF COROLLARY 1.1

Assume that ¢ is a transcendental meromorphic function such that p,11 g (0) < 0. Noting g =

f — @, then ppi1,41(9) = Plpt1,q (F), so by Theorem 1.1, 0 < pppi1,4(9) < Ppp.q) (As) . By
substituting f = g + ¢ into (1.3), we obtain

Ac(2) g® + A1 (2) g D -+ AL (2) d + Ao (2) g
—— (A @ P+ A (@ * TV 4 A ()0 A (D)0) =G(2). (A1)

It is clear that the right side G of equation (4.1) is non-zero, because by Theorem 1.1, ¢ is not a

solution of equation (1.3). Moreover, the [p + 1, g]-order of G satisfies
P10 (G) < max{pprg (@) Ppps1a (4) G=0.1,...K)} <o,
which implies
max {Ppp+1,61 (G) . Pppt1.q (A)) G=0.1,... K} <0 < pppr1,q(9)-
Then by Lemma 2.12, we obtain
o< X[p—f—l,q] (9) = Np+1.q (9)

= 0[p+1,9] (9) = Pppt1.q] (F) < Ppp.q1 (As)
that is
0 < Npr1,q (F = 9) = A1, (F = 9)
= P[p+1,q (F = ©) = Plp+1,q (F) < 0p.g) (As) -

5. PROOF OF THEOREM 1.2

Assume that f is a rational solution of (1.4). First, we will prove that f must be a polynomial with
degf <s—1. For this, if f is a rational function, which has a pole at zp of degree m > 1, or f is
a polynomial with deg f > s, then f(5)(z) # 0. By (1.4) and Lemma 2.4, we obtain

K

0 < ppp,q(As) = p[p,q](ASf(S)) =Plpql | F— Z Aj (2) v
=0
s

< oM Aepa (A). ppa ()}
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which is a contradiction. Therefore, f must be a polynomial with degf < s — 1.

Now, we assume that f is a transcendental meromorphic solution of (1.4) such that A, ¢ (%) <
1

Wp.q(f). From Lemma 2.13, we know that f satisfies py, o (f) > 0. By the hypothesis X\, 1 (F) <
min{i(p,q (), 0} and Hadamard factorization theorem, we can write f as f (z) = %, where g (z)

and d (z) are entire functions satisfying
ﬂ[p,q](g) = 'u'[p,q](f) =p < p[p,q](g) = p[p,q](f),

1
p[p,q](d) = >\[p,q] (f) =0 < min{p,[p’q](f),a}.

The definition of the lower [p, g]-order assures us that

9(2)] = M(r. ) > exppi1 {(bgp.q (9) — €)logg r} . (5.1)
Putting
p1=max{ppq (A)) U7#5) ppq(F} <o
Then, by Lemma 2.3 and (5.1), for any given ¢ satisfying

0 < 2e <min{o — p1, h[p,q) (9) = Plp.q ()}

there exists a set £z C (1, +o00) with a finite logarithmic measure such that for all z satisfying
|z| = r ¢ E3 at which |g(2) | = M(r, g), we obtain
‘F(Z) F(2)|

7|~ Tet2 7@

_ &Pp11{(Pppg (9) +€)logg r}expy i {(p1 +€)logq r}
B exppi1{(Kpp.q (9) —€)loggr}
< exppi {(p1+€)loggr}. (5.2)

By using the same arguments as in the proof of Theorem 1.1, for any given

e (0 < 2e <min{o — p1. kp.q1 (9) — Plp.q (d)}) and all z satisfying |z| = r € H\(E1 U E3 U Eg),
r — +oo at which |g(2) | = M(r, g), we have (3.2),(3.3),(3.4) hold and

A (2)| < exppy1 {(p1+€)loggr}t, j=0,1,....k j#s. (5.3)
By (1.4), we have
k .
f £0) F
|As|s‘f(s) |Ao|+;|Af\ —+ +‘f' - (5.4)
I#s

Hence, by substituting (3.2),(3.3),(3.4),(5.2) and (5.3) into (5.4), for all z satisfying |z| = r €
H~ (Ey UE3UEg), r — 400, at which |g(z) | = M (r, g) and any given
e (0 <2e <min{o — p1. p,q) (9) — Ppp.g (d)}) . we obtain

exppi1 (0 —€)loggr} < r*® (exppy1 {(p1 +€)log, r}
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k
+ Y exppr1 {(o1+€)logg r} BIT (2r, F)]H
J=1j#s
+exppiq { (o1 +€)log,r})
< B(k+1)r* [T 2r, O exppy1 {(p1 +€)loggr}. (5.5)

Since 0 < 2¢ < 0 — p1, then we can use Lemma 2.9 with (5.5) such that for any given v > 1 and

sufficiently large r > R, we obtain

exp {(1—o(1))exp, {(c —€)log,r}} < B(k+1) (yr)® [T (2yr, £)]F L
which gives
Pip.al(F) = Wip.q (F) = +00, pppt1.q(F) = 0. (5.6)
Making use of Lemma 2.4, we have

max {ppp.q (A)) U=0.1,.... k), 0pq (F)} = ppp.q (As) =B < +oo.

By Lemma 2.11 and since f is of infinite [p, g]-order meromorphic solution of equation (1.4)

satisfying Ay g (%) < Wip.q (f), we get
Po+1.al (F) < max{ppq (A) G=0.1,....K),0p.q (F)} = pp,q (As). (5.7)
Since F # 0, then by Lemma 2.15, we have
X[p,q] (F) = Ap.q(F) = bipp.q1 (F) = ppp,q(F) = +o0 (5.8)

and
0 < Npt1.6) (F) = Npr1,61(F) = P, (F): (5.9)
By (5.7),(5.8) and (5.9), we conclude that
X[P,q] (F) = Np.q)(F) = bp.q) (F) = ppp,q(F) = +o0
and
o< X[erl,q] (F) = Np+1.9/(F) = Ppt1,g1(F) < Ppp.g1 (As) -
6. ProoF oF COROLLARY 1.2

Assume that ¢ is a transcendental meromorphic function such that pj,;1 g () < 0. Noting h =

f — @, then ppi1,4 (M) = pppt1,q1 (F), s0 by Theorem 1.2, 0 < prpy1,61 (M) < P (As) . By
substituting f = h+ ¢ into (1.4), we obtain

Ak (2) h + A1 (2) =D 4o AL (2) W+ Ao (2) h

—F@) = (4@ 0N + A1 (@) Vb A (D) + AR e) =W (). (61)
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It is clear that the right side W of the equation (6.1) is non-zero, because by Theorem 1.2, @ is
not a solution of equation (1.4). Moreover, the [p + 1, g]-order of W verifies

Ppr1.a) (W) < max{pppi14) (). Plprrg (A7) (=01, ..k} <o,

which leads to

max {ppp+1,q) (V). Ppr1.q (A7) G=0.1,...K)} <0 < pppi1q (h).

Therefore, by Lemma 2.12, we obtain
o= X[p+1,q] (h) = Aps1.q (h)

= Pp+1.9) (M) = Ppr1.q (F) < ppp.q (As),
that is

T < Npri.q (F = ©) = Apr1,q (F — )

= Plp+1,q) (F = ©) = Plp11,q (F) < ppp,q (As) -
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