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ABSTRACT. Embedding results play important roles in mathematical analysis. This paper addresses
some embedding theorems in the context of Sobolev spaces theory on Gelfand pairs over hypergroups.

Mainly, the analogue of the Rellich-Kondrachov theorem is proved.

1. INTRODUCTION

Sobolev spaces are well studied on subsets of R” [1,4] and on other classical spaces such as
Riemannian manifolds [13, 14], metric measure spaces [12], etc. More recently, these studies are
extended to other topological algebraic structures such as topological abelian groups, locally com-
pact groups, Gelfand pairs over locally compact groups, locally compact commutative hypergroups,
etc. More precisely, in [10,11], Gérka et al. constructed a class of Sobolev spaces on Hausdorff
locally compact abelian groups by the means of the Fourier transform. This construction is gener-
alized to Gelfand pairs over locally compact groups by Krukowski [16], to compact groups by Kumar
and Kumar [17], to noncommutative locally compact groups by Mensah [18] and to noncommutative
hypergroups by Bataka et al. [2].

In Sobolev spaces theory, embedding theorems are among the useful results that one may ex-
pect. They appear as support points in the analysis of partial differential equations and integral
equations. Among such embedding theorems is the Rellich-Kondrachov theorem. It is a com-
pact embedding theorem in Sobolev spaces theory which intervenes for instance in the proof of

the Poincaré inequality. The Rellich-Kondrachov theorem took it origin in a special result by
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Rellich [19] and the general case was obtained by Kondrachov [15]. Such compact embedding the-
orem has many important applications in analysis for instance in linear elliptic partial differential
equations defined over bounded domains [8,9], in engineering applications [20], etc.

In this paper, we are mainly concerned with a generalization of the Rellich-Kondrachov theorem
to a class of Sobolev spaces on Gelfand pairs associated with compact hypergroups. We paved the
way with some results which amount to the proof of the Rellich-Kondrachov theorem in the present
framework.

The paper is organized as follows. In Section 2, we recall some results which we may need. In
Section 3, we present the main results, the culmination of which is the analogue of the Rellich-

Kondrachov theorem.

2. PRELIMINARIES

The important ingredients which constitute this section are borrowed from [3,5,6]. Let G be a
locally compact space. Denote by
e C(G), the set of complex-valued continuous functions on G,
M(G), the set of Radon measures on G,
Mp(G), the subset of M(G) consisting of bounded measures,

M1(G), the subset of M,(G) consisting of probability measures,

¢(G), the set of compact subspaces of G,

0x, the point measure at the element x.

The set M(G) is endowed with the cone topology while €(G) is endowed with the Michael topology.

Definition 2.1. A locally compact space G is called a hypergroup if the following properties hold.

(1) There exists a binary operation * (the convolution) on My(G) which turns it into an asso-

ciative algebra such that

(@) the mapping (u,v) — w* v is continuous from Mp(G) x My(G) into My(G),
(b) ¥x,y € G, x 0, is a probability measure such that supp(0x *d,) is compact.
(c) The mapping (x,y) — supp(dx * 0,) is continuous from G x G into €(G).

(2) There exists a unique element e in G (the neutral element) such that
Vx € G, 0x * 0e = 0e * 0x = Ox.
(3) There exists an involutive homeomorphism ® : G — G such that for all x,y € G,
(0x % 8y)° = dye * xe.
(4) Vx,y,z € G, z € supp(dx * 8y) <= x € supp(dz * by ).

Definition 2.2. A closed nonempty subset H of a hypergroup G is called a subhypergroup of G if
(1) Vx € H, x° € H,
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(2) Vx,y € H, supp(dx *0,) C H.

Let G be a hypergroup and let K be a compact subhypergroup of G. For x,y € G, x * y stands
for the support of 05 x §,. The double coset of x with respect to K is

KxK = {ky xxx ko : ki, ko € K} = U supp(x, * Ox * Ok, ).
ki, ko€EK
For f € C(G), we set F(x # y) = / F(2)d(6, #5,)(2) and Fo(x) = F(x°).
G
A function f € C(G) is said to be K-bi-invariant if

Vki, ko € K,Vx € G, f(kl * X ok k2) = f(X)

Denote by IC(G) the set of continuous functions on G with compact support and by K% G) the
subset of IC(G) consisting of K-bi-invariant functions. Now, assume that the hypergroup G is
provided with a left Haar measure and that K is equipped with a normalized Haar measure. For
f € K(G), put

f”(x):/K/Kf(kl*x*/@)dkldkg.

For a measure u € M(G), set ubi(f) = u(ff), f € K(G). The measure w is called K-bi-invariant if
ud = 1. Denote by ME(G) the set of complex Radon measures with compact support that are also

K-bi-invariant. For u,v € M(G), we define u * v by

wxv(f)= //G f(xxy)du(x)dv(y), f € C(G).
Also, for f, g € K(G), the convolution product of f and g is the function f x g defined by
() = [ gty 0y = [ Fxy)atr)ay.
Provided with this convolution product, K(G) is an algebra and KU(G) is a subalgebra of K(G).

Definition 2.3. Let G be a hypergroup and let K be a compact subhypergroup of G. The pair
(G, K) is called a Gelfand pair if the space (M2(G), *) is commutative.

We may refer to this Gelfand pair as a hypergroup Gelfand pair. If (G, K) is a hypergroup
Celfand pair and if G has a Haar measure then G is unimodular [6].
In the rest of the paper, (G, K) is assumed to be a hypergroup Gelfand pair. We denote by Gh

the set of bounded continuous functions ¢ : G — C such that

(1) ¢ is K-bi-invariant,

(2) #(e) =1,

(3) vx.y €6, / Plxx kx y)dk = $(x)B(y),
K

(4)

4) Vx € G, p(x°) = ¢(x), where ¢(x) is the complex conjugate of ¢(x).
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The set Gl is called the dual set of the hypergroup G [5]. When equipped with the topology of

uniform convergence on compact sets, the space GU is a locally compact Hausdorff space.

Definition 2.4 ( [5). Let (G, K) be a hypergroup Gelfand pair. Let f € K%G). The Fourier
transform of f is the map f: Gl — C defined by

(@) = | #0)(ax
By a classical argument, the inverse Fourier transform is given by
)= [ #00T@)on(o)
where the existence of the measure 7 is ensured by the following theorem (Theorem 2.5).

Theorem 2.5 ( [5]). Let (G, K) be a hypergroup Gelfand pair. There exists a unique nonnegative

—~

measure ™ on GY such that
/ |F(x)[Pdx = /A F(¢)[2dm(¢), VF € LY(G) N L2(G).
G Gt
Hereafter are the analogue of the Hausdorff-Young inequality and its inverse inequality.

1 1
Theorem 2.6. [/] Let p, q be such that1 < p <2 and E + i = 1. Then, the following inequalities
hold.
(1) 1l < IIF
(2) 1l < I}

p, for all f € LP(G).
o, for all f € LP(G).

3. SOBOLEV SPACES AND EMBEDDING RESULTS

Definition 3.1. [2] Let (G, K) be a hypergroup Gelfand pair. Let 7y : Gl Ry be a positive

measurable function and let s € (0, +00). The set
: _ 2, : 2\ £ )2
H(6) = {7 e 1246): [+ woPIf@Pan(e) <
provided with the norm
%
I7lge = ( [0+ @2 PIF @) Pan(o)

will be called a Sobolev space.

In the sequel, the symbol — denotes the continuous embedding.

2
Theorem 3.2. Let (G, K) be a hypergroup Gelfand pair. Let a« > s > 0 and let p = ai—fs' Let p/

1 1 - ’
be such that  + — = 1. If (142"t e L%(GY), then HS(G) — LPB(G),
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Proof. The conditions about a and s imply 1 < p < 2. Then, by the inverse Hausdorff-Young
inequality in Theorem 2.6, we have ||f||y < ||| -

1Flle = /A|f<¢>|"d7r<¢>

b M
/ e
sp(2—p)

]|f 241D Z A+ 102 FF dn(9).

dm ()

’“\b '\’\n

o _
Since g+ TP = 1, then by the Holder's inequality, we have

~

17112 < (/(1+'Y(¢))f(¢)l2d7r(¢)) [ (10 2pdw<¢))2

2

2p

L
17l < ( @+ @i ¢>|2d7r<¢>) ([<1+w<¢>> “#5an(o)|

<l | [0+ a0r)# ndww))

S

p
2—p

< Fllgall (2 +92)7 |3 since o =
Finally, [ flly < Ifllp < [IFllpssll(2 +92) I3 Thus, HY5(G) < LP8(G), O
Lemma 3.3. Let (G, K) be a hypergroup Gelfand pair. If ¢ € GY, then Vg € KNG), g ¢ =9(¢)e.
Proof. Let f, g € KY(G). Consider ®(g) = g(¢). Set A= /G fF(x)P(g)p(x°)dx. We have

A= P(f)P(g) = ®(f * g) (the convolution Theorem)
= [ £+ 90000 )ax
G
= /G¢(X°) (/ fxxy)g(y®)dy | dx

:/g(yo) (/ f(x*y)p(x®)dx | dy (the Fubini's Theorem)
G G

|

)
Lo ( [ 000t wxtrax) ay

|

|

/ f(x) (/ 9(y*)p(y * x°)dy | dx (again the Fubini's Theorem)
G

/ f(x) (/ 9(y)o(y° * x°)dy | dx (change of variable y — y°)
G

/ F(x)(g * ) (x")dx
G


https://doi.org/10.28924/ada/ma.5.3

Eur. J. Math. Anal.

Since [ F()D(g)p(x°)dx = / F)(g * $)(x°)dx for all f € KI(G), then (g)p(x°) = (g +
G G

®)(x°). Therefore, g *x ¢ = ®(g)p = g(¢). O

Theorem 3.4. Let (G, K) be a hypergroup Gelfand pair. Let f € Hi’u(G). If y € G, then

o(y) — 1P

90/) — 1] )_anz

Hy®

x*v®) — f(x)|%dx L AC P
/Glf( y®) = F(x)PPd 5(;:%(1+7(¢)2)5

Proof. Fix y € G. Let f € KI(G). Set f,(x) = f(x * y°), x € G. We have,
50) = [ 00)F(x+ y°)dx
= /G<;5(y<> * x°)f(x)dx (change of variable x — x * y©)
- /qu(y<> * x)f(x°)dx (change of variable x — x°)

= (o)) = (Fx)(¥°)
= f(¢)d(y°)(Lemma 3.3).

[ 1%, (x) — F(x)]?dx = [A 1%,(¢) — F(¢)|2dm(¢)(Theorem 2.5)
G Gh

- /GAn F($)b(y°) — F(B)2dm(e)

- /a (6)(9(°) — 1)Pdn()

- /GAh F)PIo0°) — 1Pdn(9)

(1 +v(¢)*)°

EEETLR

- /A|F<¢)|2|¢(y>—1|2
Gh

p(y) — 117 ) 2
. ( Y +7(¢)2)5) e

Since K(G) is dense in H3"(G), the result holds for all f € ny'h(G). O

Theorem 3.5. Let (G, K) be a hypergroup Gelfand pair. If f € Hﬁ’u(G), then there exists n € K%(G)
such that

-1

IFen—rflos sup sup 2O gy
2\2 H.
vesupp(n) gegi (1 +7(9)%)2 !

Proof. Since G is a locally compact compact Hausdorff space, then it is a Tychonoff space. Therefore,

there exists n € KI(G) such that n(e) # 0, n > 0 and / n(x)dx = 1. Then, we have
G

1

2

[f*n—fla= (/Glf*n(x)— f(x)|2dx)
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>\
W)
= /G/Gf(X*W)n(y)dy—f(X)/Gn(y)dy

1
2 3
dx)

< /G ( [G f(x*w)—f(x)Fn(y)Fdxfdy

- /G /G_f(x*f)n(y)dy—f(x)

1
2 2
dx)

_ / / (F(x+y®) = F(x))n(y)dy
G |JG

S/(J_In(y)l (/G!f(X*yQ)—f(X)Izc/X)édy

-1
< s s P01

S ————— - ||f|| jss (use Theorem 3.4).
vesupp(n) gegr (1 +7(4)?)2 "

In the rest of the paper, we assume that G is compact.

Theorem 3.6. Let G be a compact hypergroup. Let (G, K) be a hypergroup Gelfand pair. Let
p.q € (1,00). If a sequence (f,) C LPU(G) converges weakly to a function f, then for every
n € KYG) the sequence (f, ) converges strongly to f xn in L99(G).

Proof. Since the sequence (f,) converges weakly to f, then by [4, Proposition 3.5] there exists a

positive real M such that

||fn||p < M and Hpr < M.

We have
1y ()] = ‘ [ oo *x)dy‘

< /G (0 )m0° % )] dy

3=

P

<l [ Ity 2P ay )

< Minllp

1
where p' is such that — + — = 1. Since G is compact, the constant function x —— M||n|y is

integrable. Therefore, by the Dominated Convergence Theorem, we have

fox1(x) = /G B x)dy 225 [ (7 x)dy = Fen().
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Then,

Ifn*n(X)—f*n(X)IZ‘ [ o <00y - [ f(y)n(ywx)dy\

- ‘ [ = oty *x)dy‘

|

P

< lf—flp (/G In(y°*><)|"'dy)

1
o

<om ( [ mra, *cx)(z))
< 2Mjinlly.

Again, by the Dominated Convergence Theorem, we obtain

lim ||f,*+n—f*xn|g=0.
n—oo

Hereafter is the analogue of the Rellich-Kondrachov theorem for hypergroup Gelfand pairs.

Theorem 3.7. Assume that G is compact. Let (G, K) be a hypergroup Gelfand pair. Let o > s > 0.

1 1 -
Let p:= O?—j‘s and let p’ be such that 5 + i L If(1++%)7 € L*(GY) and

lim (sup W) =0
voe | sea (1+7(9)7)3

then H,SY'E(G) embeds compactly in L99(G) for every q € [1, p'].

Proof. In Theorem 3.2, we obtained that Hfsy't'(G) < LP'A(G); since G is compact and p’ > g, then

LP'B(G) — L98(G). Therefore, we have that H,sy‘t'(G) < L9(G). Now, let (f,) be a bounded

sequence in ny’t'(G). Then, (f,) is a bounded sequence in LP"8(G). There exists M > 0 such that
VneN, ||y < M.

For g € LP(G), we have

(o, 9 < Ifallpllglle < Mligllp.

Therefore, (f;) is weakly bounded. It admits a subsequence (h,) which converges weakly to
he LP8(G). Take € > 0 and n € KI(G) such that ||h*n — hl|» < e.
By Theorem 3.5 and Theorem 3.6, we have

1hn = hll2 < {[hn = b nll2 4 [[hn x 0 = hoxnll2 + [[hxn = hil2

( o 160 1]
et (L+7(9)2)3

< 2+ [lhnxm — hxnll2.

<  sup

< Nball s + lhn xm — hxnll2 + €
y€supp(n) i
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As the above inequality is realized for an arbitrary g, then

lhn = hll2 < |lhp xn — hx 7l

Therefore,
im [[h— hllz = lim [[hyxn — 7z = 0.
n—oo n—oo

Thus, (h,) converges to hin L28(G). Since G is compact, we apply the Vitali's convergence theorem

to conclude that (h,) converges to h in L91(G). O
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