©2025 Ada Academica
Eur. J. Math. Anal. 5 (2025) 1
doi:

Stability Results of Positive Weak Solution for a Class of Chemically Reacting Systems

Salah A. Khafagy?!, A. Ezzat Mohamed?*

L Department of Mathematics, Faculty of Science, Al-Azhar University (11884), Cairo, Eqypt
salahabdelnaby.211@azhar.edu.eqg
2Department of Mathematics, Faculty of Science, Fayoum University (63514), Fayoum, Eqypt
aam35@fayoum.edu.eg

*Correspondence: aam35@fayoum.edu.eg

ABSTRACT. This paper aims to study the existence and non-existence results of positive weak solution

to the quasilinear elliptic system:

—Dpu = Xa(x)[f(u,v) — &1, x € €,
—Aqv = Xb(x)[g(u, v) — V%] x € Q,
u=0=v, x € 092,

where A,w = div(|Vw| 2V w) is the r-Laplacian (r = p,q), r > 1, o, 8 € (0, 1), Q is a bounded
domain in RV(N > 1) with smooth boundary 8Q and X is a positive parameter. Here f, g are C?
increasing functions such that f,g : RT x Rt — R™; f(v1,v2) > 0, g(v1,v2) > 0 for v1,v2 > 0.
With C! sign-changing functions a(x), b(x) that perhaps have negative values nearby the boundary.
We establish our results via the sub-supersolution method. In addition, we study the stability and

instability results of positive weak solution with different choices of f and g.

1. INTRODUCTION

This paper aims to study the existence and non-existence results of positive weak solution to

the quasilinear elliptic system:
—Apu = ra(x)[f(u,v) — u%] x € Q,
—Aqv = Xb(x)[g(u, v) — V%] x € €, (1)
u=0=v, x € 02,
where A,w = div(|[Vw| =2V w) is the r-Laplacian (r=p,q), r > 1, a,8 € (0,1), Q is a bounded
domain in RV(N > 1) with smooth boundary 8Q and X is a positive parameter. Here f, g are C*

increasing functions such that f, g : RT x Rt — R™; f(v1,v2) > 0, g(v1,v2) > 0 for vy, vz > 0.

With C? sign-changing functions a(x), b(x) that perhaps have negative values nearby the boundary.
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General evolutionary problems are defined as follows:

ur = nhpu + Xa(x)[f (u, v)—u% , x € Q,
ve = 00qv + Ab(x)[g(u, v) — V%] x€Q, (2)
u=0=v, x € 09,

have stationary counterpart of systems of singular equations like (1), such that n and 9 are positive
parameters. System (2) is an inspiration from major applications in chemically reacting systems,
where the activator chemical substance’s density is denoted by u, while an inhibitor is denoted
by v. The slow and fast diffusion of v and v, respectively, are turned into a small 1 and large
0 (see [1])). Furthermore, systems like (1) appear in many contexts in Engineering and Biology.
It presents a simple model where u, v denote the density of two diffusing biological species for
describing the interaction between these two species.

Recently, similar problems have been discussed in [2-5]. The authors in [6] investigated the

positive weak solution of the system:

—Au = \f(u) — u%] x € Q,
u=20, x € 09,

(3)

where f € C2(RY), f' >0, f(0) = 0, lim 9 — 50 and © € RV(N > 1). When N = 1, they

€E— 00
used the quadrature method to discuss the multiplicity and uniqueness results, while for N > 1
they established their existence results using the sub-supersolution method. In [7], it was discussed

the existence of positive weak solution to the non-linear system:

—Apu = Xa(x)[f(v) — u% , x € Q,
—Aqv = Xb(x)[g(u) — v% : x € €, (4)
u=0=v, x € 092,

where A,w = div(|Vw| 72V w) is the r-Laplacian (r = p, q), r > 1. Here f, g are C' increasing
1

functions such that f,g : R™ — R*; f(w) > 0,9(w) > 0 for w > 0 and lim %‘ﬂ(ﬁ) =

w—0o0

0 V M > 0. With C! sign-changing functions a(x), b(x) that perhaps have negative values
nearby the boundary. See [8], where system (4) studied by some authors when p = ¢ = 2.
Also, we studied in [9] the existence and non-existence results of positive weak solution of (1) in

case p = q = 2, where f, g are C! increasing functions, IiLn w =0 VM >0 and
[ de el

W = 0. With C?! sign-changing functions a(x), b(x) that perhaps have negative values

[im
w—r00

nearby the boundary.
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Our first aim of this paper is to study system (1) as an extension of system (4) with C! increasing

functions f, g satisfying

i FEMIg(E 1)

€00 gp—t B ' oo €971

On the other side, many authors have an interest in studying the stability and instability of
positive solution to semiposiotne [10-12], linear [13], semilinear [14-17] and fractional [19,20] sys-
tems, they are used in several applications such as Fluid mechanics, Newtonian fluids, Population

dynamics, Reaction-diffusion problems, Glaciology, etc.; see [20-22].

Shivaji and Brown in [11] discussed the stability properties of positive solution for the system:

—Au = Xf(u), x € Q,
()
u=0, x € 019,

they proved that every positive solution of (5) is unstable when f(0) < 0 and f” > 0. See [12], where
Tertikas proved the non-monotone case. Maya and Shivaji in [16] overcame the non-monotone case
through re-formulating f as a combination of a linear and monotone function. Simon and Karatson
gave a direct proof of the result (see [14]). In summary, if f(0) > 0(< 0) and f” < 0(> 0), then
every positive solution of (5) is stable (unstable). Also in [9], we studied the stability and instability
properties of system (1) in case p = g = 2, under certain conditions such that every weak solution is
stable near the boundary; otherwise, it is unstable. In [23], some authors investigated the stability

of non-negative weak solution for the nonlinear system:

—Apu=Xf(x,u), xeQ, 6)
Bu =0, x € 09,
where f : 2 x [0, 00) — R be a continuous function. They discussed (6) when f(x, u) = w(x)f(u),

where w(x) is a continuous weight function. They showed that every positive solution is unstable

(stable) if fL(,ff;ﬁ’) is strictly increasing (decreasing) function.
Our second aim of this paper is to extend these results to (1) with different choices of f, g. For
further stability and instability results on elliptic systems (see [10,17,18, 24-26]).
Let A1, > 0,r = p,q, be the principal eigenvalue of the following eigenvalue problem to

accurately state our existence results:

—Arp = No|" %0,  xeQ,
=0, x € 012,
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where @7, be the corresponding eigenfunction satisfying @1 ,(x) > 0 in Q with [|¢1,]|lc = 1.
Suppose w,§, m > 0 be such that

L( s
Sy s+1

)IVoi " >m,  xe Qs (8)

p<p1, <1, xeQ—Qs, 9)

fors=a,B and s, = (s + 1) %, where Qs := {x € Q| d(x,0Q) < §}. By Hopf's lemma, we find
this available since 1 , = 0 while |V1 | # 0 on 8Q. Furthermore, we suppose e, € W, (Q) be

the unique solution of the problem:

4Arer - 1, X € Q,
(10)
er — 0, X € aQ,

where % is the outer normal derivative, ¢, > 0 in €2 and % < 0 on 0N (see [27]). To be more

specific, we will split our results into two cases:

e Case(l): when x € Qg; assume a(x), b(x) < 0 with
a9, 30, by, bo > 0: —ay < a(x) < =3y, —by < b(x) < —bo.
e Case(ll): when x € Q — Qg; assume a(x), b(x) > 0 with
ay, @1, by, b1 >0 3 < a(x) < a1, by < b(x) < by
2. EXISTENCE AND NON-EXISTENCE RESULTS

In this section, the results of the existence and non-existence are established by using the

sub-supersolution method.

Definition 2.1. A pair of non-negative functions (u, v) is called a positive weak solution of (1) such
that (u, v) € WP (Q) x Wy9(Q) if they satisfy

/ |VulP™2Vu- V¢ dx = A/ a(x)[f(u,v)— ia]( dx,
Q Q u

]Q VV|9 2V - V¢ dx = xlﬂb(x)[g(u, V) — 716K dx.
VCeW :={CeCP(Q)I¢>0 xe€Q}

Definition 2.2. A pair of non-negative functions (1,2) and (z1, z2) are called a positive weak
subsolution and supersolution of (1), respectively, such that (11, v2), (21, 22) € Wol’p(Q) X Wol’q(Q)
if they satisfy

] VP2V, - VE dx < A / GO (W, w2) — —=1¢ dx,
Q Q Ys

1
q—2 . o
/QIV¢2I Vo - V{dx < %/Qb(X)[g(wl,dzz) ng]C dx,
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and

/ IVz|P72Vz - V(¢ dx > A/ a(x)[f(z1, z) — ia]( dx,
Q Q 4

[ V2|92V 2, - V¢ dx > >\/ b(x)[g9(z1, 2) — %]C dx,
Q Q Z

2
VEeW ={(eCP(Q)|¢>0, xeQ}.

Now, we state our results as follows:

Lemma 2.1. (see [2]): Let (Y1,%2) and (z1, z2) be a subsolution and supersolution of (1), respec-
tively, with 11 < z1 and Y¥» < z». Therefore, system (1) has a solution (u,v) with {1 < u <2z
and Yo < v < 2.

Our assumptions are as follows:

(S1) f,g: RT x R™ — RT are C! increasing functions such that f(v1,v2) > 0, g(v1, v2) > 0 for

v1,V2 >0and |im f(uy,v2)= I|im g(v1,v2) =00
V1,VU2—00 U1,U2—00
(&M a1
(52) Jim EMIGOIT) oy pp 2 g and Jim 968 _,
£—oc0 SD 1 £—o0 5‘7 1

(S3) Let €5 > 0 such that:
)

/\/:f(“eg,‘“g)—( pol)a>0,

and
1 1

Eﬁ Gﬁ B
M:g(ﬂ'o 'ﬂo )( CIOI) >0,
Po do ueol

_1_ L
(ll) f(€ el < m/n{ pgotp Napay qgﬁaﬁo MBqby }

% " A1,p P3g’ & " Ai,q P3g
ALp Pes Aiq€d " pag
(iid) g(eo eo qoﬁq Napay pSapag MBqb;
" A1,p gbg’ p%f ' A1,q 9bg
Alq qfo Ap € abg

with po = 327, 4o = %7, ap = (@ +1)P"F and By = (B+1)7 %
(S4) There exist fy, go > 0 where f(v1,v2) < fou]*vst and g(v1,v2) < govf?vJ? such that
Y1,72, K1, ko are positive parameters, 1,72 € (0,1) and Ko + 72> < min{1, Kil}

To be more specific we consider A\y(€,) and A°(e,) by the following

, me, me,
o __
A —m/n{ T — ]»
—1 —1 — q-1
paof(es " €5 ) abog(es ™ €5")
a+p—1 B+g—1

. — max Eopi1 >\1,p eo(k1 >\1,q €o >\1,p €o >\1,q
o= ) ) , .
pSapay ' ¢SBgby  Nopay MBqb

and
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Example 2.1. Assume f(vy,v2) = [U5' + (viv2)t — 1], g(v1,v2) = [V + (v1v2)% — 1] where
ki, ko, i, I are positive parameters. Thus, f, g clearly satisfy (S1) and (S2) if max{k>, /2}% <
p—1, max{ko, b} < g —1 and (max{ko, IQ}ﬁ +1)h < p—1 such that

i LEMIEONT) g gy 9D

and EIim g(&, &) = oo. We can take €, > 0 small enough that f, g satisfy (S3).
—00

=0,

Remark 2.1. Note that (S3) implies Ao < X\°.
Here, we can establish our existence results.

Theorem 2.1. Suppose (S1)-(S3) hold, hence (1) has a positive weak solution for every A €
[No(€o). A°(€o)].

Proof. We shall verify that

(Y1.%2) =

is a positive weak subsolution of (1). Then

1+«
and
/Q [Vah P72V - VC dx
€ 1-2& _
- ao/ (pg,p Oc+1)|V(pl,p|p V1, - VCdx
p
€ (1-25) ap a
:OLZ/ V1P~ V(plp[v((plp ot C)_(l +1)(p1;1v‘plp C:|C/X
€ 1 aap ap o
- OLO/Q [|V‘P1,p|p Vo, pV( - C) - (1 a_|_1)<P17,1|V<Pl pl” ]dX
P
_ €o a+1 ap a+1 p
= — — 1_
O‘p/Q[)\lp‘P ( Ot—l—l)(plp |V(p1,p| :|CdX.
then,
[e3 ap a
[1vwnP2vunveax=22 [ Duofy - (1= 22 ei Wonlcax
Similarly,

2 +1 6(7 +1
/|V1P2|q Vo - VCdX—ﬁq/ [quﬁ (1—m)wﬁ V1,47 ]CdX-
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Case(l): when x € Q5. Put s =a, r = p in (8), we have

_- — —— IV P < —-m.
0= IVl
Hence,
ol
—€0 P71 ap —me
—(1- )IV<P1 pl? < °
ap
me
and since A < \°, then \ < j - Hence,
paof(es™ ed™)
1 _Po 1 qo
me 1 1 €p71 a+1 qul B+1
© < Aapf(el i) < —Aaof( © Fip 0 Pig
Po do
so,
art < = O
a+ p— a+ q—
€o(P1p(1 )|V<p1 P < Xaf(eo Y1y €o (,01q)
ap a+1 P 0 Po Jo
a+p—1
€71 A
and since A > X\,, then A\ > Oail’p. Hence,
Po®pdg
€ >\ a+1
0Pl oy o A o Ak
O(p Otp GgTI )a GFWT o
Po Po
Using (12) and (13) in (11), we see that
1 Po 1

1

A el a+1 €d-

Po

1
1
Q febtor T
Po

= —>\/Q ao[f (Y1, 92) — *]C dx
nganmmwg—axw.
Q ¢1
Case(ll): when x € Q — Qs; u < 1., < 1. Since X > )Xo, then

Napal -

(12)
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Hence,

P ap

_ € = so
/ VP20 - VC dx = <2 / [Al,pcbfﬁ: —(1- 1)¢f‘,§V¢1,p|"]<dx
Q ap Jo

p

EO a1
< 22 [ A p¢2i¢dx
Ap JQ

SA/alNCdX
Q

Ko
gt o
P~ a+l Eq— + 1
Sklallif(o ¢1,p o d)lq)_ . — :|CdX
Q Po do Pl patt
1
( Po
1
ZA/al[f(wl,dfz)—a]C dx
Q ¢1

1
< [ 00l ) - )C dx
Q Y1
Similarly, we can get also

_ 1
/Q Vsl T2V - VC dx < A /Q Bl )~ gl dx

Thus, (¥1,%2) be a positive weak subsolution of (1).

On the other side, we will construct a positive weak supersolution of (1). Suppose

(21.22) = (€ ep(x), Musg(Cltp, Clip)] T eq(x))

where t, = ||a(X)]lco, b = ||b(X)|loc @and p, = ||er(x)]|co for r = p, g. Now by (S2), we can take

c large enough such that

1
P71 > Apaf (ctip, Mbg(Clip, Cip)] T q),
then,

/|v21|f’2v21-v< dx :cplj Ve,|P?Ve, - V¢ dx
Q Q

= Cp_lj ¢ dx

Q
1
> /Qkuaf(cup, Aubg(clip, cup)lTTug) - € dx
1
>\ /Q 2(x)F( ep(x). Mo (Cltp, Clip)]TT eq(x)) - € dix

= >\/Qa(X)f(Z]_,ZQ) ¢ dx
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zx/xmmaa)ham
Q 7

Also, by (S2) we can take cup > pg[Aupg(ciip, Cup)]ﬁ. Then
/ |V2|9?Vz - V¢ dx = A[ wp g(clip, clup)|Veg|92Vey - VC dx
Q Q
= %/Qubg(cup, Chp) - ¢ dx
_1
> [ b0g(e ex(x). Doy, )] eqlx) - ¢ d
> >\/ b(x)g(z1, z2) - ( dx
Q
1
ZA/M@MAQy-]Qm
Q 2

Thus, (z1, z2) be a positive weak supersolution of (1) for ¢ large with ¥; < z; and 9> < z. Thus,

there exists a positive weak solution (v, v) of (1) such that 1 < u <2z and Yo < v < z. |

Theorem 2.2. Let (S4) holds with (p — 1 —v1)(g — 1 — ) = Kiko and prk1 = q(p — 1 — 7).

Alp Alg

—5% =3¢ 1 and

Hence (1) has no positive weak solution if X € (Amax, Amin), where Amax = max{
Ap Ang

Amin = min{ 5% 1 De } with t = min{foéo, 9050} and s = max{foél, 9051}.
Proof. Let (u,v) be a positive weak solution of (1). Proof’s idea is that a contradiction will be
obtained in the end. Multiplying the 15t and 2"¢ equation of (1) by u, v, respectively. Applying

Young's inequality, so

uP vl
/|Vu\pdx < >\/ foa(x)(— + —)dx, (14)
w1 M2
Q Q
with u; = ﬁp,h > 1and pp = pfl’l% > 1. Similarly, we have
q uPve
/yvV| dx < A/gob(x)(ﬁl + ﬂ—2)dx, (15)
Q Q
with 91 = qfqu,yz >1and ¥, = ﬁ > 1. Note that
Al,p/updxg /|Vu|pdx, Alvq/quX§/|Vv|qu. (16)
Q Q Q Q

Combining (14)-(16), we obtain

Al,p/upderAl,q/quxg A[/ ( %Z(1X) + goggx))updwrﬂ/ ( beiX) + gogix))qux]_

Q Q Q
(17)
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Case(l): when x € Q5; a(x) < —ag, b(x) < —bg, hence
(ALp + 2Xt) / UPdx + (A1q + 2At) / vidx <0, (18)
Q Q
where t = min{fyag, gobo}, that is a contradiction when X > Xpax.
Case(ll): when x € Q — Qs; a(x) < a1, b(x) < by, hence

(A1,p — 2Xs) I uPdx 4+ (1,4 — 2Xs) / vidx <0, (19)
Q Q

where s = max{fyai, gob1}, that is a contradiction when X\ < Aip. O

3. STABILITY AND INSTABILITY RESULTS

Now, we study the stability and instability results of positive weak solution for (1) with different
choices of f and g (see [28,29)]).

Suppose (u, v) be any positive weak solution of (1), hence the linearized system associated with

(1) is defined as follows:

—(p = 1)div(|VulP=2V) — Xa(x)[ (s + -&7 )0 + L] = e, x € Q,
—(q = 1)div(|]Vv|9=2V) = Xb(x)[gue + (9v + 551 ) W] = ue, x€Q, (20)
p=0=1, x € 092,

where subscripts refer to the partial derivative of f or g (see [30]). Let py be the first eigenvalue

and (¢1,91) be the corresponding eigenfunction of (20) such that @1, 41 > 0 in 2.

Definition 3.1. We say (u, v) is a stable solution of (1) if all eigenvalues of (20) are strictly positive,

which can be implied if the first eigenvalue @1 > 0. Otherwise (u, v) is unstable.

Our assumptions are as follows:
(T1): For u, v > 0, the functions f,, g, are positive.
(T2): For every v > 0, the function (f(u, v) — u=®)/uP~! is strictly increasing at u.

T3): For every u > 0, the function (g(u, v) — vP)/v9~1 is strictly increasing at v.
y y g

Theorem 3.1. Suppose that (T1)-(T3) are satisfied, hence every positive weak solution of (1) is
stable in Qg and unstable in Q — Q.

Proof. Let (uo, vo) be any positive weak solution of (1). Multiplying the 1°¢ and 2"? equation of
(1) by (p — 1)w1, (g — 1)9, respectively and integrating over €2, so

! lax, (1)

U

—(p-1) [Q o1 () dIV(IVtolP 2V uo)dx = (p — 1)A /Q 01(3) a0 [F (U, vo) —
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and
~(a-1) [ $200div(Vv6l" 2T v0)dx = (0= DX [ 910600806, v0) — S 51dx. (22
Similarly, multiplying the 15t and 2" equation of (20) by —u,, — Vo, respectively and integrating
over €2, so
—p,l/Quo(pl(x)dx =(p— 1)/QUO div(|Vue|P~2Vp1)dx

+ A/ p1(x)a(x)[uofy + %]dx (23)
+ )\/ 1 (x)a(x)f,u, dx,

and

—n [ vows()dx =(a=1) [ vo div(Vvel* 2 g)dx
+ ALwl(X)b(X)[vogv + Vig]dx (24)
+ >\/ Y1 (x)b(x)gu Vo dx.
Q
Combining (21) to (24), we get
—(p— 1)/ [01(X)div(|Vuo|P 2V uo) — o div(|Vue|P?Vip1)]dx
Q
- (C] - 1)/ ["/jl(X)d’.V(|VVo‘q72VVo) — Vo d/‘V(|VVo|q72V¢1)]dX
Q
2 [ e0aatalusf+ 2 1dx+x [ 9(9b0oluag, + o sldx

1a Jax (25)

o

~(-1x [ <p1<x>a(x>[f<uo, vo) —
~ (@D [ 4100809, ve) — 7 510
+ A /Q a(x)Y1(x)f uo dx + X /Q b(x)w1(x)gyve dx
= -l / [uot1(X) + Vo1 (x)]dx.
Q
Using Green'’s first identity, then
/ Uo div(|Vue|P V1) dx = / 01(xX)div(|Vue|P~?Vu,)dx, (26)
Q Q

and

/vo d/v(|Vvo|q2V¢1)dx:/z/11(x)d/v(|Vvo|qQVVO)CIX. (27)
Q Q
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By using (26) and (27) in (25), then

3 [ o120 wof — (0= Dr(00,v0) + 2= o

o

()

tA /Q 1/’1(><)b(><)[vogv — (9 —1)9(to, vo) + W]dx

+>\[le(x)a(x)fvuodx—k)\Lwl(x)b(x)guvodx

= —u1 /Q[Uo(Pl(X) + Vo1 (x)]dx.

Also, since (f(uo, Vo) — ugo‘)/uop*1 is strictly increasing at u, Vv, > 0, then for vy, vo >0

Uofy — (P — 1)f(Uo, Vo) + (ot +p — 1)up™®
UoP

>0, (29)

and since (g(uo, Vo) — vo_ﬁ)/vo"_1 is strictly increasing at v, VYuo > 0, then for uy, vo > 0

Vogy — (4 —1)g(uo, Vo) + (B+q —1)v, P
Vod

Case(l): when x € Q5; a(x), b(x) < 0. Thus substituting (29)-(30) in (28), so

> 0. (30)

— U1 /Q[uowl(x) + voh1(x)]dx < 0, (31)

then, u1 > 0 and the solution is stable.
Case(ll): when x € Q — Qs; a(x), b(x) > 0. Thus substituting (29)-(30) in (28), so

—w /Q o1 (x) + Vo1 ()]dx > 0, (32)

then w1 < 0 and the solution is unstable. [l

Remark 3.1. By replacing assumptions (T1)-(T3) with next:

(L1): For u,v > 0, the functions f,, g, are negative.

(L2): For every v > 0, the function (f(u,v) — u™®)/uP~! is strictly decreasing at u.
(L3): For every u > 0, the function (g(u,v) — vP)/vi~1 is strictly decreasing at v.

We deduce the following:

Corollary 3.1. Suppose that (L1)-(L3) are satisfied, hence every positive weak solution of (1) is
unstable in Qs and stable in Q — Q.

Proof. In the same way that Theorem 3.1 is proved, the proof procedure is similar. O

Remark 3.2. As shown in the preceding theorem and corollary, the stability results of positive

weak solution are dependent on the domain, in addition to the provided assumptions.

Remark 3.3. If p = q = 2 in system (1), we get the results of the system which have been studied

in [9]
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