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ABSTRACT. In this paper, we find necessary and sufficient conditions for the boundedness of the com-
mutator of the Hardy-Littlewood maximal operator in total Fofana spaces. We also give in these

spaces the boundedness of some sublinear operators and their commutators.

1. INTRODUCTION AND MAIN RESULTS

Let d be a fixed positive integer and RY the d-dimensional Euclidean space. The estimation of
commutators plays an important role in studying the reqularity of solutions of elliptic, parabolic
and ultraparabolic partial differential equations of second order, and their boundedness can be
used to characterize certain function spaces (see, for instance [3, 18, 20)).

We denote by LO(RY) the complex vector space of equivalent classes (modulo equality Lebesque
almost everywhere) of Lebesque measurable complex-valued functions on R?. For f € L°(RY) and
x € RY, the Hardy-Littlewood maximal function is defined by the formula

MeG) =sup B, NI [ 1F)ldy, (1)
r>0 B(x,r)

where |B(x, r)| is the Lebesque measure of the ball
Bx,r)={yeR? : |x—y|<r}.

The maximal commutator M}, generated by the maximal operator M and a locally integrable function
b is defined by

/\//b(f)(X)ngBIB(X,f)II/ )Ib(X)—b(y)llf(y)ldy-

Furthermore the commutator generated by the operator M and a suitable function b is defined by

(x,r

[b, MIf(x) = bO)M(F)(x) = M(bF)(x).

Recall that the operators My and [b, M] essentially differ from each other since M, is positive

and sublinear and [b, M] is neither positive nor sublinear. The operators M, [b, M] and M, play
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an important role in real and harmonic analysis and applications (see for example [1,2,10,15,16]
and the references therein). The boundedness of these operators on Lebesgue spaces has been
extended to several other spaces. For example, on Morrey spaces ( [4], [11]), modified Morrey
spaces ( [14]), total Morrey spaces ( [13]), Fofana spaces ( [0]) to name but a few.

Recently, P. Nagacy and B. A. Kpata [17] introduced the total Fofana spaces and established in
these spaces, under certain conditions, the boundedness of the Hardy-Littlewood maximal operators,
the Riesz potential and fractional maximal operators.

The main purpose of the present paper is to establish the boundedness of the commutators of the
Hardy-Littlewood maximal operator and some sublinear operators in total Fofana spaces. Before
stating our main results, let us start with some notations and basic definitions. Let 1 < g, p < o0
and r > 0. For f € LO(RY) we define

1
q
Mllgp = H[ [ 1rxeniax]

with the LP(R9)-norm taken with respect to the variable y. We adopt the usual convention é =0.
In 1988, Fofana [7] introduced the functions spaces (L9, LP)* (R9), 1 < g < a < p < oo, which

p

consists of the set of all functions f € LO(RY) satisfying 11l p.a < o0, where
_ dG=G—5)
Hqu,p,oz _fggr ap r”f”q,p-

It is proved in [7] the following properties:

e for 1 < g < a fixed and p going from a to oo, the spaces (L9, LP)* (R?) form a chain of distinct
Banach spaces beginning with the Lebesque space L*(R?) and ending by the classical Morrey
space L99I1=3)(RY) = (L9, )™ (RY);

e there exists a constant C > 0 such that

1fllgpe < Cliflla- (1.2)

For an in-depth study of Fofana spaces, please consult the following references (see [6, 8, 9)).
let 1< g<a X< p<ooand[r]; =min{l,r}, r > 0. The total Fofana spaces (L9, LP)**(RY)

are defined by
(Lq, Lp)a'A(Rd) = { fe LO(Rd) : ||f”(/_qup)a,)\(Rd) < 00 }

where

d(%_l_l d(—i+i41)
[Fllo oyerguey = suplrdy P71/ 202 el flg -
r

Note that

(1) the space (L9, LP)**(RY) is a complex vector subspace of LO(RY).
(2) from the definition of (L9, LP)**(RY) spaces we deduce that the map LO(RY) > f
||f“(Lq'Lp)a,>\(Rd) defines a norm on (L9, LP)**(RY).
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(3) for1 < g < a, A < oo, the space (L9, L®)®*(R?) is the total Morrey space L99(1=3).d1=5) (R9)
defined in [13] and
L @:d1=3).d1-0)(Rd) = [ 9-d1=3)(RY) A [ 1= (RY)

with A < a.

We define the space BMO(RY) as the set of all locally integrable functions b with finite norm

16l spomey = SUP IB(X,r)‘ll 1b(y) — ba(x.r)ldy
r>0,xcRd B(x,r)

where bg(, ) = |B(x, f)|1/ b(y)dy.
B(x,r)

For a function b defined on RY, we denote by
0 if b(x)>0
b~ (x) =  b(x) =
|b(x)| ifb(x) <0
and bt (x) = |b(x)| — b~ (x). Obviously b*(x) — b~ (x) = b(x).

Our first result reads as follows

Theorem 1.1. letl < g < X < a < p < oo such that % +% < é%— % Then the operator [b, M] is
bounded on (L9, LP)**(RY) if and only if b € BMO(RY) such that b~ € L>®(RY).

The last two theorems concern the sublinear operators 7 satisfying the condition

Teor<c [ 11

Rd |X—)/|d

dy x¢ suppf, (1.3)

forany f € L1(RY) with compact support. We point out that the condition (1.3) was first introduced
by Soria and Weiss [19]. This condition is satisfied by many operators such as the Hardy-Littewood
maximal operator, Calderén-Zygmund singular integral operators, Bochner-Riesz operators at the
critical index, C. Fefferman’s singular multiplier. It is proved in [5] that 7 is bounded on Morrey
spaces. It is also bounded on classical Fofana spaces (see [6]). In the setting of total Fofana spaces,

we have the following result holds true.

Theorem 1.2. [let1 < g < X\, a < p < oo such that % + % < é + % If T is sublinear operator
with is bounded on L9 and satisfies the condition (1.3) then T is also bounded on (L9, LP)**(RY).

If 7 is a linear operator and b € BMO(RY), we define the linear commutator [b, 7] by
[b, TIF(x) = T(bf)(x) — b(x)T(F)(x) x€RY,

with locally integrable functions f on RY. It is also proved in [6] that [b, 7] is bounded on classical
Fofana spaces and bounded on Morrey spaces in [5]. The next result shows the boundedness on

total Fofana spaces of [b, T].
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Theorem 1.3. Letl < g < A\, a < p < oo such that % +% < é+% and b € BMO(RY). If a linear
operator T satisfies (1.3) and [b, T is bounded on L9, then T is also bounded on (L9, LP)**(RY).

The remainder of this note is organized as follows: In Section 2 we recall some properties of
total Fofana spaces. Section 3 is devoted to the proofs of Theorem 1.1 and section 4 deals with

the proofs of Theorem 1.2 and Theorem 1.3.

The letter C will be used for positive constants not depending on the relevant variables, and
theses constants may change from one occurrence to another. We propose the following abbreviation
A < B for the inequalities A< CB. If A < B and B < A, then we write A~ B.

2. SOME PROPERTIES OF TOTAL FOFANA SPACES

The results of this section are proved in [17].

The following result examines the relationship between total Fofana spaces and Fofana spaces.
Proposition 2.1. Let 1 < g <o, A < p <oo. Then
(L9, LPY*(RY) N (L9, LPYN(RY) = (L9, LP)*(RT)
and for f € (L9, LP)*(RY) N (L9, LP)(RY)
Hf”(Lq,LP)M(Rd) < maX{Hqu,p,a , ||f||q,p,>\}'
Proposition 2.2. let1 < g< A< a<p< oo Then
(L9, LPY*AR) = (L9, LP)*(RY) N (L9, LP)N(RY)
and for f € (L9, LP)**(RY)
1Fll (Lo, Loyarrey = max{lIfllg pa I Fllgpat-

Total Fofana spaces are generalizations of classical Fofana spaces since Proposition 2.2 asserts
that (L9, LP)**(RY) = (L9, LP)*(RY).
The family of spaces (L9, LP)**(RY) is increasing with respect to the p power. More precisely,

we have the following.
Proposition 2.3. Let1 < g <o, A < p; < pp < oo. Then:

1l (Lo Lr2yeray S WFllera coyermay, € LO(RY)
and consequently, (L9, LPL)*A(RY) C (L9, LP2)**(RY).

The following result states the boundedness property of M (the Hardy-Littlewood maximal op-

erator) on total Fofana spaces.
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Theorem 2.4. (1) Let1 < g < a, X < p < oo such that % +% < é+ % Then
IMFll o toyeray S IFllLaoparray, F € (LI, LP)*A(RY).
(2) letg=1<a,X<p<oo. Then

IMFll(Lroe pyorcrey S IFlln coyeray,  F € (LY LP)¥ARY),

where
”fH(leOO,LP)O")‘(Rd)
1
d(i-1-1)  d(=i4141) VP )P
= sup[r]; s g [/ (HfXB(y’r)Hloo) dy]
r>0 R4 '
with

||fXB(y,r)H;OO = supr {x € By, r): [f(x)] > r}.
r
3. PROOF OF THEOREM 1.1

For the proof of this theorem, we need some results.

The following result (see [1, Corollary 1.11]) will be useful in the proof of Theorem 1.1.

Lemma 3.1. If b € BMO(RY), then there exists a positive constant C such that
My (x) < C|bllgpmomey M(MF)(x)
for almost every x € R? and any locally integrable functions f on RY.

Proposition 3.2. Llet1 < g < a, A < p < oo such that % + % < é + % and b € BMO(RY). Then
My, is bounded on (L9, LP)**(RY).

Proof let 1 < g < a,XA < p < oo such that £ +2 < 2+ 1 b € BMO(RY) and f €

(L9, L) (k).

By taking the (L9, LP)**(R9)-norm of both sides of the estimate in Lemma 3.1, we obtain
IMbfll(La Lryer@ay S IBlamomay IMIMO)(La oyer(ra) -

According to the first point of Theorem 2.4, we have

MMl (Lo ryermey S IMFll(La oyer@ey S I ll(ca,pyan(may -
We deduce that

IMbfll (Lo, oyer@ey S I1bllamoay I ll(La, Loyer(ma)y - (3.1)

Lemma 3.3. [etl < g< A< a<ooandr >0. Then

d d(—é—i—%)

1 1
iGN 1/7957 max{ré, i) < 2.
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Proof Let1<g< A< a<ooandr>0.
d(5-¢)

_ _ 1,1
Put C(r) = ro (A5« @A

r‘g(rg—i—r%),
C(r) < d, d d
r=x(ra+rx),

max{rg, r%}.

1+ rdCa+3),
1+ rd(é_%),

Thus, C(r) <2 forall r > 0.

O0<r<1
r>1

0<r<i1
r>1.

Proof of Theorem 1.1. Let 1 < g < X < a < p < oo such that

1 2 1 1
E+E<E+X.

(1) Assume that b € BMO(RY) such that b~ € L>®(RY) and f € (L9, LP)* (u).

Proceeding as in the proof of Theorem 4 in [13], we have

IN

116, MIf[(La,pyar(re)

VAN

+ 2 Hb*”oo ||Mf||(Lq,Lp)a,)\(Rd) .

}|be + 2b_MfH(Lq‘Lp)M(Rd)

= ||be||(Lq,LP)M(Rd)

From (3.1) and the first point of Theorem 2.4, we deduce that

115 MIFll e toyorceey S (1160l enoqeey + 1157 o) 1Fl e coyercasy -

(2) Conversely, assume that [b, M] is bounded on (L9, LP)**(RY).
Let t > 0 and x € RY. Put B = B(x, t). Denote by Mgf the local maximal function of f defined

by:

Mef() = sup [E1 [ 1F)ldy.

B'>x:B'CcB

Since x5 € L*(R?) N LARY), it follows from (1.2) that

x5 € (L9, LP)* (R)N(LY, LP)* (RY). From Proposition 2.2, we deduce that x5 € (L9, LP)**(RY).

Therefore, there exists a constant C > 0 such that

||[b, M]XBH(LG,LP)Q?\(RC/) <C ||XB||(L‘7,LP)0‘A(R‘1) :

We also have

IMg(b) — bxgl = [M(bxg)xs — bM(xs)xsl

A

< [M(bxg) — bM(xs)| = |[b, M]xs].
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Applying Holder's inequality, Proposition 2.3 and Proposition 2.2, we get

R /B 16(z) — Ma(b)(2)|dz

1
< (|B|—1/ |b(z>—MB<b)(z>|qdz)"
B
1
_1 q
< e { [ Mixe(@)az
_d_d(-1+1) d(x—%)
< tathy st b, MIxsll (e, ey re)
_d d(—141) d(x—3%)
S tath st b, MIxsll e, Leyesre)
_d. . d(-1+1) d(s—1)
S teftly I/t lxsllLe,Leyasra)
_d d(-1+1) 11
S t q[t]l I [l/t]l roa maX{HXBHq,p,avHXBHq,p,)\}'

It follows from (1.2) that
_ 1,1 1_1
|B|—1j 1b(z) — Mg (b)(2)|dz < t4[t]] = o [1/4 >
B
So, by Lemma 3.3, we obtain

B [ 16(2) ~ Ma(b)(2)ldz 5 2

Denote by
E={yeB:bly)<bg}, F:={yeB:bly)>bg}.

Since
/ |b(z) — bg|dz = / |b(z) — bg|dz,
E F

in view of the inequality b(x) < bg < Mpg(b), for x € E, we get
B [ 16(2) ~ beldz = 2081 [ Ib(z) - beldz
B E
< 281 [ |b(z) - Ma(b)(2)ldz
E
< 281 [ 1b(z) - Me(b)(D)ldz S 4
B

By taking in the left hand side the supremum over all t > 0 and x € R?, we obtain

16/l momay < oo
In order to show that b~ € L>®(RY), note that Mg(b) > |b|. Hence

0< b =|b|— bt < Mg(b) — b* < Mg(b) — b* + b~ = Mg(b) — b.

Thus
(b7)s <2,

max{tg, t%}.
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and by the Lebesgue Differentiation Theorem we get

b~ (x) <2

for almost every x € R O

4. PROOF OF THEOREM 1.2 AND THEOREM 1.3

We recall that the proofs of Theorem 1.2 and Theorem 1.3 are simply an adaptation of those

given in [5] (see also [0]).

Proof of Theorem 1.2. Let1l < g < X\, < p < oo such that %—l—% < é—l—% and f € (L9, LP)**(RY).
Fix y € R? and r > 0 we have

f=171XxB(.r)+ Z FXB(y. 241 \B(y.2r)-
i=1
By the sublinearity of 7" and the condition (1.3) we obtain
ITH S T (Fxagan)] + 3_IBO 20 [ el
-1 B(y'2l+1r)
and therefore, an application of Hélder inequality leads to
ITF S IT(FXeg.20) + 2 1B, 2074 Fxaq ovin o
i=1

Taking the L9-norm of both sides on the ball B(y, r) and using the boundedness of 7 on L9, we
get

(T)xew.nla < ||fXB(y2r)||q+Z(2) qllfxB<y,2f+1r)||q-
i=1

Taking the LP-norm of both sides with respect to y, it comes that

AT Fllgp < 2r||f||qp+Z<2) gy [ Fllg -

On the one hand, we have,

1_1_ 1 -x
N Y Y
rliflas =~ drrny ey 1l
[2r] ¢ ,, (/2] e
d(~L+141) dG=5=5)
< A2 g e
d(l_l_l
11,1 I
< (2[r]1)d( a+q+p)( [1/r]1) ||f||(Lq LP)aX(RY)

Hence,

14141
2r [[fllgp < A TV ]1 P Nl Lo, Loyarma) - (4.1)
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On the other hand,

oo

N
> (@) g1, IFllg
i=1
. d(%,l,l . d(—
o) .)_% [2/+1r]1 qa p [1/2I+lr]1

d(l-1-1 d(—5+i+3

1,1,1
X+E+E)

o 1l

=1 [2/+1 ] a p [1/2i+1r]1
© g d(-14141) Cod(Loio1y
< fllaryeamey p_(2) 792 =T L2
i=1
d(-2+1+1) d(z-1-1 X g_l_1,1.2
< U TP P I e myeaay (27T,
i=1
Since -3 — 3+ ¢+ 3 <0, Zﬁl(2i)d(—i—i+%+%) < 0o. Therefore,
= _d
()74 2, [llg,p (4.2)
i=1
d(,é+l+l) d(i-1_1
ST PR £ V74 PR (1 (TR EY -t

From (4.1) and (4.2), we deduce that

(—atats)y , 19G )
O/ I N e ey e -

d
r ||Tf||q,p 5 [r]l

It follows that

diz—2—% d(
[y [1/r]y

We obtain the desired result by taking the supremum over all r > 0 in the left hand side of (4.3). O

,l+l+l)
YT g S Iflleie Lryer(re) - (4.3)

Proof of Theorem 1.3. Let 1 < g < X\, @ < p < oo such that % + % < é + % and b € BMO(RY).
Let f be any element of £ € (L9, LP)**(RY). We recall that (L9, LP)**(RY) is a subspace of the
Morrey space L99(1~3)(RY). Proceeding as in the proof of [5, Theorem 2.2 ], we have that for all
yeRand r >0,

b, T1fxB(y.nllq

,S HfXB(er)HCI

+i(2’r)d [/B(m (/B(yw” |b(x) — b(z)||f(x)|dx)qdz]’l’

Therefore, using the John-Nirenberg theorem on BMO-functions (see [12, Corollary 7.1.8]), we
obtain
fe’e) g
b, TIF X800 lla S IfXew2nlla + 1Bl moms Y (2D aIfxeq 24in .
i=1
Using the same argument as in the proof of Theorem 1.2, we end the proof. |
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