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ABSTRACT. The Riemann-Liouville operator has been extensively investigated and his witnessed a
remarkable development in numerous fields of harmonic analysis. Knowing the fact of the study of
the time-frequency analysis are both theoritically interesting and pratically useful, we investigated
several problems for this subject on the setting of the Riemann-Liouville wavelet transform. Firstly,
we introduce the notion of Riemann-Liouville two-wavelet and we present generalized version of
Parseval’s, Plancherel’s, inversion and Calderon’s reproducing formulas. Next, using the theory of
reproducing kernels, we give best estimates and an integral representation of the extremal functions

related to the Riemann-Liouville wavelet transform on weighted Sobolev spaces.

1. INTRODUCTION

The mean operator is defined for a continuous function on R?, even with respect to the first

variable by
27
Ro(f)(x, t) = 1/ f(xsin@, t + x cos6)do.
2m Jo

Which means that Zy(f)(x, t) is the mean value of f on the circle centered at (0, t) and radius
x. The operators %y play an mportant role and has many applications, for example, in image
processing of so-called synthetic aperture radar (SAR) data see [10,11], or in the linearized inverse
scattering problem in acoustics see [5,7].
In [3], the authors have generalized % and its dual *%, by introducing the so-called Riemann-
Liouville operator defined on the space of continuous functions on R?, even with the respect to the
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first variable by

e L f (stl —-y? t+><y) (1 —y2)°‘*% (1-s2)* tdyds ifa>0,

%f_llf(fvl—yz,ny) ae if a =0,
(1.1)

Many harmonic analysis results related to the Riemann-Liouville operator (1.1) have been estab-

o (F)(x, t) =

lished see [1-4] and the references therein. The wavelet transform has a long story which stared in
1984 with Mortel, a French petroleum engineer in connection with his study of seismic traces, the
mathematical foundations were given by Grossman and Mortel in [8,9]. Mortel defined a wavelet
as a collection of functions constructed by using translation and dilatation of a single function
¥ € L?(R) called the mother wavelet by:

1 t—>b
V),

where a > 0 is called the scaling parameter, wich measure the degree of compression and b € R

Qpb,a(t) -

is a translation parameter wich determines the time location of the wavelet. The theory of wavelet
have applications in several research area as signal theory, time frequency analysis, geophysics
and medicine see [6,9].

A lot of attention has been given to various generalization of the classical Fourier transform,
this paper focuses on the generalized Fourier transform associated with the Riemann-Liouville
operator (1.1) called the Riemann-Liouville transform, more precisely we consider a system of

partial differential operator A; and A, defined by

_ 0
1-_8X,
? 2a+10 g

S Nt > 0.
b=t~ 5 a2 %20

From [3], the authors gives the connection between the eigenfunctions of this system denoted by

a>0, t>0,

@u with (u, A) € C? and the Riemann-Liouville operator (1.1) as follows:

Pu(x, 1) = Za(cos(p.) exp(—iX-))(x, t). (1.2)

Wavelet analysis has attracted attention for its ability to analyse rapidly changing transient signals,
any application using the Fourier like transform can be formulated using wavelets to provide more
time and frequency information.

The reason for the extension from one wavelet to two-wavelet comes from the extra degree of
flexibility in signal analysis and imaging when the localization operators are used as time-varing
filters. This paper is an attempt to fill this gap by extending one wavelet to two wavelets in the
Riemann-Liouville setting. The remainder of this paper is arranged as follows, in section 2 we
recall the main results concerning the harmonic analysis associated with the Riemann-Liouville

transform, in section 3 we introduce the notion of Riemann-Liouville two-wavelet and we give
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a generalized version of Parseval’s, Plancherel's, inversion and Calderon’s reproducing formulas
related to this transform, the last section is devoted to give an integral representation and best
estimates of extremal functions related to the Riemann-Liouville wavelet transform on weighted

Sobolev spaces.

2. HARMONIC ANALYSIS ASSOCIATED WITH THE RIEMANN-LIoUVILLE OPERATOR

In this section we set some notations and we recall some results in harmonic analysis related
to the Riemann-Liouville operator (1.1), for more details we refer the reader to [1-4,15]. In the
following we denote by
e K :=]0, +oo[xR equipped with the weighted Lebesgue measure 1y given by

w2a+1

dug(x, t) = dx®dt,, a>0,
Hal ) = o T Dvan

where [ is the Gamma function.

e [5(K), 1< p < oo, the space of measurable functions on K, satisfying

(fu IFOx D[P dpa(x, 1)) P < 00, if pe[1, 4o,

1Fllpa =
esssup(x, ek |f(x, t)| < oo, if p = +o0.

o K:= [0, +oo[xRU{(is,y); (s,y) € [0, +oo[xR; s < |y|}.
e %y the o-algebra defined on K by

By = {671(B), B € ([0, +oo[xR)},
where 0 is the bijective function given by
0(s.y) = ( 52+y2,y) :
® d7, the measure defined on % by
VA € B Va(A) = ua(0(A)).

and for all non-negative measurable function on K we have

/ (1 \) Vel X) = ! (/+OO/ (1 A) (12 + 22)% pdudr
AR v ey v W) M AL LGN wdp

Il
+// g(im, X) (X —u2)°‘ududk) :
R Jo
e L5(K) with p € [1, +0] the space of measurable functions on K satisfying

(fic laOx m)Pdya(x, m))

ess SUP( m)ek lg(h, m)| < o, if p=+o0.

(2.1)

T =

<oo ifpell, +oof
9llpye ==
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2.1. The eigenfunctions of the partial Differential operators A; and A,. For (1, \) € K we

consider the following Cauchy problem
A1 (u)(x, t) = =X2u(x, 1),
(S): 3 Ax(u)(x, t) = —plu(x, t)
u(0,0) =1;24(0,t) = 0.
From [3], the Cauchy problem (S) admits a unique solution ¢, » given by:

Bur(x,t) = Ja (V12 + N2 exp(~iAt), (22)

where j is the spherical Bessel function of index a see [16] for more information about the Bessel
functions. The function ¢, 5 is infinitely differentiable on R?, even with respect to each variable

and we have the following important result:

sup |pua(x, t)|=1. for (u,X) € K. (2.3)
(x,t)ER?

2.2. The Riemann-Liouville transform.

Definition 2.1. The generalized Fourier transform F, associated with the Riemann-Liouville op-
erator (1.1) is defined on L. (K) by

Fal )1 N) = [ @unlx, OF(c, O)ualx, ). for (u.X) € K

Some basic properties of this transform are as follows, for the proofs one can see [2—4]

Proposition 2.1.
(1) For every f € LL(K), we have

[ Fa(F)llooye < I1Fll1a- (2.4)

(2)(Inversion formula) For f € (L4 N L2) (K) such that Fo(f) € LL(K) we have
(0.0 = [ Dot DZa NN, ae (t) €K (25)
(3) (Parseval formula) For all f,g € L2(K) we have

/ f(x, )g0x, D dpalx, t) = / Fa(F) (1 N) Fa (@) (s N (i V), (256)
K K

in particular we have

1fll2pe = [ Fa(F)ll2, - (2.7)
(4) (Plancherel’s theorem) The Reimann-Liouville transform %, can be extended to an isometric
isomorphism from L2 (K) into L2 (K).
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2.3. Generalized translation operator Associated with the Riemann-Liouville operator.

Definition 2.2. The translation operator associated with Riemann-Liouville transform is defined on
LE(K), for all (x,t),(y,s) € K, by
CO(F)(y,s) = a2 D /Wf( 24 y2 + 2xy cosb, t + 5 sin* 6

Ta (F)(y,s) T 1/2) Jo VX2 + y2 + 2xy cos B, t + s | sin .

The following proposition summarizes some properties of the Riemann-Liouville translation operator
see [2—4]

Proposition 2.2. For all (x,t),(y,s) € K, f € LE(K) we have:
(1)
[ 700 5)dmaty. ) = [ £(7.5)dualr. ) (28)
K K

(2) for f € LE(K) with p € [1;4+00] 75°P(F) € LA(K) and we have
[0 < Ul 29)
Pl
(3) For f € LL(K), 7$79(f) € LL(K) and we have
Fa (8700 (1N = 0unlx OF(F(A), ¥(wA) €K, (210)
By using the generalized translation, we define the generalized convolution product of f, g by
(F2a9)(8) = [ 1D 9oy, 5)dua(r. )

where f(y,s) = f(y, —s).
With this convolution product (K, xo) is a hypergroup in the sense of Jewett [13]

We have the following results for the proofs, we refer the reader to [2—4]

Proposition 2.3.
(1)(Young’s inequality) for all p, q, r € [1; +o0] such that: %—i—% =1+2andforall f € LE(K), g €
L& (K) the function f x4 g belongs to the space L! (K) and we have

| *a gHr,p,a < W llppall9llg.pa (2.11)

(2) For f, g € L2(K) the function f % g belongs to L2 (K) if and only if the function o (f).Fu(9g)

belongs to L2(K) and in this case we have
Fa(f *a g) = Fa(f)Falg). (212)
(3) For f,g € L2(K) then we have
J17 0 g OF st ) = [ 1Za()0 NP Fal@) 0 Nl X), (213

where both integrals are simultaneously finite or infinite.
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3. CALDERON'S REPRODUCING FORMULA FOR THE RIEMANN-LIOUVILLE TWO-WAVELET TRANSFORM

Using the harmonic analysis associated with the Riemann-Liouville transform, the main purpose
of this section is to define the wavelet transform associated with the Riemann-Liouville operator
and to give generalized Parseval’s, Plancherel's, inversion and Calderon’s reproducing formulas
related to this transform which generalizes all the results proved in [4].

Notation: we denote by
o/ 5(R: x K),1 < p < +oo the space of measurable functions on Ry x K
satisfying

1
( o [ 1f(a,x, 1)[PdOa(a, X, t))” <oo, ifpell, +oo,

1llp.60 = :
esssup |f(a, x, t)| < oo, if p=+o0.
(a,x,t)€R+><K

where 6, is the measure defined on Ry x K by

doy(a, x, t) == a**"da ® dua(x, t).

Definition 3.1. Let 91, ¥o € L2(K), the pair (11, 2) is said to be a Rieman-Liouville two-wavelet
on K if for almost all (i, \) € K we have

& woA w A\ da
0 < Cyry ::/0 Fa(P1) (ava)c(ja(db) (a,a) ?<+OO- (3.1
Remark 3.1. /ts clear that if 9 = 21 = 1o, we have
2
WA da
Cyryp = Cy 1= /O 'Ja(w) ( ) > < 400, (3.2)

in this case we say that v is a Riemann-Liouville wavelet in L2 (K).

Let a > 0, we define the dilatation operator D, of a measurable function ¢ on C? by
Da.(¥)(x, t) = a®3/2(ax, at), (x, t) e C2.

the dilatation operator D, satisfies the following properties
e Forall v € LE(K) we have D,(v) € LE(K) and

1

11
102 (W) llpsse = 372 . (33)
e For all ¥ € L?(K) we have
U >\
a'al’

Fa (0B N) = 1575 7a(w) (4

Let ¢ be a Riemann-Liouville wavelet on K in LP(K) with 1 < p < oo, for all
a> 0,(x,t) € K we define the function

Yoty s) = 787 (DL(W)) (v, 5). (3.5)
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By using the relations (2.9) and (3.3) we find that ¥, x.+ € L5(K) and
11
[asxitllpua < a7, (36)

Definition 3.2. ([4]) Let ¢ be a Riemann-Liouville wavelet on K in L2(K) the continuous wavelet
transform Sy associated with the Riemann-Liouville operator is defined for a function f € L2(K)
and (a,x,t) e Ry xK by

S3(F)(a,x,t) == /]K (v, $)Fane(y. 5 dbtaly. s). (37)

Remark 3.2. The Riemann-Liouville wavelet transform (3.7) can be written as

Sp(f)la.x t) = (Da()) # F)(x, t) = (F. Wax.t)a- (3-8)

The following result gives the relation between the Riemann-Liouville transform .7, and the

Riemann-Liouville wavelet transform 5%.

Proposition 3.1. Let ¥ be a Riemann-Liouville wavelet for all f € L?(K) we have

1 woA
FalSYOE ] 02 = Stz () N Fa(w) (4.2, 39
Proof. Is a consequence of the convolution theorem (2.12) and the relations (3.4),(3.8). ]

The following theorem generalizes the Parseval’s formula for the Riemann-Liouville wavelet

transform S3(f) proved in [4]

Theorem 3.1. Let (11, %) be a Rieman-Liouville two-wavelet on K for all f, g € L?>(K) we have

+o0 - .
/o /ngl(f)(a,x, t)Sg,(g)(a, x, t)dba(a, x, t) = Cy, 4, /K f(y.s)g(y,s)dua(y,s), (3.10)

where Cy, v, is the constant given by the relation (3.1).

Proof. By using the relations (2.5),(2.12),(3.4), (3.8) and Fubini's theorem we get

+o0
/0 /H<S$l(f)(a, x, t)5g (g)(a, x, t)dba(a, x, t)

“+o0 - -
— [ 71 (0a0) 50 £)(x, O(Dal) 5 9)(x, D, 1] 2d3
0 K

+oo o -
= /O [/]K ﬁa(Da('Iﬁl))(yﬁ A)ya(f)(.uﬁ A)ya(Da(wE))(,U:, )\)egia(g)(,u,, >\)d’Ya(>\, m)]a2a+2da

— Conn [ Zall) e NZal) (o N1, X)
by using Parseval's formula for the Riemann-Liouville transform (2.5) we find the disered result. O

In the following we establish an inversion formula for the Riemann-Liouville two-wavelet trans-

form.
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Theorem 3.2. Let (¢1,v2) be a Riemann-Liouville two-wavelet such that Cy, y, # 0 for all
f € LL(K) such that Fo(f) € LL(K) N LL(K) we have

1 0
(0= o [ ([ 5500005 02 Oialx.0)) 422
Cyro Jo K
Proof. Let f, g € L2(K), by using the relation (3.10), Fubini’s theorem we find that

- +oo -
Kfy,sgy,s dug(y,s :Cwlwz 51//1 f(a, x, t 5329 a, x, t)doy(a, x, t
(y.s)9(y.s)dualy. s) . n (F)( )55,(9)( )d6a( )
— o LU (L 55,0065 0020, 9ol 1)) 2l STl )
which gives the result. U

The rest of this subsection is devoted to give a Calderdn’s reproducing formula for the Reimann-

Liouville two-wavelet (1, ¥>) under the following condition
Cyrn 70 and  Fo(Da(11)), Fo(Da(w2)) € LT (K), (3.11)

Proposition 3.2. For 0 < e < § < oo, we put

Ges(x. 1) = /66 (Da(zﬁz) %o Da(wl)) (x, t)a***?da

Cy

1,92

1 0 [T W A\ da
K = a Lndand ar LadiNAd iy
e,6(>\v m) C¢1,¢2 /e Joa("pl) ( Y a) r/a('lp2) ( 5 a) B
Under the condition (3.11) we have

and

Ges € L2(K), Kes € LL(K) N LY (K)

and
Fa(Ges)(A, m) = Kes(A, m) (3.12)

Proof. By using Hélder’s inequality for the measure a°**2da we obtain
62a+3 2a+3
1Ge 5115
6,5 2'”‘& —= C2

D /(/‘ Da(¥2) %a D (3 ))(X't)fdﬂa(xvt))a2°‘+2da,

By using the relations (2.13) and (3.4) we find that

62a+3 €2a+3

1Gesll3 ,, < 5
C"/’l Yo

Which prove that Gg 5 € L2(K), the result Ko 5 € LL(K)N LP(K) can be easily checked, on the
other hand by using the relations (2.5), (2.10), (3.4) and Fubini’s theorem we find that

Ges(x. 1) = /K P06 DK (1 N e (11, N,

od
| Za(D, (¢2))||oo«/a||7/’1”§ua/ ?a =

inversion formula (2.5) gives the relation (3.12). O
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We can now state the main result of this section

Theorem 3.3. (First Calderdn’s reproducing formula)
Let (11,%2) be a Reimann-Liouville two-wavelet satisfying the condition (3.11) and let 0 < € <
§ < oo then for all f € L2(K), the function f. 5 given by
1 é
[ [ 550605002050, 9oty 5) | a++20
Cyryn Je K

belongs to L2(K) and satisfies

fes(x, t) =

im1fes — Fllo, = 0. (3.13)

e—0,0—

Proof. 1t is easy to see that
fes =1 *q Geg

then by using the relations (2.7) and (3.12) we find that
oo = AR, = [ 17PN~ Kt )20, X)

the relation (3.13) follows from the admissibility condition (3.1) and the dominated convergence

theorem. O

4. EXTREMAL FuNCTIONS ASSOCIATED WITH THE RIEMANN-LIOUVILLE WAVELET TRANSFORM

By using the theory of reproducing kernels [18,19] the main purpose of this section is to study
the extremal functions associated with the Riemann-Liouville wavelet transform and to give an

integral representation and best estimate of these functions on weighted Sobolev spaces.

4.1. Sobolev type spaces Associated with the Riemann-Liouville Transform. Let s > 0, we define

the Sobolev spaces associated with the Riemann-Liouville transform as
HS (K) = {f € L2(K)/ (1+ p2 +2)2)°% Z,(F) € Li(K)} .
The space HZ,(K) provided with the inner product
(.90, = [ (1412 +20%)° Zal) 01 ) Zal9) V714 ). (4.1)
and the norm
IR = . = [ (1024 2X7)° 2005 0P ¥l V). (42)

is a Hilbert space.

Definition 4.1. Let 1 be a Riemann-Liouville wavelet on K in L2%(K), we introduce the inner

product in the Hilbert space H3,(K) for any fixed 8 > 0 by

(f. 9 ks, = B(F, 9 g + (Sg(F), 55(9))ea. (4.3)
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the norm associated to this inner product is defined by
1F13 , = BIIFIIRs + 155, (136, (4.4)

We have the following result

Proposition 4.1. Let 5 > 20‘2—+3 ¥ be aRiemann-Liouville wavelet on K in L2%(K) and 8 > 0 then
we have
f e Hy5(K) = Fo(f) € LL(K) (4.5)

Proof. Let f € Hy, 5(K), by using the relations (2.9), (3.9), (4.2) and (4.4) we find that

112, = ]K (8 (1+ 12 +222)° + Cy || ZalF) (1)) Peva(n. ) (46)
by using Hélder's inequality, the relation (2.1) and the fact that s > % we find that
1
d'Yoz(ﬂ'v >\) 2
Faolf < ||| s <
17O, < Wl | [ s smrres) <=
wich give the result. |

Theorem 4.1. Lets > 20‘;3, ¥ be a Riemann-Liouville wavelet on K in L2(K) and 3 > 0 then the

space (Hy, 5(K), (, >wa) is a reproducing kernel Hilbert space with kernel function given by

Ou-A(x, )y, 2)
& B (1+u2+2X2)° + Cy

Hpplx. 1), (v, 2)] = dYath, A) (4.7)

that is for every (y, z) € K,
(1) the function (x, t) = J; s(x, t), (v, 2)] € Hy, 5(K).
(2) For every f € Hy 5(K) and (y,z) € K we have

f(y,z) = (f, gl (. Z)]>H15p,ﬁ :

Proof. Let (y,z) € K, by using the fact that s > 2% and the relation (2.3) we find that the

function
wu,x(% z)
B (14 p2+2X2)° 4+ Cy

belongs to L} (K)NLZ(K), by using Plancherel’s theorem for the Riemann-Liouville transform there

(u, A) —

exist a unique function in LZ(K), wich we denote by % g[-, (v, 2)] such that

Yur(y. z)
rl+X2(1+m2))°+Cp’

Fo (Hypl (v, 2)]) =

by using the relation (2.5) we find that

(4.8)

O, A(x, t)ourly, z)
R B (14 u2+2X2)° + Cy

Hyplx. 1), (v, 2)] = Yo (e, A),
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furthermore by using the relations (2.3), (4.6) and (4.8) we find that

dYe (1, X)
161 ( & B(1+u2+2X2)° + Cy

wich proves that J7y g[-, (v, z)] € H,fpﬁ(K). Let f € Hy, 5(K), by using the relations the relations
(3.10),(4.1),(4.3),( and (4.8) we find that

(F Kool V. D), = | 9ar D ZalF) 0 N N),

< 00.

inversion formula (2.5) gives the disered result. O

In the following we give the main result of this section.

Theorem 4.2. Let ¢ be a Riemann-Liouville wavelet in L2 (K),s > %

g € L2 (Ry xK) and B > 0 then the infimum
inf FlI3s + ||S3(F) — glf2 4.9
it {81 + 1550 — ol | (49)
is attained by a unique function f;,, 5 given explicitly by

+o00
aps(X 1) —/0 /Kg(a:ylz)%,ﬁ (a, (v, 2), (x, 1)) dba(a, v, 2), (4.10)

where ¢y g is given by

dYa(th A). (4.11)

bys(a (v.2).(x. 1) =a = / 02X, )Pur(y. 2) Za (W) (£, 3)

R B (14 u?+2X2)° 4+ Cy
Proof. The existence and unicity of the extremal function 77, 5 solution of the problem (4.9) is

assured in [18,19], moreover this solution is given by

fopp( t) = (9. 53 (Hyl (x, D)), - (4.12)

where 7y, g is the kernel given by (4.8), by using the relations (2.6), (2.10), (3.4) and (4.8) we find
that

o[>

)

2a+3/ Cur(X, O)op, (Y, 2) Za(P) (% Ve, A),  (4.13)

S (sl (x, t v, z)=a
o (Appl. (. D)) (ay, z)=a > A B+ 12+ 2027 4 Cy
by using the relations (4.12) and (4.13) we find the desired result. O

We have the following results
Theorem 4.3. Let s > 2% 4 be a Riemann-Liouville wavelet in on K in L2(K), , and g €
L2 (Ry xK), B> 0 then we have

+oo X (e EiA 03 ol
) Gugten = [ [ LeteBR 0 5 Sulata D),

" da® dvya (i, N).
(4.14)

oo Zo (W) (4, %)fa(g(a )) (k. >\) 2at1
B (14 p2+2X2)° 4+ Cy

(1) Falfiys) () = /O da (415
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. 19112,6,
(i) |fgyplng < o (4.16)
Proof. (i) Is a consequence of (4.10), (4.11) and Fubini’s theorem.
(i) Is a consquence of Fubini's theorem and the relations (2.5),(4.10) and (4.11).
(iii)By using the relation (4.2) we find that
Il = [ (1462 + 20 1700 0) 0 VP00l V).
by using Holder’s inequality and the relations (3.2),(4.15) we find that
Il < 55 [ [ 1Faloe ) )22 2da) a2
* =268 Jx \Jo
, By using Fubini’s theorem and Plancherel’s formula (2.7) we find that
1
* 2 2
||fg,1p,5”Hg < % ||9||2.0a
which gives the result.
O

corollary 4.1. Lets > 2"‘2—+3 ¥ be a Riemann-Liouville wavelet on K in L2(K), ,and 3 > 0, for all

feHyK) and g = Sg(f), the extremal function f*g(f),zlz,ﬁ satisfies the following properties
CypFa(F) (1, A)

; a7 * —
(1) Ja(fsg(f),w,ﬁ)(ﬂvk) 50 U2+ 202 + Gy (4.17)
e Cy
(i1) ||fsg(f),1p,;3\|Hg < 28 112,00 (4.18)
Proof. (i) By using the relations (3.2), (3.9) and (4.15) we find the result.
(i) Is a consequence of (3.9) and (4.16). O

Theorem 4.4. (Second Calderon’s reproducing formula)
Lets > % ¥ be a Riemann-Liouville wavelet in on K in L%(K), ,and B > 0, for all f € H5(K)

and g = Sy(f), the extremal function f*i(f)'d’ﬁ satisfies

= 0.

B—0t+
Moreover we have fgg(f),zp.ﬁ — f uniformly when 3 — 0.

Ha

Proof. By using the relation (4.17) we find that

—B (1 + p? +2)2)° Fo(F)(1, N)
B(1+u2+2X2)° + Cy

Falfsgrypp = N A) = (4.19)
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consequently we find that
3s 2
B2 (1+ p? +2X2) 7 [Zo (1) (1, V)]
s :/]K ( ) - dYa (1, A)

| B (1+ pu2+2X2)° + Cy
by using the dominated convergence theorem and the fact that

B2 (1+ 2 +222)% | Zo (F) (1 V)2
B (14 p2+2X2)° 4+ Cy

fSs(we — f’

< (1417 +230)° [ Fal ) (1 V)P,

we deduce that
lim
B—0t+
on the other hand by using inversion formula (2.5) and the relation (4.19) we find that

Rarrvo — 1| e =0

oyl v) — Fyv) = /K Fal gy — 1)t Noun(y, VIdva(i V),

[ B4 P+ 202) Fo () Ny, v)
_/K dYa (1, A)

B (1+u2+2X2)° + Cy
again by dominated convergence theorem and the fact that
—B (1 + /J'2 + 2>\2)S %x(f)(k)%,x(y, s)

B (14 p2+2X2)° 4+ Cy

< | Falf) (1, N)]

we deduce that

im |00~ || =0
g 7550 w8 =M,
which proves that S%(f),w,ﬁ — f uniformly when 8 — 0. O
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