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ABSTRACT. The purpose of this paper is to introduce a new iterative algorithm to approximate the fixed
points of almost contraction mappings and generalized a-nonexpansive mappings. Also, we show that
our proposed iterative algorithm converges weakly and strongly to the fixed points of almost contrac-
tion mappings and generalized a-nonexpansive mappings. Furthermore, it is proved analytically that
our new iterative algorithm converges faster than one of the leading iterative algorithms in the liter-
ature for almost contraction mappings. Some numerical examples are also provided and used to show
that our new iterative algorithm has better rate of convergence than all of S, Picard-S, Thakur and
M iterative algorithms for almost contraction mappings and generalized a-nonexpansive mappings.
Again, we show that the proposed iterative algorithm is stable with respect to 7 and data dependent
for almost contraction mappings. Some applications of our main results and new iterative algorithm
are considered. The results in this article are improvements, generalizations and extensions of several

relevant results existing in the literature.

1. INTRODUCTION

Fixed point theory is concerned with solution of the equation
TL=1¢, (1.1

where T could be a nonlinear operator defined on a metric space. Any £ that solves (1.1) is called

the fixed point of T and the collection all such elements is denoted by F(T). Fixed point theory is
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an area in nonlinear analysis that has become very attractive and interesting with a large number
of applications in various fields of mathematics and other branches of science. Fixed point theory
has remained not only a field with a huge development, but also a very helpful means for solving
various problems in different fields of mathematics. It is well known that fixed point theorems are
used for proving the existence and uniqueness to various mathematical models like differential,
integral and partial differential equations and variational inequalities problems etc., representing
phenomena arising in different fields such as steady state temperature distribution, chemical equa-
tions, neutron transport theory, economic theories, epidemics and flow of fluids. Furthermore, it
as also significant in the field of computer science, image processing, artificial intelligence, deci-
sion making, population dynamics, computer science, operational research, industrial engineering,
pattern recognition, medicine, group health underwriting, management and many others.

Existence theorem is concerned with establishing sufficient conditions in which the equation (1.1)
will have solution, but does not necessarily show how to find such solution. On the other hand,
iteration method of fixed points is concerned with approximation or computation of sequences which
converge to the solution of (1.1). When existence of a fixed point of an operator is guaranteed,
obtaining constructive technique for finding such a fixed point is also paramount.

In 2003, Berinde [6] introduced the concept of weak contraction mappings which is also known
as almost contraction mappings. He showed that the class of almost contraction mappings is more
general than the class of Zamfirescu mappings [41] which includes contraction mappings, Kannan
mappings [22] and Chatterjea mappings [10].

Throughout this paper, let 2 denote a Banach space and A a nonempty closed convex subset of

Q2. Let R stand for set of real numbers.

Definition 1.1. A mapping T : A — A is called almost contraction if there exists a constant

v € (0,1) and some constant L > 0, such that

ITe—=TC <~lle—Cll+LIe—Tel veCeA (1.2)

Definition 1.2. A mapping T : A — A is said to be Suzuki generalized nonexpansive if for all
£, €\, we have
1
§||1Z T <[e—(ll=[Te—-Tl < el
Suzuki generalized nonexpansive mappings is also known as mappings satisfying condition (C).

In [33], Suzuki showed that the class of Suzuki generalized nonexpansive mappings is more general

than the class of nonexpansive mappings and obtained some fixed points and convergence theorems.

Definition 1.3. A mapping 7 : A — A is said to be a-nonexpansive if there exists a € [0, 1) such
that

1T = T¢I < el Te =17 + alle = T¢I + (1 = 2a) 1€ — CII°,
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forall £, € A.

The class of a-nonexpansive mappings was introduced in 2011 by Aoyama and Kohsaka [3]
as generalization of nonexpansive mappings and further obtained some convergence results. [t
is worthy noting that nonexpansive mappings are continuous on their domains, but Suzuki-type
generalized nonexpansive mappings and a-nonexpansive mappings need not be continuous (see
[33]). Clearly, every nonexpansive mapping is an a-nonexpansive mapping with o = 0 (i.e., 0-
nonexpansive) and every a-nonexpansive mapping with a nonempty fixed point set is quasinonex-

pansive.

Definition 1.4. A mapping T : A — A is said to be generalized a-nonexpansive if there exists

o € [0, 1) such that
2le=Tel < e~ ¢l implies
ITe~T¢l < alTe—Cll+alT¢ — 2+ (1 - 2a)le |

forall £, € A.

In [26], Pant and Shukla introduced a wider class of nonexpansive mappings in Banach spaces
known as generalized a-nonexpansive mappings which contains the class of Suzuki generalized
nonexpansive mappings.

It is well known that the case of contraction mappings is simple and carries most of the good
behavior using Picard iterative algorithm. But when we move to the case of nonexpansive mappings,
the Picard iterative algorithm need not converge to a fixed point. Apparently, the conclusion of
Banach contraction principle fails for nonexpansive mappings even if A is compact. As an example,
one may consider a geometric rotation on the unit circle in the plane R2.

The limitation of Picard iterative algorithm gave many researchers in nonlinear analysis the room
to construct more efficient iterative algorithms for approximating the fixed points of nonexpansive
mappings and other classes of mappings which are more general than the class of nonexpansive
mappings.

Some notable iterative algorithms in the existing literature are: Mann [24], Ishikawa [21], Noor
[25], Argawal et al. [2], Abbas and Nazir [1], SP [27], S* [20], CR [12], Normal-S [28], Picard-S [17],
Thakur [36], Thakur New [37], M [39], M* [38], Garodia and Uddin [16], Two-Step Mann [35] iterative
algorithms and many others.

In 2007, the S iterative algorithm was introduced by Argawal et al. [2] as follows:

Yo € A,
ps = (1 —Bs)¥s + Bs T s, Vs > 1, (1.3)
Ysr1 = (1 —0s)Ts + 0sT s,

where {45} and {Bs} are sequences in [0,1].
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In 2014, the Picard-S iterative algorithm was introduced by Gursoy and Karakaya [17] as follows:
ug € N,
@s = (1 = Bs)us + BsT us,
0s = (1= 0s)Tus +0sT s,

Usy1 = Tos,

Vs > 1, (1.4)

where {05} and {Bs} are sequences in [0,1]. The authors showed with the aid of an example that
Picard-S iterative algorithm (1.4) converges at a rate faster than all of Picard, Mann, Ishikawa,
Noor, SP, CR, S, S*, Abbas and Nazir, Normal-S and Two-Step Mann iterative algorithms for
contraction mappings.

In 2016, Thakur et al. [37] introduced the following three steps iterative algorithm:

wWo € /\,
Ps = (1 _55)‘*)5 + Bs T ws,
Vs = T((l - 65)&}5 + 65)05),

Ws41 = Tvs,

Vs > 1, (15)

where {05} and {Bs} are sequences in [0,1]. With the help of numerical example, they proved that
(1.5) is faster than Picard, Mann, Ishikawa, Agarwal, Noor and Abbas iterative algorithm for suzuki
generalized nonexpansive mappings.

In 2018, Ullah and Arshad [39] introduced M iterative algorithm as follows:

mg € A,
¢s = (1 —8s)ms + 65T ms,
ds = Tcs,

Msy1 = Tds.

Vs > 1, (1.6)

where {ds} is a sequence in [0,1. Numerically they showed that M iterative algorithm (1.2)
converges faster than S iterative algorithm (1.3) and Picard-S iterative algorithm (1.4) for Suzuki
generalized nonexpansive mappings. Also, they noted that the speed of convergence of Picard-S
iterative algorithm (1.4) and Thakur iterative algorithm (1.5) are almost same.

Motivated by the above results, in this paper, we construct a new four step iterative algorithm
which outperforms the iterative algorithm (1.6) in terms of convergence rate for almost contraction

mappings as follows:

Lo €N,

gs = (1 = Bs)ls + BsTLs,

1 Ws=(1-105)Tls+0sTgs, Vs=1, (1.7)
(s = Tws,

lsy1=T(s,

where {45} and {Bs} are sequences in [0,1].

C
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The purpose of this paper is to prove analytically that our new iterative algorithm converges
faster than (1.6) for almost contraction mappings. In order to support our analytical proof, we
use some new examples to show that our iterative algorithm (1.7) converges faster than (1.6) and
a number of other leading iterative algorithms in the literature. We also prove the weak and
strong convergence of new iterative algorithm (1.7) to the fixed points generalized a-nonexpansive
mappings in a uniformly convex Banach spaces. Furthermore, we show that our new iterative
algorithm is T-stable and data dependent. Finally, we use our new iterative algorithm (1.7) to

solve a constrained convex minimization problem and a split feasibility problem.
2. PRELIMINARIES
The following definitions, propositions and lemmas will be useful in proving our main results.

Definition 2.1. A Banach space (2 is said to be uniformly convex if for each € € (0, 2], there exists
0 > 0 such that for £, ¢ € Q satisfying ||£]| < 1, |[{|| < 1 and ||£ — (|| > €, we have ||%H <1-0.

Definition 2.2. A Banach space € is said to satisfy Opial’s condition if for any sequence {£s} in

Q which converges weakly to £ € (2 implies
limsup ||€s — £|| < limsup |[[€s — ||, V{ € 2 with { # £.

5$—00 S$—00

Definition 2.3. Let {{s} be a bounded sequence in Q2. For £ € A C €2, we put
r(€,{¢}) = limsup [[£s —£|.
S—00
The asymptotic radius of {£s} relative to A is defined by
r(A, {s}) =inf{r(£, {£s}) : £ € N}
The asymptotic center of {{s} relative to A is given as:
AN {Ls}) ={ee N:r(€ {&}) = r(A {€s})}-
In a uniformly convex Banach space, it is well known that A(A, {£s}) consist of exactly one point.

Definition 2.4. [5] Let {as} and {bs} be two sequences of real numbers that converge to a and b

respectively, and assume that there exists

- las —all
k= lim +————.
s=o [|bs — b||

Then,

(R1) if Kk =0, we say that {as} converges faster to a than {bs} does to b.
(R2) If 0 < k < 00, we say that {as} and {bs} have the same rate of convergence.
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Definition 2.5. [5] Let {ns} and {¢s} be two fixed point iteration processes that converge to the

same point z, the error estimates
Ins —z|| < as, Vs>1,
lps —z|| < bs, Vs>1,

are available where {as} and {bs} are two sequences of positive numbers converging to zero. Then

we say that {ms} converges faster to z than {¢s} does if {as} converges faster than {bs}.

Definition 2.6. [5] Let T, T : A — A be two operators. We say that T is an approximate operator

for T if for some € > 0, we have
|T¢—Te| <e VEEN

Definition 2.7. [18] Let {ys} be any sequence in A. Then, an iteration process £sy1 = (T, ys),

which converges to fixed point z, is said to be stable with respect to T, if for €5 = ||ys+1—f (T, ys)

’

Vs e N, we have

limes =0« |Iim ys = z.
S—00 S—00

Definition 2.8. [31] A mapping T : A — A is said to satisfy condition (/) if a nondecreasing
function f : [0, 00) — [0, o) exists with f(0) = 0 and for all r > 0 then f(r) > 0 such that
£ —Te|| > f(d(£ F(T)))) for all £ € A, where d(£, F(T)) = infcrcry 1€ - Z]|.

Proposition 2.9. [26] Let A be a nonempty subset of a Banach space Q. Suppose T : N — A is
any mapping. Then
() If T is a Suzuki generalized nonexpansive mapping, it follows that T is a generalized
a-nonexpansive mapping.
(it) Every generalized a-nonexpansive mapping with a nonempty fixed point set is quasi-
nonexpansive mapping.
(i) If T is a generalized ac-nonexpansive mapping, then F(T) is closed. Moreover, if Q is
strictly convex and N is convex, then F(T) is also convex.
(iv) If T is a generalized oc-nonexpansive mapping, then the following inequality holds:

3
le-Tal < (355

o =T+l v ecen
Lemma 2.10. [26] Let T be a self mapping on a subset \ of a Banach space Q which satisfies
Opial’s condition. Suppose T is a generalized oc-nonexpansive mapping. If {{s} converges weakly

to z and |i_>m |T4s —4s|]| =0, then Tz =z. That is, | — T is demiclosed at zero.
S5—00

Lemma 2.11. [33] Let T be a self mapping on a weakly compact convex subset \ of a Banach
space QQ with the Opial’s property. If T is a Suzuki generalized nonexpansive mapping, then T has

a fixed point.
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Lemma 2.12. [40] Let {'s} and {)\s} be nonnegative real sequences satisfying the following

inequalities:
(s+1 < (1 - O's)‘s + >\s,

o0
where 05 € (0,1) forall s €N, ) os=o00 and lim = =0, then lim ‘s =0.
s—=0 S—o0 S S—00
Lemma 2.13. [32] Let {‘s} be a nonnegative real sequence and there exits an so € N such that for

all s > sy satistying the following condition:
‘s—&-l < (1 - O's)‘s + Us>\s'

where 05 € (0,1) foralls €N, } 05 =00 and A\s > 0 for all s € N, then
s=0

0 <limsup‘s < limsup Xs.

S—00 S—00

Lemma 2.14. [29] Suppose Q2 is a uniformly convex Banach space and {is} is any sequence

satisfying 0 < p < 1s < g <1 forall s> 1. Suppose {£s} and {(s} are any sequences of Q such

that limsup ||4s]| < x, limsup ||¢s]| < x and limsup ||ts€s + (1 — ts){s|| = x hold for some x > 0.
S S—00

—00 S—00
Then lim ||€s — Cs|| = 0.
S—0o0

3. RaTE oF CONVERGENCE

In this section, we will prove that our new iterative algorithm (1.7) converges faster than the

iterative algorithm (1.6) for almost contraction mappings.

Theorem 3.1. Let Q be a Banach space and let A be a nonempty closed convex subset of 2. Let
T : N — A be a mapping satisfying (1.2) with F(T) # (. Let {{s} be the iterative algorithm defined
by (1.7) with sequences {0s}, {Bs} € [0, 1] such that )_ 6s8s = oo, then {£s} converges strongly

s=0
to a unique fixed point of T.

Proof. Let z € F(T) and from (1.7), we have get

I(1 = Bs)es + BsTls — z||

(1= Bs)lles — z|l + Bsl Ts — z||

< (1=6Bs)lles =zl + Bsvlles —

(1= (1 =7)Bs)lles — z|. (3-1)

lgs — zI]

IN
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Using (1.7) and (3.1), we have

Iws =zl = (1 =05)T4s + 65T gs — 2|
< (1=04)|Tes — z[| + 65T gs — z||
< (1= 0s)l1es — zl| +vosllgs — 2|
< (1= 6s)lles — z|| + 705 (1 — (1 —¥)Bs)les — z||
= (1= (1 =7)4sBs)l¢s — |- (3-2)
From (1.7) and (3.2), we obtain
s =zl = [ITws —Z]]
< lws — 2|
< (1= (1= 7)0s8s)les — zll. (3-3)
Using (1.7) and (3.3), we have
[€st1 —zll = [IT¢ — 2]l
< lds -zl
< (1= (1= 7)dsBs) s — z]]. (3-4)

From (3.4), we have the following inequalities:

1€s+1 —z|| < 73(1 — (1 =7)0sBs)l€s — z||

< '73(1 - (1 - ’7)55—155—1)”£5—1 - ZH

ler =zl < ¥*(1 = (1 —")0Bo)ll4o — 2. (3.5)
From (3.5), we get
lesir —zll < o — 2|y [](1 = (1= 7)8:80). (3-6)
t=0

Since v € (0,1), 6+, 8¢ € [0, 1] for all t € N, it follows that (1 — (1 —v)d:B¢) € (0, 1). Since from
classical analysis we know that 1 — ¢ < etiforallte [0, 1], thus from (3.6), we have
3D 4o — Z||

(1-v) i 0tBt
e t=0

[s41 — 2|l < (3.7)

If we take the limits of both sides of (3.7), we get Sle Il4s — z|| = 0.
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Theorem 3.2. Let Q be a Banach space and let A be a nonempty closed convex subset of Q2. Let
T : N — N be a mapping satisfying (1.2) with F(T) # (. For given £y = mo € A, let {{s} and

{ms} be the iterative algorithms defined by (1.7) and (1.6), respectively, with real sequences {ds}
and {Bs} in [0,1] such that 6s <0 < 1 and Bs < B < 1, for all s € N and for some §, B > 0. Then

{€s} converges to z faster than {ms} does.

Proof. From (3.6) in Theorem 3.1 together with the assumptions s < a < 1 and Bs <8 < 1, for

all s € N and for some o, B > 0, then we have
S
lesi1 =zl < lo — 2>V [](1 = (1 = y)abr)
t=0
= g0 — 2| (A - (1 - y)ap)*.
Similarly, from (1.6), we get
llcs —z|] = ||(1—=206s)ms+dsTms — Zz||
< (1 =0s)|Ims — z|| + 0s[| Tms — Z||
< (1 =49)lms — 2| + dsv[[mn — 2|
= (1= (1—=7)0s)lms — z||.
Using (1.6) and (3.9), we get
lds —z|| = |ITecs — 2|
< 'YHCS - Z|
< 'Y(l - (1 _’7)55)||m5 - ZH

Finally, from (1.6) and (3.10), we obtain

IMms41— 2|

IN

IN

ITds — z||
vllds — z]]

Y21 = (1 =)3s)lIms — 2.

From (3.11), we have the following inequalities:

Imsi1 — 2|l <

IN

Im—z|| <

V(1= (1 —=7)ds)llms — 2|

Y2(1 = (1 —¥)ds-1)||ms—1 — 2|

Y2(1 = (1 —=7)do)llmo — z|I.

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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From (3.12), we get

S
Imsir =zl < imo — zlly*C D)1 = (1= 7)5e).
t=0

Since 0s <d < 1and Bs <B < 1, for all s € N and for some §, 8 > 0, then we have

IN

)
IMmss1 — 2] lmo — 2|y ]2 = (1 = 7)8¢)
t=0

= |lmo — z|[y*ETI(A — (1 — 7))L

Set
as = [[&o — z||v*C (@~ (1 - 1)),
and
bs = [[&o — z[|y*TV(1 = (1 - )8)° . (3.13)
Hence,
n - ||||£r$vo_—zﬂr|yj2§)1(>tl_—( tszy(;?)):ll 7O s

This implies that our new iterative algorithm (1.7) converges faster to z than M iterative algorithm
(1.6). O

In order to support analytical prove in Theorem 3.2 and demonstrate the advantage of our new

iterative algorithm (1.7), we give the following example.

Example 3.3. Let Q@ = R and A = [1,50]. Let T : A — A be a mapping defined by T(¢) =
V€2 — 80+ 40. Obviously, 5 is the fixed point of T. Take §s = Bs = %, with an initial value of
41 = 50.

By writing all the codes in MATLAB (R2015a) for Example 3.3, we obtain the following com-
parison Table 1 and Figure 1.



Eur. J. Math. Anal. 1 (2021)

Sequence values
= = [\S) N w w Py B a1
o (6] o [$] o [3)] o (6] Q.

[$2)

TaBLE 1. Comparison of convergence behaviour of our new iterative algorithm with

S, Picard-S, Thakur and M iterative algorithms.

Step S Picard-S Thakur M New

1 50.00000000 50.00000000 50.00000000 50.00000000 50.00000000
2 4416905011 40.46668490 40.46648707 39.77487312 36.79428091
3 3840054569 31.13624438 31.13566491 29.79220887 24.07958149
4 3271513008 2215533283 22.15389446 20.25245189 12.59321471
5 2714503094 13.88761070 13.88380778 11.71208997 5.60936561
6 2174399379 7.46589475 7.45557218 6.06597569  5.00355869
7 16.60935306 5.14776230 5.14203305 5.02641919  5.00001569
8 11.93484164 5.00348330 5.00331403 5.00042732 5.00000000
9 8.12786414  5.00007676  5.00007301  5.00000684  5.00000000
10  5.84725921 5.00000169  5.00000161  5.00000011  5.00000000
11 512789697 5.00000004 5.00000004 5.00000000  5.00000000
12 5.01483168 5.00000000 5.00000000  5.00000000 5.00000000
13 5.00164168 5.00000000 5.00000000 5.00000000 5.00000000

—o— Nelzw Iteration 4

Tl neraion |
S raraon

Iteration number s

Ficure 1. Graph corresponding to Table 1.

14

116
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4. CONVERGENCE REsuLTs

In this section, we will prove the weak and strong convergence of our new iterative algorithm (1.7)

for generalized a—nonexpansive mappings in the framework of uniformly convex Banach spaces.

Firstly, we will state and prove the following lemmas which will be useful in obtaining our main

results.

Lemma 4.1. Let Q be a Banach space and N be a nonempty closed convex subset of Q. Let

T : N — A be a generalized a—nonexpansive mapping with F(T) # (0. If {{s} is the iterative
algorithm defined by (1.7), then Sim |[4s — z|| exists for all z € F(T).

Proof. Let z € F(T). By Proposition 2.9(ii), we know that every Suzuki generalized nonexpansive

mapping with F(T) # (0 is quasi-nonexpansive mapping. Then, from (1.7), we have

lgs —zll = [I(1 = Bs)ls +BsTls — z||

IN

(1 —Bs)l[ls — z|| + Bs|ITEs — z||

< (1=B)lles =z + Bslies — =
= l&s — 2|
Using (1.7) and (4.1), we obtain
Iws — 2|l = [I(1—85)T¢s +6sTgs — 2|
< (1-05)IIT¢s — z|| + 651 Tgs — z||
< (1=05)lIes =zl + bsllgs — =]
< (1-05)lIes — z|| + 6slles — =]
= |l&s — 2|
Again, using (1.7) and (4.2), we get
s =zl = [ITws — 2|
< ws =2
< s =zl
Lastly, from (1.7) and (4.3), we have
s =zl = IIT¢ - 2|
< s — 2z
< s =zl

This implies that {||¢s — z||} is bounded and nondecreasing for all z € F(T)

exists.

(4.2)
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Lemma 4.2. Let 2 be a uniformly convex Banach space and \ be a nonempty closed convex subset

of Q. Let T : N — N be a generalized c:—nonexpansive mapping. Suppose {{s} is the iterative

algorithm defined by (1.7). Then, F(T) # () if and only if {{s} is bounded and [}m |T4s—4£s]| = 0.
S$—00

Proof. Suppose F(T) # () and let z € F(T). Then, by Lemma 4.1, im l14s — z|| exists and {45} is
5—00
bounded. Put

Jim [l&s — z|| = x. (4.5)
From (4.4) and (4.5), we obtain
limsup||gs — z|| < limsup ||4s — z|| = x. (4.6)
S—0o0 5§—00

From Proposition 2.9(ii), we know that every generalized a—nonexpansive mapping with F(T) # ()

is quasi-nonexpansive mapping. So that we have

limsup || T4s — z|| < limsup||¢s — z|| = x. (4.7)
S—00 S—00
Again, using (1.7), we get
[st1 =zl = IT¢ — 2]l
< s =z
= [[Tws —Z|
< llws — 2]

(1 —0s)TLs + 05T gs — z||

< (1 =05)ITls — z|| + 65| T gs — z||
< (1-066)|8s — z|| + 6slgs — 2|
= |l&s — z|| = bsl€s — z| + 0sllgs — z||. (4.8)
From (4.8), we have
bor1—2Z|| — ||4s — z
l1€s41 |(|S 145 I <lgs — z|| - |15 — z||. (4.9)
S

Since ds € [0, 1], then from (4.9), we have

1511 — 2|l — |[4s — 2|

€52 = 2l| = 1t = 2] < :
S

<llgs = zll = [l&s = 2|,
which implies that

151 — zll < [lgs — z|.
Therefore, from (4.5), we obtain

x < liminf||lgs — z||. (4.10)
S—00
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From (4.6) and (4.10) we obtain

x = lim g, —z|
5—00
= lim H(l _55)25 +,65T£5—Z||
S—00
= S"_Ugo (1 —Bs)(s — z) +Bs(T4s — 2)||
= SingoH,Bs(Tgs_Z)_'_(l_55)“5_2)”- (4.11)
From (4.5), (4.7), (4.11) and Lemma 2.14, we obtain
lim ||T¢s — £]| = 0. (4.12)
S5—00

Conversely, assume that {£;} is bounded and lm IT¢s—£s|| = 0. Let z € A(A, {4s}), by Definition
S$—00
2.3 and Proposition 2.9(iv), we have

(Tz,{4s}) = limsupl|és—Tz||
S— 00

3
< limsup (3+a)
s—00 (1_05)

= limsup|[£s — Z||
S$—00

ITes — &l + |l4s — 2|

= I’(Z, {KS}) (4.13)
This implies that z € A(A, {£s}). Since Q is uniformly convex, A(A, {£s}) is singleton, thus we
have Tz = z. ]

Theorem 4.3. Let 2, A\, T be same as in Lemma 4.2. Suppose tat Q2 satisfies Opial’s condition and
F(T) # 0. Then, the sequence {{s} defined by (1.7) converges weakly to a fixed point of T.

Proof. Let z € F(T), then by Lemma 4.1, we have sI|_>r2O l4s — z|| exists. Now we show that {{s}
has weak sequential limit in /(7). Let £ and ¢ be weak limits of the subsequences {£s;} and {£s,}
of {£s}, respectively. By Lemma 4.2, we have sI|_>ngo IT4s — £s]| = 0 and from Lemma 210, / — T is
demiclosed at zero. It follows that (/ — T)¢ = 0 implies £ = T¥, similarly T¢ = (.

Next we show uniqueness. Suppose £ # (, then by Opial’s property, we obtain

1es — ¢l = €5 — 4l

lim lim |
S—00 Sj—>00
< lim [[£s, = (]|
5/—00
= lim [l&s = (]
S—00
= lim_ it |
< lim [l 2]
= lim &5 — £ (4.14)

which is a contradiction, so £ = (. Hence, {{s} converges weakly to a fixed point of T. u
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Theorem 4.4. Let Q, A\, T be same as in Lemma 4.2. Then, the iterative algorithm {{s} de-

fined by (1.7) converges strongly to a point of F(T) if and only if Iinlinf d(¢s, F(T)) = 0, where
S o0

d(ls, F(T)) =inf{|[£—z||: z€ F(T)}.

Proof. Necessity is obvious. Assume that IiSrT_1>ior<1jf d(¢s, F(T)) = 0. From Lemma 4.1, we have
SI|_>ngO l1¢s — z|| exists for all z € F(T), it follows that Iisrgiorlf d(€s, F(T)) exists. But by hypothesis,
Iisnliorlf d(¢s, F(T)) =0, thus s||_>r2o d(4s, F(T)) = 0. Next we prove that {£;} is a Cauchy sequence
in A. Since IiSrT_1>i£f d(¢s, F(T)) = 0, then given € > 0, there exists sp € N such that, for all s, n > s,

we have

d(¢s, F(T))

(VAN
Nl N

d(£,, F(T)) <

Thus, we have

s —Lall < |l&s — z[| + [[£n — z||
< ds, F(T))+d(£,, F(T))
- 2 2 7

Hence {45} is a Cauchy sequence in A. Since A is closed, therefore there exists a point £; € A

such that lim £s = £;. Since lim d(4s, F(T)) = O, it implies that lim d(41, F(T)) = 0. Hence,
S—00 S—00 S$—00

L1 € F(T) since F(T) closed. O

Theorem 4.5. Let 2, A\, T be same as in Lemma 4.2. If T satisfies condition (1), then the iterative
algorithm {5} defined by (1.7) converges strongly to a fixed point of T.

Proof. We have shown in Lemma 4.2 that
lim ||T¢s — £s]| = 0. (4.15)
S—00
Using condition (I) in Definition 2.8 and (4.15), we get
lim f(d(s, F(T))) < lim ||T¢s — £ =0, (4.16)
S—00 S—00

Le., |i_>m f(d(4s, F(T))) = 0. Since f : [0,00) — [0,00) is a nondecreasing function satisfying
S5—00
f(0) =0, f(r) >0 for all r € (0, 00), we have

lim d(es, F(T)) =0. (4.17)

From Theorem 4.4, then sequence {{s} converges strongly to a point of F(T). O
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5. NUMERICAL RESULT
In this section, we provide an example of generalized a-nonexpansive mapping which is not
Suzuki generalized nonexpansive mapping. With the aid of the provided example, we will prove

that our new iterative algorithm (1.7) outperforms a number of iterative algorithms in the existing

literature in terms of convergence.

Example 5.1. Let A = [0, o) be endowed with the usual norm |- | and let T : A — A be defined

as:
0, ifeelo )
Te=1 ., Feel 15) (5.1)
Firstly, we show that T does not satisfy condition (C). To see this, let £ = %5 and ( = % then
1 1
20— Th = — <« = —|p—
Se- Tl = o <o =1L
But
3¢ 3 2
Te=Td="F=55>1=1E—¢l

Hence, T does not satisfy condition (C), which implies that T is not a Suzuki generalized nonex-
pansive mapping.

Now we show that T is a generalized a-nonexpansive mapping with o = % (i.e., generalized
%—nonexpansive). We consider the following cases:
Case (a): When £, ¢ € [0, %) we have

1 1 1
§|T5—C|+§|Z—Tf|+§|5—€| >0=|TL—T(|.

Case (b): When ¢,( € [% o0), we obtain

1 1 1 _13¢ 1 3¢ 1
SITE=Cl+gle-Te+5le—¢l = 3‘4—C'+3'f—4+3|‘3—‘f|
11](3¢ 3¢ 1
§ 3‘(4_C)+(£_4)‘+3'£_C'

7 1

= E|Z—C|+§|£—C|
11

= Sk-¢

3
> ¢l =Te-T¢)



Eur. J. Math. Anal. 1 (2021)

Case (c): When £ € [£,00) and ¢ € [0, 1), we get

1 1 1
§|T£—C|+§|Z—TC|+§|K—C| =

1134 1 1
3|5 ¢+ 30+ 3

1|32 1
> 2= — ~|e -
> 3’4 <‘+3lé q
70

>

E:

|T¢—T(|.

122

Hence, T is generalized a-nonexpansive mapping with o = % (L.e., generalized %—nonexpanslve)
with F(T) = {0}.
With the aid of MATLAB (R2015a), we obtain the following comparison Table 2 and Figure 2 for

various iterative algorithms with control sequences s = 0.65, 3s = 0.8 and initial quess ¢; = 50.

TaBLE 2. Comparison of convergence behaviour of our new iterative algorithm with

S, Picard-S, Thakur and M iterative algorithms.

Step S Picard-S Thakur M New
1 50.00000000 50.00000000 50.00000000 50.00000000 50.00000000
2 3262500000 24.46875000 24.46875000 23.55468750 18.35156250
3 21.28781250 11.97439453 11.97439453 11.09646606 6.73559692
4 13.89029766 5.85996932 5.85996932 5.22747581  2.47217456
5 0.06341922 2.86772249 2.86772249 2.46263118  0.00000000
6 591388104 1.40339169 1.40339169 1.16013016  0.00000000
7 3.85880738  0.00000000  0.00000000  0.00000000  0.00000000
8 251787182  0.00000000  0.00000000  0.00000000 0.00000000
9 1.64291136  0.00000000  0.00000000  0.00000000  0.00000000

Sequence values
N
(9]

M lIteration

—)— S iteration

Thakur Iteration
Picard-S Iteration

Iteration number s

Ficure 2. Graph corresponding to Table 2.

From the above Table 2 and Figure 2, it is clear that our new iterative algorithm (1.7) outperforms

a number of existing iterative algorithms.
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6. STABILITY RESULT

Our aim in this section is to show that our new iterative algorithm (1.7) is T-Stable.

Theorem 6.1. Let 2 be a Banach space and N\ be a nonempty closed convex subset of 2. Let T
be a mapping satisfy (1.2). Let {{s} be the iterative algorithm defined by (1.7) with sequences s
and Bs € [0, 1] such that )_22 , §s8s = oco. Then the iterative algorithm (1.7) is T-stable.

Proof. Let {ys} C Q be an arbitrary sequence in A and suppose that the sequence iteratively
generated by (1.7) is £s41 = f(G, ys) converging to a unique point z and that es = ||ys+1—f(T, ys)||-
To prove that (1.7) is T -stable, we have to show that Iim e =0<«< lim ys = z.
S—00 S—00
Let lim €5 =0. Then from (1.7) and (1.6), we obtain
S—00
1Ys+1 =2l = llys+1 = F(T.ys) + (T, ys) — 2|l
1Ys41 = F(TLys) Il + [1F(T. ys) — z||
= &+ |[f(T.ys) = 2|l

= e+ || T(T((1—=0s)Tys +0sT((L =Bs)ys +BsTys))) — z||

IN

= V(1= (1 =7Bs)llys — zll +&s. (6.1)
For all s > 1, put
s = llys—2zl,
os = (1—7)dsbs €(0,1),
As = Es.

Since lim g5 = 0, this implies that ;—z = (17,‘;“% — 0 as s — oco. Apparently, all the conditions

of Lemsr11_;002.12 are fulfilled. Hence, from Lemma 2.12 we have |Iim ys = z.
Conversely, let Sllglo ¥s = z. The we have T
& = lyse1 = (T ys)l
= lyst1—z+z— (T, ys)ll
< st =zl + 1F(T. vs) — z|l
< st = 2l +9°(1 = (1= 7)3s8s)lys — zll. (6.2)

From (6.2), it follows that Ii_}m €s = 0. Hence, our new iterative algorithm (1.7) is stable with
S—00

respect to T. O

7. DATA DEPENDENCE RESULT

In this section, we obtain data dependence result for the mapping T satisfying (1.2) by utilizing

our new iterative algorithm (1.7).
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Theorem 7.1. Let T be an approximate operator of a mapping T satisfying (1.2). Let {{s} be an

iterative sequence generated by (1.7) for T and define an iterative algorithm as follows:

-

Iy € A,

s = (1 — Bs)ls + BsT s,

1 Ws=(1-105)T¢s +06sT3s, Vs=>1, (7.1)
s = T,

sy =T,

“

where {6s} and {Bs} are sequences in [0, 1] satisfying the following conditions:
() 3 <0sBs, Vs€EN,

(it) Y_ 0sBs = o0.
s=0

IfTz=2zand TZ = 7 such that lim ENS = Z, we have
S—00

lz— 2l <
z—Z|| < —
where € > 0 is a fixed number.
Proof. Using (1.7), (1.2) and (7.1), we have

||£s+1 - Zs+1|| = ||T<S - T—ESH

= ||TCS - T&s + T55 - 7~—ESH
< TG =TEI+ITE =T

< ,Y||<S_5S||+L”<S_TCSH te€. (7.2)
From (1.7), (1.2) and (7.1), we have

HCS‘ESH = HTWs*fVT/SH
| Tws — TWs 4+ Ts — T is||

IN

||TWS - TWSH + HTWS - 7~_VT/SH

IA

Yllws — wsl| + Ll[ws — Twsl| + €. (7.3)
Putting (7.3) into (7.2), we have

1€s41 — gs+1|| < 'YZHWS — We|| +yLl|ws — T ws]|

+ye + L||¢s — Tl + €. (7.4)
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Again, using (1.7), (1.2) and (7.1), we get

lws — Wsl| = (1 —20s)|IT4s — 7N—ZSH +0s[|Tgs — 7~—§5H
(1 - 55){||T£s - TZSH + HTZS - 7N_ZSH}

IN

+5s{||Tgs —T3sll +1ITgs — _,N—gsH}
(1= 6s){vll€s — &5l + LI|€s — Tes|l + €}

IN

+0s{Vllgs — Gsll + Lllgs — Tgs|| + €}.
Using (1.7), (1.2) and (7.1), we get

lgs = 3sll < (1= Bs)lles — &sll + Bsl| Tes — Tis|

(1= Bs)lles — &sll +Bs{|ITes — Tl + T8 — TEs|}
(1= Bs)lles — &l + Bs{vlls — &s| + Ll[&s — Tes|| + €}
[1— (1= 7)Bs]lles — &sl| + BsLl|€s — Tes|| + Bse

A

IN

Using (7.6) and (7.5), we have

Iws = sl < (1= 8){vllls — &l + LII€s — T4s|l + €}
+0s{V[1 — (1 — 7)Bs]lles — &sl| + ¥Blles — Tes|| + ¥Bse}
= [1— (1 —7)8sBs]ll€s — &s|| + (1 — 6s)L[€s — T4
+(1 — 0s)e + Y0sBsL[[€s — TLs|| + ¥0sLse.

Substituting (7.7) into (7.4), we obtain

H‘es-f—l - Zs-l—l” < ’Y3[1 - (1 - ’Y)éslﬁs]Hes - Zs” + 72(1 - 65)L||‘es - Tes”
+'Y2(1 —ds)e + 735555L”es =T + 7355556

+’YL||W5 - TWSH +ve+ L”Cs - TCSH + €.
Since 7,72, 73 € (0,1) and ds,Bs € [0, 1], then (7.8) becomes

61— Boall < [L— (1 —7)0sBsllles — &sll + Llles — Tts|
+0sBsL|[€s — Ths|| + L||ws — T ws]]
+L|[¢s = Tl 4 0s8s€ + 3e.

By our assumption (i) that % < 65065, we have

1- 55:65 < 65,55 =1=1- 5555 + 5sﬁs < 65,65 + 65,85 = 25565-

125

(7.5)

(7.6)

(7.9)
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This yields

1€s+1 — Zs+1|| < [1=(1—=7)0sBs]lles — Zs” + 30sBsL|[€s — TEs||
+20sBsL[|ws — Tws|| +20sBsL|[(s — T(sl| + 76sB8se

= (1-(1—79)0sBs)ll4s — ESH
+6565(1 _ ’Y) % {3L||es - TZSH +2L||ws — T wsl|
(1—1)

2L[[¢s — Tl + 76}
) 7.10
(1—=2) 710
Set
0s = Hes - ZSH
Os = (1 - ’Y)ésﬁs € (O, 1)
N {3L||£s — Tls|l +2L[ws — Tws|| +2L[|¢s — T(s|l + 76}
° (1-7)
From Theorem 3.1, we know that Sle s = z and since Tz = z, it follows that
lim [[ls = T4s|| = lim [Jws — Tws|| = lim [|{s — G(s|| = 0.
S—00 S—o0 S—00
Using Lemma 2.13, we get
0 < limsup |[€s — & < limsu e (7.11)
- S—>oop s s = s—>oop (1_’7) '

Since by Theorem 3.1, we have that lim £s = z and from our hypothesis lim Z; = Z, it follows
S—00 S—00
from (7.11) that

,
Iz -2 < ——.
(1-=2)

This completes the proof. ]

8. SOME APPLICATIONS

In this section, we will prove that the sequence generated by our new iterative algorithm (1.7)
converges strongly to solutions of the constrained convex minimization problem and split feasibility
problem.

Now, we present the definitions of some operators that will we be important in proving our main

results. Let H be a Hilbert space and let C be a nonempty closed and convex subset of H.

Definition 8.1. Let T : C — C be a mapping. Then T is said to be:
(i) nonexpansive, if

[Te—=T¢| < (€=l forall,CeC;
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(ii) Lipschitz continuous, if there exists L > 0 such
ITe =TI < Llle—Cl, forallé, ¢ €C;
(iit) monotone if,
(TL—T¢(L—-¢) >0, forall ¢, eC; (8.1)
(iv) w-strongly monotone if there exists w > 0, such that
U—=CTe—T¢ >w|le— |, forall e, ¢ ecC. (8.2)
For any £ € H, we define the map Pc : H — C satisfying
1€ — Pcll| < [|€— (]|, forall ¢ €C.
Pc is called the metric projection of H onto C. It is well known that Pc is nonexpansive.

8.1. Application to constrained convex minimization problem.

Consider the following constrained convex minimization problem:
minimize {f(£) : £ € C}, (8.3)

where f : C — R is a real-valued function. The minimization problem (8.3) is consistent if it has
a solution. Throughout this paper, we shall use [ to stand for the solution set of the problem
(8.3). It is worthy noting that f is (Fréchect) differentiable, the gradient-projection method (GPM)

generates a sequence {{s} by using the recursive formula:
by € C,
(8.4)
Lsy1 = Pc(£s — AVf(4s)), forall s > 1.

In more general form, (8.4) can be written as:

o € C, (8 5)
loi1 = Pc(ls — XsVF(Ls)), forall s > 1, '

where A and As are positive real numbers.
It is well known that if Vf is w-strongly monotone and L-Lipschitzian with @, L > 0, then the

operator
T = Pc(l — AVF) (8.6)

is a contraction; thus the sequence {£s} in (8.4) converges in norm to the unique minimizer of (8.3).
From [14,30], we know that z € C solve the minimization problem (8.3) if and only if z solves

the following fixed point equation:

z=Pc(l = AVF)z, (8.7)
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where A > 0 is any fixed positive number. The operator T = Pc(/ — AVf) is well known to
be nonexpansive (see [14,30] and the references therein). Several authors have have considered
different iterative algorithm for constrained convex minimization problems (see [4,9,13,19,34] and

the references therein). We now give our main results

Theorem 8.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Supposed that
the minimization problem (8.3) is consistent and let [ denote the solution set. Supposed that the
gradient V' is L-Lipschitzian with constant L > 0. Let {{s} be the sequence generated iteratively
by

o € C,
Js = (1 _6s)es +,BSPC(I - >\Vf)£5
1 Ws = (1 —065)Pc(l = AV)s +6sPc(l —AVF)gs Vs> 1. (8.8)

Cs = Pc(l = AVT)ws
Lsy1 = Pc(l = AVF)(s,

C

where {05}, {Bs} are sequences in [0,1] and X € (0, %)

Then the sequence {{s} converges strongly to a minimizer z of (8.3).

8.2. Application to split feasibility problem.

For modeling inverse problems which emanate from phase retrieval and medical image reconstruc-
tion, in 1994, Censor and Elfving [11] firstly introduced the following split feasibility problem (SFP)
in finite-dimensional Hilbert spaces.

Let C and Q be nonempty closed convex subsets of the Hilbert spaces H1 and H>, respectively
and A : Hi — H> be a bounded linear operator. Then the split feasibility problem (SFP) is
formulated to

find z € C such that Az € Q. (8.9)

SFP has many applications, it has been found that SFP can been used in many areas such as
image restoration, computer tomograph, radiation therapy treatment planning. There exists some
iterative several iterative methods for solving split feasibility problems, see, for instance [8,15,30].

In 2002, Byrne [8] applied the forward-backward method, a type of projection gradient method

to approximate (8.9). The so called CQ-iterative procedure is defined as follows:
Loi1 = Pc[l —yA* (1 — PQ)Al¢,, Y n>1, (8.10)

where 7y € (O, W) with X being the spectral radius of the of operator A*A, Pc and Py denote
the projections onto sets C and Q, respectively, and A* : H5 — Hj is the adjoint of A.
We assume that the solution set [ of the SFP (8.10) is nonempty, let

r={teC:McQl=CnAQ,

then I' is closed, convex and nonempty set.
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Lemma 8.3. [75] Let operator T = Pc[l — yA*(I — Pg)A], where 7y € (O, HAQIIQ ) Then, T is said

to be a nonexpansive map.

Since by our assumption " # (, then it is clear that any z € C solves (8.9) if and only if it solves

the fixed point equation:
T = Pc[l —=vA*(l — Pg)Alz=2, z€eC.

Thus, F(T) =T = CNA7!Q, ie., the solution set I" is equal the set of fixed point of the map T.
For more explicit explanation, the reader can see [42,43].

Now, to prove our main results in this part, we will consider the following scheme:

~

go e C,
9s = (1 — Bs)ls + BsPc[l — yA*(I — PQ)AMs
1 Ws = (1—=08s)Pcll =A™ (I = PQ)Als + dsPc[l — yA* (1 — Pq)Algs (8.11)

(s = Pcll = yA* (I — PQ)A]ws
£s+1 = 'DC[/ _'YA*(/ - ’DQ)A]Csv

\

for all s > 1, where {05}, {Bs} are sequences in [0,1] and vy € (O, ||A2H2 )

Theorem 8.4. Let {{s} be the sequence iteratively generated by (8.11). Then, {{s} converses

weakly to an element in T.

Proof. Since T = Pc[l — yA*(I — Pg)A] is a nonexpansive map and by Proposition 2.9 we know
that every generalized ac-nonexpansive map is nonexpansive map with o = 0 (i.e., O-nonexpansive),

so the conclusion follows from Theorem 4.3. O

Theorem 8.5. If{{s} is the sequence generated by the iterative scheme (8.11). Then {£s} converges
strongly the an element in I if and only iflinl}inf d(¢s,T) =0.
S—00

Proof. Since T = Pc[l — yA*(I — Pg)A] is nonexpansive map, then the conclusion of the proof
follows from Theorem 4.4. O

Theorem 8.6. If T = Pc[l — vA*(I — Pg)A]| satisfies condition (1) and {{s} is the sequence
iteratively defined by (8.11), then {{s} converges strongly to a point in T.

Proof. The result follows from Theorem 4.5. O

9. CoNCLUSION

In this paper, we have shown numerically and analytically that our new iterative algorithm (1.7)
has a better rate of convergence than M iterative algorithm and some other well known existing
iterative algorithms in the literature for almost contraction mapping and generalized c:-nonexpansive

mappings. Also, it is shown that our new iterative algorithm (1.7) is T—stable and data dependent
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which make it reliable. As some applications of our new iterative algorithm (1.7), it is used to
find the solutions of constrained convex minimization problem and split feasibility problem. Now,
owing to the fact that the class of generalized a-nonexpansive mappings which is considered in
our paper is more general than the class of Suzuki generalized nonexpansive mappings which has
been considered by Ullah and Arshad [39] for M iteration, it implies that our results generalize
and improve the results in Ullah and Arshad [39] and several other related results existing in the

literature.
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