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ABSTRACT. In this paper, we generalize the typical geometric constants of Banach spaces to modular
spaces. We study the equivalence between the convexity of modular and normed spaces, and obtain
the relationship between p-Neumann-Jordan constant and p-James constant. In particular, we extend
the convexity and smoothness modular, and obtain the criterion theorems of the uniform convexity and

strict convexity.

1. INTRODUCTION

In the recent years, the geometric theory of Banach spaces has been fully developed, especially
the geometric constant, which is a powerful tool to characterize the geometric properties of the
space sphere. As early as 1936, Clarkson introduced the convexity modular of space [1]. In 1963,
Lindenstrauss introduced the smoothness modular, and obtained the close relationship between
the two constants [2]. In 1937, in order to better characterize Jordan and von-Nuemann's famous
work in inner product spaces, Clarkson defines the von-Nuemann constant [3] which is the minimum

constant C for all x,y € X and (x, y) # (0, 0) of the following equations:

2 _ 2
1 ey Pl
= 2P+ I

In 1964, James introduced James constant [4] in order to study the normal structure of space.

After the appearance of these constants, many scholars paid attention to them and obtained many
wonderful properties [5].

Modular space problems have been considered by H. Nakano, Musielak and Orlicz [6] under
the additional hypothesis of convexity or subadditivity of the modular p : X — [0, +00). Moreover

the case of semi-ordered linear spaces and that of B-norms have been chiefly investigated. Under
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weaker assumptions, they investigated the structure of the spaces under consideration. Neither
convexity nor subadditivity of the modular be assumed. In introducing the norm, a certain natural
connection between the modular and the norm convergence will be required: norm convergence
should imply modular convergence.

Through their researches, they found that although modular spaces are not generally normed
spaces, they still have many wonderful properties, such as convergence, completeness, convexity and
additivity. In view of these properties, Poom Kumam extended Jordan Von-Neumann constant and
James constant in Banach spaces to modular spaces, and obtained uniform convexity and uniform
non-squareness of modular spaces [10].

In this paper, based on the idea of generalizing geometric constants in Banach spaces to modular
spaces, we generalize the properties of von-Neumann constant and James constant in [10]. By
defining convexity modules and smoothness modular, we derive the relationships between James

constant, convexity modular and the strict convexity of modular spaces.

2. PRELIMINARIES

We first give some basic facts about modular spaces formulated by Musielak and Orlicz [6].
Definition 1.[8] Let X be a vector space over F(R or C). Then a function p : X — [0, o0] is called
a modular on X if for arbitrary x, y in X,

() p(x) =0 if and only if x =0,

(i) p(ax) = p(x) for every scalar o with || =1,

(iit) plax +By) < p(x) + p(y) f a+B=1and o, > 0.

If (iii) is replaced by (iv): p(ax+By) < ap(x) +Bp(y) if &,8>0and a+8 = 1. We now call
that p is a convex modular.

A modular p can be used to define a corresponding modular space, i.e, the vector space X, as

given by
Xo={xe€ X :p(Ax) =0 as X — 0},
where X, is a linear subspace of X.
In general, the modular p is not necessarily subadditive and therefore it does not behave as a

norm or a distance. But we can associate it to a modular F-norm.

The modular space X, can be equipped with a F-norm defined by

Ix[l, = inf {a > O;p(;) < a},

when p is convex. Then norm || - ||, is frequently called the Luxemburg norm. If p is convex, then

the functional ||x||, = inf {a > 0;0(x) < 1t is anorm in X, which is equivalent to the F-norm

- [lp-
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Proposition 1. Let X, be a modular space. Then p is convex if and only if X, is a normed space
with p as norm.

Proof. The proof of sufficiency is obvious.

Conversely, assume p is convex, then we can obtain p(x) = 0 if and only if x = 0.

(1) According to the Definition 1, if a > 0, then

1 1 l-—«a 1 11— 1
- — - 0l <= 0) = =
pax) = (2x 5% 00) < 2000+ 1000 = 2ot
and
a l>< =« l>< + (1 —a)p(0) > p(a l—|—(1 a)-0) = p(x)
plox]) =aels p(0) = pla - — = p(x).
i 1 1 1 1
This show that p(5x) > > p(x) and hence p X = ap(x) for o > 0.
Suppose a # 0, then |a] > 0. According to the Definition 1, we have

p (1ol - g0 =la { 2x) = ladoto)

which shows that p(ax) = |alp (Hl‘ax) = |alo(x).
(il) Since
_ X)) 2o (2
o+ = (2(5+3)) =20 (3
then X, is a normed space with p as norm.

+7) < e+ ely),

3. THE p-NEUMANN—JORDAN CONSTANT AND THE p-JAMES CONSTANT

In 2006, Poom Kumam [10] generalized two typical constants

Ix + yII” + lIx = ylI?
x,y € X, (x,y) #(0,0)
2|Ix[1> + 2[ly 2

Cnu(X) = SUP{

and
J(X) = sup{min{|Ix + vl [Ix = ylI} : x,y € X, [Ix]| = [lyll = 1}
and introduced two new geometric constants Cpy(X,) and J(X,) defined on modular spaces.
Definition 2.[10] The p-Neumann-Jordan constant Cp (X,) of a modular space X, is defined by
PO +2(550)
p?(x) + p2(¥)
Definition 3.[10] The p-James constant J(X,) of a modular space X, is defined by

CNJ(Xp):2sup{ :x,yEXp,p(x)zl,p(y)gl}.

X+Yy

) = 250p { min{o( 10,6520} 0.7 € X p0) = Lusty) <1}

In the following section, we extend the Proposition 3.5 in [10] and obtain inequalities of Cp(X,)
and J(X,).

Theorem 1. Let X, be a modular space, then
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() 0 < J(X,) <4 and 1 < Cpny(X,) <8, in particular, if p is convex, then 1 < J(X,) < 2 and
1< Chy(Xp) £2;

(D)3 2(X,) < Cnu(Xp) < %;p) + 4, in particular, if p is convex, then $J2(X,) < Cny(X,) <
2oy + 1.
J2(Xp)

Proof. (i) Let y =0, then

J(Xp) = 25up{p(3) : X € X, p(x) = 1}.

Since p(x) = 1, then p(g) > 0 implies J(X,) > 0. Since p(%) < p(x) + p(y) < 2, then
0< J(X,) <4

Let x =y, then
(x+x>+p (x X)
> > 1.
i) = 25 { T e p00 <1 21
Since p2(X —2Fy) —I—p2(X;y) < 2(1+p(y))?, we have

0 () + 0 () 20(y)
2(X)+02(y) S2(1+1+p2(y))

thus 1 < CNJ(XP) < 8.

In particular, if p is convex and let x = y, then
X
J(X,) > 25up{p(§) ix € Xy, p(x) =1} =1.

Since p(Xiy) < 1p(x) 4+ 3p(y) £ 1, then 1 < J(X,) < 2. We also can prove 1 < Cy(X,) <2
by the same way.

(i) Since
o (X;ry) +p° (X;y) <21+ o) <4(1+0%(y)).
then
P () +7 (551) 20 +0)) L, 4e()
p2(x) + p2(y) T 1+02(y) 1+ p2(y)

4ly) . 160(y)
THR2) © 25 + ()
P (F) + 7 ()

p2(x) 4+ p2(y)

16p(y)

T2 () + 2 (%)
16

P2 () + 02 (5FF)

< %J21(6X) implies that Cy(X,) < JQ(X) + 4.

Since 7(0?(2FL) + p2(553%)) < 1+ p?(y), then that is

<

Finally 3Cny(X,) — 2
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According to the proof of Proposition 3.5 in [12], we can prove $J2(X,) < Cn,(X,), thus
64

1,
—J(X,) < X 4
In particular, if p is convex, then
X+y
PP(—=)+p <1+ p%(y),
thus .
)+ (55) 1 ely) 1
2(><)+p2(y) 27 14+02(y) T 02 (2F) + 02 (%5Y)
Therefore
4
. . 5 0,x=0
Example 1. (i) Consider X = R*, p(x) = ) 0" where ||x]|1 = [|(x1, %)|l1 = |x1| + |x2|.
Obviously, X, is a modular space.
We cho x—il —E—E then
e choose xg = 55 Yo = 575
Xo + W X0 — Y
p(Xo)Zp(yo)Zl,p( - 0) =p(°20) —2

thus J(X,) > 4. Since J(X,) < 4, then J(X,) = 4. According to (ii) of Theorem 1, we know that
Cny(Xp) = 8 in this example.
(i) Consider X = R?, p(x) = ||x||1. Obviously, X, is a modular space and p is convex. We have
J(Xo) = sup{min{llx + yll1, Ix = yll1} : x,y € Xo, [Ix[l = 1, fIy]l < 1}.
We choose xp = (1,0), yo = (0, 1), then [Ixo[[1 = [[yoll1 = 1 and [Ix0 + yoll1 = [[x0 — yoll1 = 2,
thus J(X,) = 2. According to (ii) of Theorem 1, we can get that Cn,(X,) = 2 in this example.

4. THE P-CONVEX MODULAR AND THE p-SMOOTH MODULAR

In order to study the uniform convexity of Banach spaces, Clarkson introduced the modular of

convexity
bx(e) = mf{l Sl el = iyl = - 2 e}.

Goebel called g9 = sup{e € [0,2] : dx(€) = 0} as the characteristic of convexity. Based on the
geometric intuitionistic meaning of convexity of Banach spaces and its application in fixed point
theory, this paper gives the p-convex modular of modular spaces with reference to the definition of
ox(€).

Definition 4. The p-convex modular dx,(g) of a modular space X, is defined by
Ox,(e) = inf {1 —p (*F*) i x.y € Xp, p(x), p(y) < L, p(x —y) > €}, 0<e<2.
In particular, if p is convex, the p-uniform convexity of X, is defined as

g0 (X,) =sup{e €[0,2] : 6x,(¢) = 0}.
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Remark 1. We can easily prove that —1 < dx,(¢) < 1 and dx,(0) < 0.
In Banach spaces, the convexity modular dx(g) and the smoothness modular

Ix-+ vl +x =y
pxtt) = sup{ Iy — 1y = 162 0

are conjugate concepts. Therefore, this paper gives the definition of p-smooth modular of modular
spaces by referring to the definition of smoothness modular px(t).

Definition 5. The p-smooth modular px,(t) of a modular space X, is defined by

o0 =sup 50 + 0G0 <1 xy € X p) < o) < tf 220

Remark 2. It is true that min{0, t — 1} < px,(t) <1+ 2t and px,(t) is increasing of ¢.
Theorem 2. Let X be a modular space, then

(i) J(Xp) < 2eif and only if 6x,(€) > 1 — ¢, in particular, if p is convex, then J(X,) < € if and
only if dx,(e) > 1 — 5;

(i) J(Xp) = 2sup{e € (0,2) : x,(€) < 1—¢}, in particular, if p is convex, then J(X,) = sup{e €
(0,2) : 6x,(e) <1—5}

Proof. (i) Note a = J(X,) < 2¢, thus

min {02,005 <2

shows that 1 — p(23X) > 1 — ¢ > 1 — €. Therefore x,(¢) > 1 —e.
Note B = éx,(€) > 1 — ¢, then 1 — p(*3%) > G implies p(*F¥) <1 - < e. Thus

min {050,005 | =5

Then

5060 =25 o (X2 1.y € 5000 = 1.60) <1}

<228 < 2.
In particular, if p is convex and let A = J(X,) < €, then J(X,) < € if and only if Vx,y €
Xo, p(x), p(y) < 1, we have
p(x+y) < Xorp(x—y) <A
According to the Definition of dx,(€), we obtain p(x+y) > € > X, thus p(x —y) < X shows that

a €

(ii) Note €0 = sup{e € (0,2) : dx,(€) <1 —¢€}.
Suppose €9 < 2. Ve € (g, 2), for any x, y € X, and p(x), p(y) < 1, we have

p(x —y)>eorp(x—y)<e

If o(x —y) > ¢, then 0x,(€) > 1 — € implies p(%) < e Thus J(X,) < 2e.
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Since dx,(e) < 1—¢, then J(X,) < 2¢o shows that
J(Xp) = 2sup{e € (0,2) : 0x,(€) <1 —€}.
In particular, if p is convex and let a = J(X,) € [1,2], then ¥x,y € X,, p(x), p(y) < 1, we have
p(x+y)<aorpx—y)<a.
What's more, Vn > 0, there exist X', y’ € X, and p(x’), p(y’) < 1 such that

p(X+y)>a—-nandp(x' —y')>a—n.

implies dx, (€) <1 — %, therefore

/ / _
le77>0,then1—p(x+y 05277

1—
2 ) <

sup{ee (0,2) :dx,(e) < 1—;} >a—n.
Ve € (0,2), if € < a, thus
sup {ee (0,2) : dx,(e) < 1—;} <a.

If € > o, then p(x + y) < a shows that dx,(¢) > 1 — 5. In (0,2), we know
sup {e €(0,2) : 0x,(e) <1— ;} <a,

thus a —n < sup{e € (0,2) : 0x,(€) <1—-5} < a.
Let n — O, then

sup {ee (0,2) : 0x,(e) < 1—2} =a.

Theorem 3. Let X, be a modular space, then
(1) J(Xp) < px, (1) + 1;
(i) Cra(Xp) < 2(/12+ (1 + px, (1)) = 2)%
Proof. (i) We can deduce that

J(X,) Ssup{p(”y) +p(x‘y) X,y € Xp.p(x) = L. ply) < 1}
= px,(1) + 1.

(ii) We know that a®> + b%> < (a+ b)2 —4(a+ b) +8for 0 < a, b < 2. Thus

) () < o () o () oo (5) -

Since

57)) =

X+y
o (X5 +0
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then
#(152) o (52) oo () o (5] -
<(e[7) o 72))
< (1+px,(1))°
Thus

2 (X;ry) + o2 (X;y) < (\/12+(1+,oxp(1))2—2)2

2
which shows that 3Cp (X)) < (\/12 +(1+ po(l))2 B 2) .

5. CoNVEXITY AND NON-SQUARENESS

Clarkson introduced uniform convexity in 1936, proved that /,(1 < p < o0) spaces are uniformly
convex Banach spaces and uniformly convex Banach spaces have Radon-Nikodym properties. Due
to the geometrical intuitiveness of convexity, Poom Kumam [10] gave the definitions of p,-uniformly
convex, p-uniformly non-square and p-strictly convex of modular spaces in 2006.

On the basis of literature [10], this paper studies the relationships between convexity, non-
squareness and geometric constants of modular spaces.

Definition 610] For r > 0, a modular space X, is said to be p.-uniformly convex if for each € > 0,
there exists § > 0 such that for any x, y € X,, the conditions p(x) < r, p(y) < rand p(x—y) > re
imply that p(%) <(1-=9)r.

Definition 7.[10] The modular space X, is said to be p-uniformly non-square if there exists § € (0, 1)
such that for any x, y € X, with p(x) =1 and p(y) < 1, p(%) <1l-dorp(*3%)<1-4.
Definition 8[10] The modular space X, is said to be p-strictly convex if for any x,y € X,, the
conditions p(x) < 1, p(y) < 1 and x # y imply that p(33¥) < 1.

Theorem 4. Let X, be a modular space, then the following conditions are equivalent.

M) J(X,) <2

(i) eo(Xp) <2 forall 0 < e <2;

(i) X, is p-uniformly non-square.

Proof. Suppose J(X,) < 2. There exists € > 0, for any x,y € X, with p(x) =1 and p(y) < 1,

such that

X +y) < J(Xp)
2 2

implies X, is p-uniformly non-square.

2

o( —e<1—gk¢,

—e< 1—eorp(X_

2

Suppose X, is p-uniformly non-square, then we can prove J(X,) < 2 by the same way. Thus
(i) and (iii) are equivalent.

Next, we know that €g(X,) < 2 if and only if 6x,(2) > 0. Let a = 6x,(2), then Vx,y €

Xp and p(x) =1,p(y) < 1, we can get p(%) <1 —q, thus X, is p-uniformly non-square. Thus
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(ii) and (iii) are equivalent.
Remark 3. In fact, this theorem is a generalization of Theorem 3.8 in [11].
Theorem 5. Let X be a modular space, then
(i) X is pr-uniformly convex if and only if dx,(e) > 0 for 0 < € < 2;
(ii) If 6x,(2) = 1, then X, is p-strictly convex.
Proof. (i) Denote ¢ = éx,(€). Then 0x,(e) > 0 if and only if ¥Vx,y € X,, p(x), p(y) < 1 and
o(x —y) > €, we have p(%) <1 —0c. Thus X, is p1-uniformly convex.
(ii) Since 0x,(2) = 1, then Vx,y € X,, p(x), p(y) <1 and p(x — y) > 2, we have

X+y
2

o( )=0<1,

implies X, is p-strictly convex.

6. MipPoINT CONVEXITY

In the following section, we discuss a special type of modular and study its properties in terms
of geometric constants.
Definition 9.[6] Let (X, || - ||) be a normed space and X, be a modular space. Then p is said to be
strongly midpoint convex with non-negtive constant C if

pERE) < B Gl

Theorem 6. Let (X,|| - ||) be a normed space and X, be a modular space. If there exists C > 0
such that

1
Clx|? < Ep(x) for all x € Bx,

and p is strongly midpoint convex with constant C, then Cp, (X,) < 3.

Proof. Since p(%) < M — %||X—YH2 and p(%) < w — %||X+y 2, then

C2
Ix = y12(p(x) + o(y)) + X yl*

2

s [ Xty
A :

) < 30600+ 5007 -

and

X — 2
7 (%57 ) = 50000+ )2 = Glx+ v + ) + Tellx + 1

Therefore, for x € Sxp and y € Bxp, we have

() 2 (5

: > =Lt o)) (I 4y 4 I~ 1)+

2_ =
4

(14 p(y))

C
7¢ x+ yIE A+ lx = yII*)
Next, we only need to prove

2
o)+ S (It VI 4 b= yI1%) = 5 (b4 1P + = yI2) (14 p(0)) — 1= £2(0) < 0.
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2
Let £ =[x+ y[2 + llx = yl%.s = [lx + ylllx — vl and Iy = p(y) + S (12— 252) — St(1 +

p(y)) — 1 —p3(y), then

t2-2s2 , t_  C(?—-257) At
llSTC _ZC_ 16 (C_t2_252)
Since C|x|[? < Sp(x), then CII*3¥ |2 < 3o (*3*) < 1 and C|*2X|? < 3p (%5¥) < L.
Therefore
2 _
at AR N
— 252 Xy (1% a2zt TR (12| 252 T
120" + 12" 15 P+
then /1 < 0.

Example 3. If p is convex, then C = 0 which satisfies the condition of Theorem 6, and Cp, (X,) <
2 < 3.

Theorem 7. Let (X, ||-]|) be a normed space and X, be a modular space. If there exist C, A\, i,y >0
such that

1 6
2uy <1< > + gﬁ and pp(x) < Cl|x||? < Ao(x) for all x € X,,.

What'more, p is strongly midpoint convex with constant C, then Cp (X,) < 2.

Proof. By following the ideas in Theorem 6, we can get

() + 07 (55) 1 ¢
S5 T {0~ S ) (X P lx - viP) |
R S KSR I
71 5 U o Illx = |
Let
E= x4 yI2+ x = yI2 s = x4+ yllx — I
and

2 2

e L )R

thus we only need to prove /, < 0. Since p(y) < 1, then

(L+ o))t =V (1 +p(y)2t2 +2(t2 —252) (1 —p(y))2 < ¢

and (1 + p(y))t +~/(1+ p(y))2t2 +2(t2 — 252) (1 — p(y))2 > t +V/3t2 — 4s2.

Thus
N ol G

B2t e

and
+ V31?2 — 4s?
t2 — 252
1 IIx+yIP+ 15202 + \/3||mll4 + 3|54 + 20 X512

4 [ e [
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then
t+\é@ > 1 V3
e 4%\*”||4+||X*yn4
> c
B A(p(HTy)+p(u)) 4;1,\/;12 X” +p2
>S+8E 28
and

t <}_ 1 < C < C <£
£2 =257 72|k || P T An (o ((F) e ((F)) T 4wy T 2

Therefore

(14 p(y))t — /(14 p(y)2t2 + 2 (2 — 252) (1 — p(y))?

_252
C
< =<
<5<
(L+p(y)t++/(1+ p(y))2t2 +2(t2 = 25%) (1 — p(¥))?
— 252
Thus
j,_t2=282 [C (14 p())t++/(1+p())* +2(22 — 25%) (1 — p(y))?
2 4 2 2 — 252
(c (Lot = VI p())E + 22— 25%) (1 - p(y))?)
2 t2 — 252
<o0.

Example 4. Consider p(x) = 4C||x||> and let A = p = 3, then u?p(x) < C|[x[|?> < Mp(x) and
uz = %. What'more,

Ix + ylI* + lIx = ylI*
Ix + vl + lIx = y2
<2Csup{|x+y HZ—FHX —yll?:x,y € Xp,p(x) =1,p(y) <1}

Crs (Xp) = 2Csup{ X,y € Xpop(x) = 1p(y) < 1}
< 4Csup{IIx[I? + lIyll? - x, y € Xo, p(x) = 1, p(y) < 1}
= sup{p(x) +o(y) : x,y € Xp, p(x) =1,p(y) <1} = 2.

Theorem 8. Let (X, || - |) be a normed space, X, be a modular space and ag € (0,2v/2]. If there
exists C > 0 such that

40[0

V%o + ol + 1xo — oll*

Cc> for some xp € Sx,, yo € Bx,

and p is strongly midpoint convex with positive constant C, then Cy, (X,) > a2. In particular, if
a0:2f then CNJ(Xp):S
Proof. Since 2p(x) > C||x||?, then p? (¥3¥) > § HTyH . Therefore

P2 0 (732)  C (koI +x = yl?)
1+ 2(y) 16 1+ p2(y)
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PCS(5) e
1+p°(y) = 1+0°(y)’
implies Cpy (X,) = 8.

shows that then Cny (X,) > a3. If ag = 2v/2, then Cy(X,) > 8
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