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ABSTRACT. Using the g-Jackson integral and some elements of the g-harmonic analysis associated
with the q-Bessel operator for fixed 0 < g < 1, we introduce the g-Bessel multiplier operators and we
give some new results related to these operators as Plancherel’s, Calderdn’s reproducing formulas and
Heisenberg's, Donoho-Stark’s uncertainty principles. Next, using the theory of reproducing kernels
we give best estimates and an integral representation of the extremal functions related to these

operators on weighted Sobolev spaces.

1. INTRODUCTION

The g-theory, called also in some literature quantum calculus began to arise. Interest in this
theory is grown at an explosive note by both physicists and mathematicians due to a large number
of its application domains, for more information about quantum calculus one can see [20].

Recently, many reasercher have been investigated the behavior of the g-theory to several already
studied for the Fourier analysis, for example sampling theorem [2], Paley-Wiener theorem [1],
uncertainty principles [31], wavelet transform [15], wavelet packet [6], Ramanujan master theorem
[16], Sobolev type spaces [27] and wave equation [29]. In their seminal papers, Hérmander’s and
Mikhlin’s [18,25] initiated the study of boundedness of the translation invariant operators on RY. The
translation invariant operators on R? characterized using the classical Euclidean Fourier transform

F(f) therefore they also known as Fourier multipliers. Given a measurable function

d

m:RY —C

its Fourier multiplier is the linear map T, given for all A € R? by the relation
F(Tm(F))A) = mA)F(F)(A) (1.1)
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The Hormander-Mikhlin fundamental condition gives a criterion for LP-boundedness for all 1 <

p < oo of Fourier multiplier 7, in terms of derivatives of the symbol m, more precisely if
d
1BYmN)| S AT for 0< |yl < [2] +1. (12)

Then, T, can be extended to a bounded linear operator from LP(R?) into itself .

The condition (1.2) imposes m to be a bounded function, smooth over R9\{0} satisfying certain
local and asymptotic behavior. Locally, m admits a singularity at O with a mild control of deriva-
tives around it up to order [%] + 1. This singularity links to deep concepts in harmonic analysis
and justifies the key role of Hormander-Mikhlin theorem in Fourier multiplier L ,-theory, this con-
dition defines a large class of Fourier multipliers including Riesz transforms and Littelwood-Paley
partitions of unity which are crucial in Fourier summability or Pseudo-differential operator.The
boundedness of Fourier multipliers is useful to solve problems in the area of mathematical analysis
as Probability theory see [24], Stochastic processus see [5], and the study of nonlinear partial
differential equations see [22]. For its importance many researcher extend the theory of Fourier
multiplier to different setting for example in the Dunkl-Weinstein setting [33], in the Lagquerre-
Bessel setting [8], in the g-Fourier setting [26,31,32] and the g-cosine Fourier setting [3]. The
general theory of reproducing kernels is stared with Aronszajn’s in [4] in 1950, next the authors
in [23, 30] applied this theory to study Tikhonov regularization problem and they obtained ap-
proximate solutions for bounded linear operator equations on Hilbert spaces with the viewpoint of
numerical solutions by computers. This theory has gained considerable interest in various field of
mathematical sciences especially in Engineering and numerical experiments by using computers
see [30].

This paper focuses on the generalized Fourier transform associated with the q-Bessel operator
called the q-Bessel transform introduced in [11], more precisely we define the following g-differential
operator for 0 < g < 1 by

f (g tx) — (1 + ¢**) f(x) + ¢°*f(gx)

Aq,a f(X) = x2

Vx # 0. (1.3)

The eigenfunctions of the operator (1.3) are related to the Hahn-Exton g-Bessel function j4(x; ¢°)
defined in [15]. The g-Bessel tranform H o is defined on L3 (RY) by

Haal(f)N) = /OOOJLX(AX: *)f(x)dpga(x), for X €RE

where diig q is the measure on R} given later. Let o be a function in L3(RY) and 8 € Rf, the

q-Bessel L2-multiplier operators are defined for smooth function f on Ry as

Maop(F)(x) :=H s (06MHaalf)) (x) (1.4)
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where the function og is given by
o3(N) =0 (NB). (1.5)
These operators are a generalization of all classical multiplier operators introduced in [3, 10,
26,31,32]. The remainder of this paper is arranged as follows, in section 2 we recall the main
results concerning the harmonic analysis associated with the g-Bessel transform, in section 3,
we introduce the q-Bessel L2-multiplier operators M, ,5 and we give for them a Plancherel’s,
point- wise reproducing formulas and Heisenberg’'s, Donoho-Stark’s uncertainty principles. The
last section of this paper is devoted to give an application of the general theory of reproducing
kernels to g-Bessel multiplier theory and to give best estimates and an integral representation of
the extremal functions related to the q-Bessel L2-multiplier operators M, ,5 on weighted Sobolev

spaces.

2. HARMONIC ANALYSIS ASSOCIATED WITH THE Q-BESSEL TRANSFORM

In this section we set some notations and we recall some results in harmonic analysis related to

the g-Bessel operator (1.3), all these results can be founded in [11,17,19-21,28].

2.1. Notations and preliminaries. In this subsection, we give some notations, definitions and prop-
erties of the g-shifted factorial, the Jackson's g-derivatives and the Jackson's g-integrals introduced
in [19].

Let a € C, the g-shifted factorial are defined by:

n—1 oo
(@qo=1 (aq.=[](1-ad"). (@q=][](1-ad").
k=0 k=0

The Jackson's g-derivative of a function f is given by

Dyf(x) = ’W if x #0.

The g-Jackson’s integrals from 0 to a and from 0 to oo are defined by

/ ) dex = (1— @)ay_ F(aa") "
0

[ fadx=a-a) ¥ e

n=—o0

Provided the sums converge absolutely.

The normalized form of the q-Bessel kernel is defined in [14,17,28] by

n(n+1)

Jalx:q%) = m(—l)” et e e el (2.1)
; (a** ), (a: q)n
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It satisfies the following estimate [11]
vx R, lalxia?)| < 1. (2.2)

2.2. The gq-Bessel transform. In this section, we define and give some basic properties of g-Bessel
transform introduced in [11]. We first introduced the following spaces and norms

. Co,q(Rj) denotes the set of all functions defined on RQ,L continuous at zero and vanishing at
infinity, equiped with the induced topology of uniforme convergence.

° Lg(R;r), 1 < p < oo, denotes the space of measurable functions on Rj,’, satisfying

(fooo |f(X)|pd.U'q,a(X))l/p <oo, 1<p<oo,
Hpr,q,a =
SUPxeRry |f(x)| <oo, p=o0.

where ( peso 2)
1 (a7 q >

d x) = % y2atly (x),
Mq,a( ) 1— q (qg; qg)oo q( )

Definition 2.1. ([17]) The g-Bessel transform Hq o defined on Lclx(Rg) by

Haal(f)(N) = [ JaO; @) F(X)dpgal(x),  for X €RY
0
Some basic properties of this transform are as follows, for the proofs, we refer the reader to

[11,13,14,25]

Proposition 2.1.
(1) For every f € LL(RE) we have Hqo(f) € Coq(RY) and we have

||Hq,a(f)||oo,q,a < Bq,aHle,q,a- (2-3)

Where
1 (—a**2%¢?)  (—d%d%)

Bea=1-4 (0% 0o 24
(2)(q-Inversion formula) For f € (L% N L3) (RS) such that Fo(f) € LL(RE) we have
f(x) = /Oooja(kx; qz)Hq,a(f)(A)duq,a(A), ae x¢€ RZ;. (2.5)
(3) (q-Parseval formula) For all f, g € L2(RY) we have
(f.9)g = (Hq.alf), Hq,a(g»q ' (2.6)
In particular we have
1fll2,q.0 = Ha.a(F)ll5q.q- (2.7)

(4) (q-Plancherel theorem) The q-Bessel transform H, o can be extended to an isometric isomor-
phism from L2(RY) into L3(RY).
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2.3. The translation operator Associated with the g-Bessel transform.

Definition 2.2. ([13]) Let x,y € Rj,“ and f is a measurable function on Rj,’ the translation operator
is defined by

Thaf0) = [ " O a0 P Haal )N digalN),

The following proposition summarizes some properties of the g-Bessel translation operator see [13]

Proposition 2.2. For all x,y € Rg,we have:

(1)
Taaf (V) =74 of (X). (2.8)
2 N )
/0 Toaf (V)dlga(y) = /O f(y)dpg.a(y). (2.9)
(3) for f € L&(RY) with p € [1;+00] 72, f € L&(RE) and we have
75l llqa < Ifllpgc (2.10)

(4) For f € LL(RE), 7X,f € LL(RE) and we have
Hy.a (’Tg’af) (A) = Ja(Ax; q2)’Hq'a(f)()\), V€ R;. (2.11)

The relation (2.11) shows that the translation operator T o is a particular case of the g-Bessel

multiplier operator (1.4).

By using the g-Bessel translation operator, we define the generalized convolution product of
f.g by
(F209) (9 = [~ 7a(N0)90)dugaly)

This convolution is commutative, associative and its satisfies the following properties see [11,13].

Proposition 2.3.

. . . 11 _ 1
(1)(g-Young’s inequality) for all p,q,r € [1;+o0] such that:  + 5 = 1+ ¢ and for all f €
L&(RY). g € L3 (RY) the function f x4 g belongs to the space L, (R}) and we have

£ %o g”r,q,a < |fllp.g.allglls.qa (2.12)

(2) For f, g € LZ(RE) the function fxq4g belongs to L3(RY) if and only if the function Hg,o(f)Hg.a(9)

belongs to L3(RY) and in this case we have
Haa (F*q9) =Hga(f)Hea(9). (213)
(3) For all f, g € LZ(RE) then we have
17 a9 0P dga) = [T eI Haal) ME digah),  @19)

where both integrals are simultaneously finite or infinite.
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3. THE g-BEesseL L2-MuLTIPLIER OPERATORS

The main purpose of this section is to introduce the q-Bessel L2 -multiplier operators on R:,“ and

to establish for them some uncertainty principles and Calderon’s reproducing formulas.

3.1. Calderon’s Reproducing Formulas for the g-Bessel [2-multiplier operators.

Definition 3.1. Leto € Lg(Rj;) and B € RY, the g-Bessel L2 -multiplier operators are defined for
smooth function f on R as
Ma,o8(F)(x) = Hag (0Hqa(f)) (x). (3.1

where the function og is given by the relation (1.5) and by a simple change of variable we find
that for all B € R}, 0g € L2(RY) and

1
losll>.q.0 = garzliollz.ae: (3.2)

Remark 3.1. According to the relation (2.13) we find that

Maop(F)(x) = (Hga (98) *a ) (x). (33)
where
1 1 1 X
Hq,oc (O’@) (X) = W,Hq,a(a) B - (34)
We give some properties of the q-Bessel L2 -multiplier operators.
Proposition 3.1. (i) For every 0 € L3(RY), and f € LL(RY), the function Mg ,g(f) belongs to
I_g(Rj), and we have
1
HMQ,Uﬁ(f)HQ,q’a < WHUqu,aH’cHl,q,a-
(ii) For every o € L (RYE), and for every f € L2(RY), the function Mg o 5(f) belongs to L2(RY),
and we have
HMq,Uﬁ(f)szqva < ||U||oo,q,a||f||2,q,a (35)
(iii) For every o € L2(R¥), and for every f € L2(RY), Mqop(f) € LY(RY), and we have

Mg op(f)(x) = /OC>O c(BN)jaAX; ) Haa(F) N duga(N), ae x¢€ R;“ (3.6)

and
1
||Mq,cr,6(f)Hooqua < WHO’HZQ,CXHfHZq,CX-
Proof. (i) By using the relations (2.12),(3.3) we find that

_ 2 _ 2
”Mqﬂﬁ(f)ng,a = ”Hq,tlx (08) *q f”z,q,a =< Hf”%,q,a HHq,}x (Uﬁ)”zq,a
Plancherel's formula (2.7) and the relation (3.2) gives the desired result.

(i) Is a consequence of Plancherel's formula (2.7).
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(iil) Is a consequence of the relations (2.7),(2.12),(3.2) and (3.3), on the other hand the relation (3.6)

follows from inversion formula (2.5). O

In the following result, we give Plancherel’s and pointwise reproducing inversion formula for the

q-Bessel L2 -multiplier operators.

Theorem 3.1. Let 0 € L2(R}) satisfying the admissibility condition:

/Ooo\ >\)|2déﬁ) 1, AeR. (3.7)
(i) (Plancherel formula) For all f in Li(Rj), we have
| 176000 = [ [Maas(DIf w0 (338)

(ii) (First calderdn’s formula) Let f € LL(RE) such that Hqo(f) € LL(RY) then we have

f(x)—/oOo (Mg,op(F) *a qa(aﬁ))(x)(?, ae x €R.

Proof. (i) By using the relations (2.14) and (3.3) we get

/O [Mao8(5)]3.qa dqém: /OOO [ /O Maon(F)0 duq,a(x>]dqé5>
:/OOO UOOO [Ha.a(F)N)I duqa(x)]} as(V)[7 222 d (ﬁ)

the admissibility condition (3.7) and Plancherel’s formula (2.7) gives the desired result.
(ii) Let F € LE(RY) such that Hqo(f) € LL(RY), by using the relations (2.6),(2.11) we find that

[ (Maopr) =tz (56)) 02
0

dq(B)
5

_ ]O " [ ]0 " Mg a () (NiaOx; q2>duq,a<x>] o500 "qg”

the admissibility condition (3.7),inversion formula (2.5) gives the desired result. O

_ /Ooo [/OOO 10500 2 Haa(F) (\ja(Ax; q2)duq,a(%)]

To establish the second Calderon’s reproducing formula for the g-Bessel L2 -multiplier operators,

we need the following technical result.

Proposition 3.2. Let 0 € L2(RS) N LY(RY) satisfy the admissibility condition (3.7) then the

0 d, (B
3= [ el £
belongs to LZ(RE) N LY (RY) for all 0 <y < § < oo.

function defined by
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Proof. Using Holder’s inequality for the measure dqéﬁ) and the relation (3.2) we find that

0
2 dq(B)
10512, o <1096/ N0 13 gallo12 g / 0 <o

So &, 5 € Lg(Rj), furthermore by using the relation (3.7) we get HCD“MHOO g0 < 00 therefore
®, 5 belongs to LA(RY) N LL(R). O

Theorem 3.2. (Second Calderdn’s formula). Let f € L2(RY) and o € LZ(RY) N LF(RY) satisfy
the admissibility condition (3.7) and 0 <y < 6 < oo. Then the function

o
fys(x) = / (Mq,o,ﬁ(f) *a /Hcﬁx (@)) (X)dqéﬁ)v
Y

belongs to L3(RY) and satisfies

+
XGRq

(’Y,5)|i—>n80,oo) wa’é - f||2,q,a =0 (3.9)

Proof. By a simple computation we find that
00 = [ 01600 00ki P Haa( D) dhiga(h) = Hh (@ sHaa(F) (),
by using proposition 3.2 we find that ®, 5 € L2 (RY) then we have fy5 € L3(RY) and
Haa (fr.5) X)) = Pys(h myHqal(F)(N)

on the other hand by using Plancherel’s formula (2.7) we find that

. 2 . &0 2 2

I fys— 1 = I Haolf)N)|T (1 —Pys(N)) d A
o = g = im [ (DO (1= 03500) duga()
by using the admissibility condition (3.7), the relation (3.9) follows from the dominated convergence

theorem. O

3.2. Uncerainty principles for the g-Bessel [2-multiplier operators. The main purpose of this
subsection is to establish Heisenberg's and Donoho-Stark’s uncertainty principles for the g-Bessel

L2 -multiplier operators Mg 4.

3.2.1. Heisenberg’s uncertainty principle for Mg, g. Heisenberg’s uncertainty principle for the q-
Bessel Fourier transform Hgq o has been established in [9,11] as follows, for all f € fo(Rj) we
have

1XIF g [N Haal )l g0 = kel FIBga (3.10)

[1+\/a><qo<+l]
where kg o = e

The inequality (3.10) says that if f is highly localized, then Hq o(f) cannot be concentrated

near a single point. We will generalize this inequality for My -5, we have the following result
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Theorem 3.3. For all f € L2(RY) we have

Mol [ )]’
171 g < e UO I Maes (P, é>]

Proof. Let us suppose that |H>‘|2qu°‘(f)H2,q,a + [fooo |||X|2qug,5(f)H§q'a d"éﬁ)] < 00, by using
the relation (3.10) we find that
kq,a/O (Ma.o5(F) ()P dug.alx) < H|X|Mq,o,ﬁ(f)H2,q,a |‘|>‘|05Hq,a(f)H2,q,a'

integrating over ]0, +oo[ with respect to measure d"éﬁ) and using Plancherel's formula (3.8) and

Schwartz's inequality we get

Ka.allf113.q.

< Um 11X Maop(FI3 0 d"éﬁ)]é Um Um IAos (V)P mq,a(f)(MW'C’“q'“(”] dqéﬁ)]

the admissibility condition (3.7) gives the desired result. O

[NIES

3.2.2. Donoho-Stark’s uncertainty principle for My ;5. Building on the ideas of Donoho and Stark
In [3], the main purpose of this subsection is to give an uncertainty inequality of concentration type

in L3(RY) where LZ(RY) the space of measurables functions on R x R¥ such that

Fll2s, = [ GRS dq(m]é |

B

We denote by 6, the measure defined on Ry x R by

dq(B)

d0, (B, x) = d/J'q,a(X) ® 5

Definition 3.2. [72]
(i) Let E be a measurable subset of R, we say that the function f € Lg(Rj;) is e-concentrated
on E if
If = 1efll2.q.a < €llfll2,q.a (3.11)

where 1g is the indicator function of the set E.
(ii) Let F be a measurable subset of Rj{ x R}, we say that the function T, (f) is p-concentrated
on F if

[Maq08(f) = 1rMgop(F)l26. < PIMq08(F)2,6,- (3.12)

We have the following result

Theorem 3.4. Let f € L3(RY) and 0 € 0 € LL(RE)) N LY(RY) satisfying the admissibility

condition (3.7), if f is e-concentrated on E and M ,p(f) is p-concentrated on F then we have

lollaatia@)? | [ T | 21 e+
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Proof. Let f € L2(RY) and 0 € LZ(R) N LF(RY) satisfying (3.7) and assume that puq(E) < oo

1
and [fF d%afﬁf)r < oo. According to the relations (3.11),(3.12) we have
[Mgop(F) —1FMaop(lef) |26, < IMgop(f) —1rMaop(Hl26, +111FMaop(f —1ef)26.

< ollMgop(F)ll260 + IMgos(f —L1ef)2,64

by using Plancherel’s relation (3.8) we get

IMgop(F)ll2.6, < IMgop(f) —LrMgos(Lef)l26, + 1 1FMgop(1ef)|l20,

< (e+0)fll2.g.a + [11FMqop(Lef)l260. (3.13)
on the other hand by using the relation (3.6) and Hoélder's inequality we find that
1
L[ [ d6a(B.x) ]2

11FMaop(Lel)ll200 < Ifll2.g.alloll1qa(u(E))? [ . W ' (3.14)

by the relations (3.13),(3.14) we deduce that

L[ [ d0a(B,x]2
Mgop(F)ll260 < Ifll2,g.0 | (€+0) + llofl1,g.a(palE))2 [/I: ,3"5"?_;(] ]

Plancherel’s formula (3.8) for M, 5 gives the desired result. O

4. EXTREMAL FUNCTIONS ASSOCIATED WITH THE g-BESSEL L2-MULTIPLIER OPERATORS

In the following, we study the extremal functions associated with the the q-Bessel L2 -multiplier

operators.

Definition 4.1. Let 1 be a positive function on Rj,’ satisfying the following conditions

i} € LL(RE) (4.1)
and
Y(A) >1, XeRS. (4.2)

We define the Sobolev-type space Sy(R¥) by
SyRY) = {F € LARY) - VIHqalF) € LARD)}
provided with inner product
(f.0y = [ O M) Haa YN Hara @V btga(N),

and the norm
[l =~/ {F )y
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Proposition 4.1. Let o be a function in LY (RY). Then the g-Bessel L2 -multiplier operators My o g
are bounded and linear from Sy(RE) into L3(RY) and we have for all f € Sy(RY)

IMa08(F)s 00 < lollocuaal Flly. (43)

Proof. By using the relations (2.8),(3.5),(4.2) we get the result O

Definition 4.2. Let n > 0 and let 0 be a function in L?(RY). We denote by (f, g)y.n the inner
product defined on the space Sy (RY) by

(F.9hvn = [ (160 +o0OI’) Haa (DO Aaal@) N dba ().
and the norm
[Fllypn =~/ {f. Flym

Theorem 4.1. Leto € LY (RY) the Sobolev-type space (Sy(RE) . (-, -)y.n) is a reproducing kernel
Hilbert space with kernel

. * Ja(AX; Clz)ja(ky; q2)
Ravnlxy) = /o ) + sV

du'q,oc(>\),

that is
(i) For all y € RY, the function x — Kgqy.n (x,y) belongs to Sy(RY).
(ii) For all f € S¢(Rj§) andy € R;“, we have the reproducing property

F(3) = (£ KanC. ) )y

Furthermore the kernel KCg 4 5 is a positive definite function.

Proof. (i) Let y € RY, from the relations (2.2),(4.1) we have the function

Ja(Ay: %)
2
mp(A) + |og(N)|
belongs to LL(R¥) N LA(RY). Hence the function Kqy,n is well defined and by the inversion

gy i A —

formula (2.5), we get
Kawn(x,y) = Haa(gy)(x)
by using Plancherel’s theorem for Hq o we find that Kq 4 (-, ¥) belongs to L2(RY) and we have
Ju(N: %)
(N + o)
by using the relations (2.2),(4.1) and (4.4) we find that

Hq,a(’Cq,wyn('r 2)ICVES

(4.4)

1

1
n2 ||

||\/EHq,a(/Cq,w,n('v YN2.g.0 < n

1,9,


https://doi.org/10.28924/ada/ma.5.8

Eur. J. Math. Anal.

this prove that for every y € R¥ the function x = Kq 45 (x,y) belongs to Sy(R{).
(it) By using the relation (4.4) we find that for all f € Hy(R) ,

(f, Kqyn (':y)>¢,n = /OOO (771/!(%) + |UB(>‘)‘2) Hq,a(f)(k)%q,a(lcq,w,n) () )/))O‘)d/f'q,a(x)

- / " O P Haal )N digalN),

inversion formula (2.5) gives the desired result. On the other hand since % is positive function then

for all z1, ... ., Z, complex numbers and xi,......, Xp in Rj{, we obtain
n n +oo [ N n 1
Z ZZrZKq,w,n(Xr, Xj) = / Z ZZera (Xr>\; q2)Ja (X/>\; q2)] E(A)dﬂq,ao\)
r=1 /=1 0 [ =1 /=1

2
1
E(A)dﬂq,a(k) >0

+oo | N
= / Z zrj (Xr>\; q2)
0 r=1

Which proves that the kernel Ky 4 5 is positive definite. O

The main result of this section can be stated as follows

Theorem 4.2. Let o € LT (RE) and B € RE, for any h € L2 (RY) and for any n > 0, there exist a

unique function f}

q.n.6.h where the infimum

. 2 2
ot A 1 = Maop (Dl 0.} (45

is attained. Moreover the extremal function f;, g, is given by

£ ony) = jo " )8 (7] ditaal(x),

where ©4 p 5 is given by
Our o(x y)_/o" ap(Nja(Mx: 6*)ia(Ny; ¢°)
PRI e () + lop (V)P

Proof. The existence and the unicity of the extremal function 77, 5, satisfying (4.5) is given in

dpg.a(N)

[23,30], furthermore 77, 5, is given by

fanp.ny) = (h- Mqop(Kqyn (- ¥))q
, by using inversion formula (2.5) and the relation (4.4) we get
* a5(N)Jja(AX; 4*)ia(Vy: %)
nb(X) + log(A)[?
= Ognp(x.y)

and the proof is complete. O

Maop(Kgypm (- y) (x) = /0 dibg.a(N)
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Theorem 4.3. 0 € LY(RY) and h € L2 (Rj{) then the function f;, s, satisfies the following

properties
as(N)
np(A) + lop(V)[?

Ha.allgnpen)(N) = Ha,a(M)(N) (4.6)

and

” n6h||’ll/<\/7||h”2qo¢

Proof. Let y € RY then the function
os(N\Jja(Ny; ¢%)
2
mp(X) + |op(N)]
belongs to L2 2(RI)N L} «(RZ) and by using inversion formula (2.5) we get
Ognp(x.y) = Hc?,}x(k)/)(x)

using Plancherel’s theorem and Parseval's relation (2.6) we find that ©4,5(-, v) € L2 2(R$) and

y -

fc;k,n,ﬁ,h()/) = O°° Ha,a( N ky(N)dpga(X) = /OOO nw(k)af_(f;)ﬁ(xﬂzHq,a(h)(x)dﬂq,a(k)

on the other hand the function
7N Ha.a(M(N)
M) + [op(V)]’
belongs to LE(RE) N L2(RY), by using inversion formula (2.5), Plancherel’s theorem we find that
fx 5., belongs to L3 (RE) and

Hq,a( c;k,n,ﬁ,h)(k) = F(>\)

on the other hand we have

|Uﬁ(>\)}2 2 1
HaalMO? <
() + |os(F)” 2m )

by Plancherel’s formula (2.7) we find that

Ha.a(h)N)P

Ha.alfonpn NI =

. 1
1 fgnp.nlly < ﬁllhllz,q,a-
O

Theorem 4.4. (Third Calderén’s formula) Let 0 € LF(RY) and f € Sy(RY) then the extremal

function given by

6) = [~ Maap(F)qmale ) dhga(x)
satisfies

lnaJrH nB f||2qa :0 (47)

moreover we have f*_ . — f uniformly when n — 0.

q.n.B
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Proof. f € Sy(RY), we put h= Mg p(f) and f5 5, =1

anB in the relation (4.6) we find that

_ PN Haa(FN)

HoolfX s—FN) = 4.8
q, ( q.n.B )( ) ’)’]’L/)()\) N {aﬁ(k)|2 ( )
therefore
. > [* 7 (p(N)? 2
On the other hand we have
2 3
T O 3 a(HOVE < 9O (A (49)

nb(X) + log(A)[?
the result (4.7) follows from (4.9) and the dominated convergence theorem. Now, for all f & Sw(ler)
we have Hq o(f) € LZ(RF) N LL(RE) and by using the relations (2.5), (4.8) we find that

[ OV Hea(DO) L
finaln) ~ 101 = | 00 + [opyf X ) eV

and

—NYAN)Hg,a(F)(N) .
OVHaalDO), (o

mp(X) + |og(M)]

By using the relation (4.10) and the dominated convergence theorem we deduce that

< [HqalF)(N)] (4.10)

ni”o]Jr |fc;<vn,[3()/) - f(}/)| =0
which complete the proof of the theorem. O
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