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ABSTRACT. An inverse free Kurchatov-like methods with three steps is introduced of convergence order
close to four to generate sequences approximating solutions of equations defined on complete normed
spaces. The local analysis shows R-convergence close to four under conditions controlling the divided

difference. Numerous experiments demonstrate the performance of the method.

1. INTRODUCTION

Let E1, E5 represent complete normed spaces [1] and 2 C E; be open and convex. A plethora

of applications from different fields can be formulated as
F(x) = 0. (1.1)

Here F : Q — E; is a continuos operator. A solution of equation (1.1), which is denoted by x* € Q
is given in analytical form only in rare cases. That leads to the development of iterative methods
generating sequence converging to x* provided some conditions are satisfied involving the initial
information.

One of the most time-consuming part of iterative methods for solving nonlinear problems is

finding the inverse operator or solving the corresponding linear problem. To avoid this, methods
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with approximation of the inverse operator were developed. One of the first such methods was

proposed by Ulm in [17]

Xnt1 = Xp — ThF (xn),

1.2
7_n—‘,-l :2Tn_TnF/(Xn+1)Tn, I7=0,1,2,.... ( )

Here xp € 2 and Ty € L(E», E7) are given initial approximations for the solution x* and the inverse
operator F’(x*)™!, respectively. The Ulm method (1.2) was studied under conditions of different
types and it was shown that it converges with second order [2,3,10,12,13,15,17]. Similar method
was prosed by Moser [13,14]

Xn+1 = Xp — TnF(Xn),

13
7_n—‘,-l :2Tn_TnF/(Xn)Tn, n=20,1,2,.... ( )

In (1.3) F'(x,) appears instead of F'(xp+1) in (1.2). The convergence order for (1.3) is equal to
1%‘/3. The methods with approximation of the inverse operator with higher convergence order were
studied in [6,9].

In this paper we propose the three step Kurchatov-like method (TSKLM). This method is defined
for To € L(E», E1) and each n=10,1,2,... by

Yn = Xn — TnF (xn),

Zn = Yn — TaF (¥n),

Xnt1 = Zn — TnF(2n), (1.4
Kn+1 = [2Vn — Xn, Xn; F1,

Mp = 2T, = TaKns1Th,

7—n+1 = Mn + Mn(2/ - Kn—l—an)(/ - Kn—l—an)v

where [-,-; F] : Q2 x Q — E; is a divided difference of order one [1,7] and L(Ez, E1) is the space
of linear operators mapping £E5 into E1, xp € €2.

Definition 1.1. [7,/] Let F be a nonlinear operator defined on a subset 2 of a Banach space E;
with values in a Banach space E», and let x, y, be two different points of Q2. A linear operator from

Eq to E» which is denoted by [x, y; F]| and satisfies the following conditions
[x.yi Fl(x —y) = F(x) = F(y)
is called a first-order divided difference of F at the points x and y.
If there exists a Fréchet derivative F'(x), then
[x, x; F] = F/(x).

Notice that there are other selection for the Kurchatov operator K41 such as Kp11 = [2Xp41 —

Zn, Zp; F] or Kni1 = [2Xp41 — Xn, Xn: Fl or K1 = F'(X41) or Kpgp = L(Xp41), where L(xp41) is
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an approximation to F’(x,4+1), or other options [1,4,5,8,16]. Denote the corresponding methods by

Yn=Xn — TnF(Xn),
Zn = Yn — THF(yn)v
Xn+1 = Zn — ThF(zn),

(1.5)
Knt1 = [2Xn+1 — 2n, Zn; F,

Mp=2T, — ThKnt1Tn,

Tot1 = Mp+ Mp(2] — KntaMn)(I = Kny1 M),

Yn = Xn — TaF (Xn),

Zn = Yn — ToF (¥n),

Xnt1 = Zn — TnF(zn), (1.6)
Knt1 = [2Xn+1 — Xn, Xn: F],

Mp=2T, — ThKnt1Th,

Tht1 =My + Mn(2/ - Kn—i-an)(/ - Kn—i—an)v

Yn = Xn — TnF (Xn),

Zn = Yn — TaF (¥n),

Xn+1 = Zn — ThF(2n), (17)
Knt1 = F'(Xp+1),

Mp=2T, — ThKnt1Tn,

Tot1 = Mp+ Mp(2] — KntaMn) (I = Kny1 M),

Yn = Xn — TaF (Xn),

Zn = Yo — TaF (¥n),

Xnt1 = Zn — TnF (2n), 18)

Knt1 = L(Xp41),

M, = 2T, — ToKns1Tn,

Tnr1 = My + Mp(2 — Knpa M) (I = Kny1 M),
respectively. Notice that method (1.8) specializes to (1.7) if L = F’. A possible choice for L is
presented in the numerical section.

To test numerically the order of convergence of the iterative methods very often use computational

order of convergence (COC) and approximated computational order of convergence (ACOC) [11].
COC is denoted by 5, ACOC can be computed by formulas denoted by §; and 43:

In ( Hi”f;XfH ) In ( ||xn+rx‘ I ) In ( IF Censn) )
n n—

b~ 5~ [Ixn—x*]I - [1F(xn)l
1N , 2N , 3N .
[1Xn—=xp—1l [Ixn—x*|| [LF (x|
In In In
[IXn—1—Xn—2]| [Ixa—1—x*]] IF(xa-1)Il

In this article, we provide the local convergence analysis of the method (1.4) under assumptions
that Fréchet derivative and first-order divided differences satisfy classical Lipschitz conditions (see

Section 2). Sections 3 and 4 present results of numerical experiments and conclusions, respectively.
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2. CONVERGENCE

The local analysis of convergence is very important since it provides the degree of difficulty in
selecting the initial points xp from a ball centered at the solution x* and of a certain specified
radius.

The symbol S(x, r) is denoting an open ball centered at x € E; and of a radius r > 0.

Define the parameter p by
p=sup{t>0:5S(x*t)CQ}.

leta>0,bp>0,b>0,d, >0, dr>0, A>0and />0 be given parameters. It is convenient to

define the parameters
b
o

1
= mni{lp-—"
Po m'”{ P 4/b(/+d1)d2}’
p € (0,p0),
i = 4/b(/+d1),

o = 14 2bq,

3 = o+ 2/b, (2.1
a = G +41b(1+ c3),

s = <4+ 41b(1+ c3),

6 = 1-+4bci +8Ib,

by = =2 forpe (0.p)

1 1 1
a = minql, : B[
m{ e3¢+ 21bc2" 5+ 21b 666}
and

b = min{p, a}.

Let x* € Q be a solution of the equation F(x) = 0. We assume from now on that for each

ui, Uz, v1, Vo € S(x*, p) there exists / > 0 such that
[z, urs Fl = [va, vi; FII < (lluz = vall + [lun = wa]). (22)
It follows by (2.2) that F’ exists, [x, x; F] = F'(x) and for each u, v € S(x*, p)
IF(u) = F'(WII < 2/|u = v (2.3)
Moreover, assume F’(x*) is invertible and set

IF' G <, IF/(5)7H < da (2-4)
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Furthermore, assume Ty, K satisfy

I Toll < bo < b, Il = ToKoll <A, b> bgand X € [0, b]. (2.3)
Finally, assume
S(x*, p") C Q, p* = max{p, 3b}. (2.6)
The conditions (2.2), (2.4)-(2.6) are called (A) from now on.

Next, the main local analysis of convergence is presented under the conditions (A) and the

preceding notation.

THEOREM 2.1. Assume that the conditions (A) hold and b < a. Then, the sequence {x,}
generated by (TSKLM) converges to the solution of the equation F(x) = 0 provided that

X0 € S(x*, b). Moreover, the following assertions hold for e, = ||x, — x*||, hy = ||| — ToKall,
en < ag*’ (2.7)
and
hn < ag™"", ho < b, (2.8)
n=20,1,2,..., where p, a, b, q are given by (2.1).
Proof. The assertions (2.7) and (2.8) are shown by induction. If n =0, assertion (2.7) for n =0

holds, since ey < b. Then, by (2.5), we get a € [0,1] and hg < X < b, so (2.8) holds if n = 0.
Assume (2.7) and (2.8) hold if n = /. That is

e <ag¥ <b<p (2.9)

and
-1

hi < ag" (2.10)

We need the estimate

IKiva = F' Ol = [I[2vi — X1, xi3 F] = [xi % F|
< 12y = xi = xill + [Ixi = xill) = 2/|lyi — x| (2.17)
< 2|TiFG) < 21T+ dv)lIxi — X7
< e < qag”,

where we used (2.1), (2.2) (i.e (2.3)), (2.5), the induction hypotheses (2.9), (2.10) and

1
F(x) = F(X/)—F(X*)Z[F’(X*+9(Xf—x*))d9(></—X*)
0

1
= [ [Foco0s - x) - FO) + ) dbt - x)
0
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leading to

IFC)I < T+ du)llxi — x|l (2.12)

It follows by the Banach Lemma on invertible operators [1], (2.1) and (2.11) that the operator K1

is invertible and

1(*%\—1
1 < IF ()"l d> b
KAl < T ey T — Pool S T-doares = 1-docrp 2 =2 1)
so
ITil = ITRKTH = lI(=1 + (1 = Tk K|
< (41 =TKiIDIK
< (14a¢*)b< (1+1)b=2b, (2.14)
and
&= =TiF' )l = I =TiKi) + (TiKi = TiF' ()l
< |1 =TiKill +ITlllIK; = F ()l
< ag* +2bcrag* = craq”. (2.15)
Then, by the first substep of (TSKLM) we can write in turn
yi—x" = x—x"=Ti(F(x)— F(x"))
1
= [ [0 TG0+ T ) - Fx 605 = )]0 - x7)de. (216)
0

It follows by the induction hypotheses (2.9), (2.10), the (2.16) triangle inequality, (2.3), and (2.13)-
(2.16), we have in turn that

lyi —=x*|I = &e+ITille?

i i i 2 i
< oaq*ag® +2Ib (aq4 ) < 322>, (2.17)
and since a € [0, 1]

Ixi = yill < e+ llyi — x|

< ag¥ + :a%¢¥* < (1+ c3)aq” (2.18)
and

1= TiF ()l 101 = TiF (%)) + (TiF (i) = TiF (i)l

< czaq4i +4/b(1+ 63)aq4f = c4aq4i. (2.19)
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In an analogous way, we get in turn

1zi = X7

llyi — zil|

and

ININ IN A

IA

Il =TiF ()]l

leading to

€it+1

ININ

IN

csaq” a“q

(= TiF i) (i = X+ Tillllys — X117

caaq? csag?>¥

(C3C4—|—2/bC3)22 3x 4 2q3x4"

+ /(2bc2a4q4X4')

lyi =X+ llzi = X7

2 _3x4l

322x4+aq

(1+C)22><4

IN

1= TiF Wl + T F (i) =

AN

11 = TiF" @)1z — X1l + 1 Tillllz — x|

41 D 3x4i +/(2ba4q6x4f)

(C5 + 2/b)q4i+1 S aq4l+1

showing (2.7) for n = i 4 1. Moreover, we have

Notice that 2y;

Hence, we can have

[Kiv1 = Kill <

IN

1= TiKitall

Next, by the fourth equation of (TSKLM), we can write | — MK+ =

IXi+1 —xill <

— x; € S(x*,3b) by (2.6) and €11 < ¢*"

1(Ki1 —

crag® + 4lag®”

X1 = X[+ llxi = X7

S aq4_i+l + aq4l S 23(74,

< b<p.

1 4171
+ ciaq

(2c, + 4Nag*"

= [[(l = TiKi) + (TiKiy1 — TiKi) |l

< ag® +2b(2c, + 4hagt

i—1
Il =MiKisall < 11 = TiKial® < ga?g®™ %

But, we can also write

Tiv1

M; + M;(21 — Kiya M) (1 — Kig1iM;).

F'(z))

caagt +4/b(1 + 3)a’q 2x4" _ cag®

F'(xi)) + (F'(xi) = F'(xi=1)) + (F'(xi=1) —

i—1
= csaq*

Kill

(I = TiKi+1)?, so

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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Thus, we get
| = Tis1Kivr = 1 —(Mj+ M2l — Kigt M) (I = KigaM))Kizr = (1 = MiKit1)?. (2.29)
Therefore, since a € [0, 1], we get by the inductions hypotheses and (2.29) that
1= TipiKivall < = MiKipa|P < ¢824 < ag®

showing (2.8) for n =7+ 1.
Consequently the induction for (2.7) and (2.8) is completed.

Finally, by letting n — oo in (2.7), we deduce that |i_>m Xp = x*, since g € [0, 1).
n—oo

REMARK 2.2. It turns out that the proof of Theorem 2.1 can be repeated in the case of the method

(1.8) as long as we add an additional condition of the form for each n =10,1,2, ...
ILn = F'(xa) I < ol FCxa)l, (2.30)

where {c,} is a nonnegative sequence such that supo, < g, where ¢ > 0
n>0

3. NUMERICAL EXAMPLES

In this section, we present the results of numerical investigation of the three-step Kurchatov-
like method for solving the nonlinear equation (1.1). We give errors at each iteration and
ACOC and COC for considered methods (1.4), (1.5), (1.6), (1.7), (1.8). The computations were
carried out on a PC with 1.00 GHz processor and 8 GB of memory with use of software
GNU Octave 7.3.0. The Euclidean norm was used. The initial approximation Ty was com-
puted by formulas Tog = [2x9 — x_1,x_1; F]™! for methods (1.4), (1.5), (1.6), To = F'(xp)~!
— for method (1.7) and To = L(x0)~! — for method (1.8), where (a) L(x) = [x,x + a; F] and
(b) L(x) = [x + a1 F(x), x + axF(x); F] with a € R.

EXAMPLE 3.1. Let F : R — R and consider the nonlinear equation
F(x)=e % —10x|x —1]-0.1=0

with the exact solution x* = 0.1.

EXAMPLE 3.2. Let F : R? — R? and consider the system of two equations with x = (§; )

Fi(x) =382n+n2+]¢ -1/ —-0.75 =0,
Fo(x) = &€* 4+ €n® 4+ |n| — 0.5625 = 0,

and the exact solution x* = (0.5; —1).
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Tables 1, 2, 3, 6 and 7 contain the values ||x, — x*|| and ||F(x,)|| at each iteration. The iterative

TaBLE 1. Error’s value at each iteration for Example 3.1.
n Method (1.4) Method (1.5) Method (1.6)
10 = x*I1 | FCa)Il | I = x| IFO)IE | X =l | I ()l
0 | 6.0000e-01 | 7.9488e+00 | 6.0000e-01 | 7.9488e+00 | 6.0000e-01 | 7.9488e+00
116.0089e-02 | 4.5850e-01 | 6.0089e-02 | 4.5850e-01 | 6.0089e-02 | 4.5850e-01
2| 2.3413e-03 | 1.6447e-02 | 2.1002e-04 | 1.4706e-03 | 1.9390e-04 | 1.3577e-03
3| 3.4615e-07 | 2.4231e-06 | 3.2876e-14 | 2.3012e-13 | 1.2934e-14 | 9.0566e-14
411.3878e-17 | 8.3267e-17
TasLE 2. Error’s value at each iteration for Example 3.1 (Method (1.8)).
n (a), a = 1076 (b), a1 =0, ap = 0.01
lxa =X | IIFCa)ll | lxn =1 TF ()
0 | 6.0000e-01 | 7.9488e+00 | 6.0000e-01 | 7.9488e+-00
116.0098e-02 | 4.5857e-01 | 5.2350e-02 | 3.9520e-01
2| 21022e-04 | 1.4720e-03 | 1.2109e-04 | 8.4780e-04
3| 3.2724e-14 | 2.2890e-13 | 3.0254e-15 | 2.1178e-14
TaBLE 3. Error’s value at each iteration for Example 3.1 (Method (1.8)).
n (b), oy =—1, a0 =1 (b), a1 =0, a0 =1 (b),aey =—1,0p=0
1o =X | IFOa)I | Mo =l | IEGa)ll | X = x7IE | [T Cn)l
0| 2.2500e-01 | 2.1048e+00 | 2.2500e-01 | 2.1048e+00 | 2.2500e-01 | 2.1048e+00
114.3916e-02 | 3.2765e-01 | 2.8627e-04 | 2.0031e-03 | 8.9687e-02 | 7.1215e-01
2 1 1.1100e-04 | 7.7714e-04 | 3.3741e-12 | 2.3618e-11 | 1.4334e-02 | 1.0249e-01
3 |2.4702e-15 | 1.7292e-14 6.9350e-05 | 4.8550e-04
4 5.5539e-14 | 3.8877e-13
TaBLE 4. COC, ACOC for Example 3.1.
Method 01 o b3
Method (1.4) 2.7545 | 2.7145 | 2.7309
Method (1.5) 3.1543 | 3.9915 | 3.9319
Method (1.6) 4.0870 | 4.0870 | 4.0244
Method (1.8) (a), @ = 107° 3.9956 | 3.9931 | 3.9935
Method (1.8) (b), @1 =0, ap = 0.01 | 3.2266 | 4.0224 | 3.9731

process was stopped if ||F(x,)|| < 1071
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TaBLE 5. COC, ACOC for Example 3.1.

Method o1 62 03

Method (1.8) (b), a1 = —1, ap = 1| 3.2944 | 41014 | 4.0583
Method (1.8) (b), a1 =0, ap =1 | 2.0169 | 2.7384 | 2.6240
Method (1.8) (b), a1 = —1, ap = 0 | 3.0250 | 3.9288 | 3.9133

TaBLE 6. Error’s value at each iteration for Example 3.2.

Method (1.4)

Method (1.5)

Method (1.6)

X0 — x|

17 ()l

X0 — x|

17 ()l

X0 — x|

1F ()l

w N = O

2.9069e-01
1.3484e-02
1.1530e-04
1.5872e-10

4.9986e-01
8.8111e-03
9.6933e-05
9.9579e-11

2.9069e-01
1.3484e-02
1.5071e-05
1.1102e-16

4.9986e-01
8.8111e-03
9.5531e-06
1.1102e-16

2.9069e-01
1.3484e-02
7.9188e-05
4.7092e-11

4.9986e-01
8.8111e-03
5.5281e-05
4.4613e-11

TaBLE 7. Error’s value at each iteration for Example 3.2 (Method (1.8)).

n (@), a =107

(b), o1 = —1, ap = 1

(b), o =0, Qp = 1

(b), a1 = —1, Qo = 0

X0 — x|l

17 (xn)l

[1X0 — x|l

I ()l

X0 = x|l

17 (xn)l

X0 — x|l

1 ()l

S~ W N = O

2.9069e-01
4.2177e-02
4.8296e-04
1.2257e-11

4.9986e-01
3.3550e-02
3.1889e-04
7.9157e-12

2.9069e-01
1.2130e-01
1.9815e-02
9.5643e-05
5.0469e-14

4.9986e-01
1.3882e-01
1.6501e-02
7.1351e-05
3.6791e-14

2.9069e-01
1.2302e-01
1.7140e-02
5.0435e-05

3.5108e-15

4.9986e-01
1.1058e-01
1.1420e-02
3.1888e-05
2.2453e-15

2.9069e-01
2.6651e-02
7.4376e-04
7.0982e-11

4.9986e-01
9.4616e-02
8.7777e-04
9.6911e-11

Tables 4, 5 and 8 show COC and ACOC with 0;

X041 — Xn|| < 10719 was fulfilled 8> and d5 were calculated if the condition ||F(x,)| < 1071 was

fulfilled.

TasLE 8. COC, ACOC for Example 3.2.

Method

01 52

03

Method (1.4)
Method (1.5)
Method (1.6

Method (1.8) (a), @ = 107°
Method (1.8) (b), a1 = -1, ax =1
Method (1.8) (b), 21 =0, o =1
Method (1.8) (b), a1 = =1, a2 =0

6)

2.8293
3.2733
27872
3.9231
3.1016
3.1851
3.1562

2.8343
3.7717
2.7904
3.9130
4.0053
4.0127
45167

3.0575
3.6881
2.7665
3.7611
3.9286
3.9750
3.4227

was calculated

if the condition
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The initial approximations xp and x_; for Example 3.1 are xp = —0.5, x_; = —0.6 (Tables 1, 2, 4),
xo = —0.15, x.1 = —0.25 (Tables 3, 5) and for Example 3.2 - xo = (0.63; —1.26),
x_1 = (0.73; —1.16).

EXAMPLE 3.3. Let F : R™ — R™ and consider the system of equations with x = (§£1; ... &m)
Fi(x) = Z£J+eff—1—o i=1,....m.
Jj=1

Here the exact solution x* = (0;...;0).

TaBLe g. COC, ACOC for Example 3.3.

Method 01 ) 03
Method (1.4) 2.6007 | 2.5860 | 2.6621
Method (1.5) 3.9096 | 3.9035 | 3.7967
Method (1.6) 2.0176 | 2.0059 | 2.0663
Method (1.7) 3.9118 | 3.9059 | 3.7993
Method (1.8) (a), & = 10 39117 | 3.9058 | 3.7992
Method (1.8) (b), a1 = 0, as = —0.1 | 3.9097 | 3.9064 | 3.9064
Method (1.8) (c) 28165 | 2.8012 | 2.8803

TasLE 10. COC, ACOC for Example 3.3.

Method 01 o2 03

Method (1.8) (b), a; = —1, ap = 1 | 4.3139 | 4.3096 | 4.2617
Method (1.8) (b), a1 =0, ap =1 | 27472 | 2.7326 | 2.8050
Method (1.8) (b), a; = —1, ap = 0| 3.9118 | 3.8946 | 3.8502

For solving nonlinear equations with differentiable operator can be also used method (1.8) with
(€) L(Xn41) = 3(F'(Xn41) + [2Xn41 — Xn, Xn11; F]). For this method, the errors decrease faster than
for (1.4) and (1.6).

Tables 9 and 10 show COC and ACOC for Example 3.3 with m = 1, the initial approximation
Xo = 0.5 and xp = 0.9, respectively.

Figures 1 and 2 show changing of || x, xp—x*|| and || F (xp)|| for m =20, xo = (5;...;5),
x_1 =(5.1;...;5.1), Figure 3 —for xp = (0.05; . ..;0.05). The iterative process was stopped under

the condition ||xp11 — x| < 10710,
From the obtained results, we see that among methods (1.4)-(1.6), for method (1.5) the error

decreases faster and it has highest computational order of convergence.
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Ficure 1. Example 3.3: error’s value at each iteration.
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FiGure 2. Example 3.3: error’s value at each iteration; (b), @1 =0, ap = —0.1.
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FiGure 3. Example 3.3: error’s value at each iteration ((b)-1, a1 = =1, ap = 1;

(b)-2, a1 =0, ap = 1; (b)-3, a1 = —1, ap = 0).

4. CONCLUSION

In this article a three-step Kurchatov-like method with approximation of inverse operator is
introduced and convergence analysis is provided. The R-convergence four is shown theoreti-
cally under Lipschitz conditions for Fréchet derivative and first-order divided differences. Nu-
merous experiments demonstrate the performance of the method for different cases of Kpij.
Among the methods with divided differences, the best results are demonstrated by the meth-
ods (1.5), namely the highest computational order of convergence. The operator L was cho-
sen in the form L(xp+1) = [Xpt1, Xne1 + a; F], where a is a small number, and L(xpy+1) =
[Xn+1 + @1 F(Xn41), Xn+1 + @2F (Xp41); F] with a1, ap € R. These approximating of the deriv-
ative give quite good results, in particular if the nonlinear operator is not differentiable. For some
values a1 and as these methods require a good initial approximation. In the case of the differen-
tiable operator, the following choice L(x,4+1) = %(F’(Xn+1)+[2x,,+1 —Xn, Xn+1; F]) is also possible.

It demonstrates advantages over some methods with divided differences.

REFERENCES

[1] I. K. Argyros, Convergence and Applications of Newton-type Iterations, New York: Springer-Verlag, 2008. https:
//doi.org/10.1007/978-0-387-72743-1.

[2] I. K. Argyros, On Ulm's Method for Frechet Differentiable Operators, J. Appl. Math. Comput. 31 (2009) 97-111.
https://doi.org/10.1007/s12190-008-0194-5.


https://doi.org/10.28924/ada/ma.5.15
https://doi.org/10.1007/978-0-387-72743-1
https://doi.org/10.1007/978-0-387-72743-1
https://doi.org/10.1007/s12190-008-0194-5

Eur. J. Math. Anal. 10.28924/ada/ma.5.15 14

[3] I. K. Argyros, On Ulm's Method Using Divided Differences of Order One, Numer. Algorithms 52 (2009) 295-320.
https://doi.org/10.1007/s11075-009-9274-3.

[4] LK. Argyros, S. Shakhno, S. Regmi, H. Yarmola, On the Complexity of a Unified Convergence Analysis for Iterative
Methods, J. Complex. 79 (2023) 101781. https://doi.org/10.1016/7.jc0.2023.101781.

[5] LK. Argyros, S. Shakhno, H. Yarmola, Improving Convergence Analysis of the Newton-Kurchatov Method under
Weak Conditions Two-Step Solver for Nonlinear Equations, Computation 8 (2020) 8. https://doi.org/10.3390/
computation8010008.

[6] I.K. Argyros, S.M. Shakhno, H.P. Yarmola, Method of Third-Order Convergence with Approximation of Inverse
Operator for Large Scale Systems, Symmetry 12 (2020), 978. https://doi.org/10.3390/sym12060978.

[7] M. Balazs, G. Goldner, On Existence of Divided Differences in Linear Spaces, Rev. Anal. Numér. Théorie Approx. 2
(1973) 5-9. https://doi.org/10.33993/jnaat21-6.

[8] J.E. Dennis, R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-
Hall, Englewoods Cliffs, 1983.

[9] J. A. Ezquerro, M. A. Hernédndez, An Ulm-type Method with R-order of Convergence Three, Nonlinear Anal.: Real
World Appl. 13 (2012) 14-26. https://doi.org/10.1016/j . nonrwa.2011.07.039.

[10] J. A. Ezquerro, M. A. Hernéndez, The Ulm Method Under Mild Differentiability Conditions, Numer. Math. 109 (2008)
193-207. https://doi.org/10.1007/s00211-008-0144-z.

[11] M. Grau-Sénchez, M. Noguera, ].M. Gutiérrez, On Some Computational Orders of Convergence, Appl. Math. Lett.
23 (2010) 472-478. https://doi.org/10.1016/7.aml.2009.12.006

[12] J. M. Gutiérrez, M. A. Hernandez, N. Romero, A Note on a Modification of Moser’s Method, J. Complex. 24 (2008),
185-197. https://doi.org/10.1016/j.jco.2007.04.003.

[13] O. H. Hald, On a Newton-Moser Type Method, Numer. Math. 23 (1975), 411-426. https://doi.org/10.1007/
BF01437039.

[14] J. Moser, Stable and Random Motions in Dynamical Systems: with Special Emphasis on Celestial Mechanics.
Herman Weil Lectures, Annals of Mathematics Studies, vol. 77, Princeton University Press, Princeton, NJ, 1973.
https://www. jstor.org/stable/j.ctt1bd6kg5.

[15] H. Petzeltova, Remark on Newton-Moser Type Method, Commentat. Math. Univ. Carol. 21 (1980), 719-725. https:
//zbmath.org/0455.65042.

[16] S. M. Shakhno, Nonlinear Majorants for Investigation of Methods of Linear Interpolation for the Solution of Non-
linear Equations, European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS
2004 — P. Neittaanméki, T. Rossi, K. Majava and O. Pironneau (eds.) O. Nevanlinna and R. Rannacher (assoc. eds.)
Yuvaskyld, 24-28 July 2004, 11 p. https://www.researchgate.net/publication/238701776.

[17] S. Ulm, On Iterative Methods With Successive Approximation of the Inverse Operator, lzv. Akad. Nauk Est. SSR, 16
(1967), 403-411. (in Russian).


https://doi.org/10.28924/ada/ma.5.15
https://doi.org/10.1007/s11075-009-9274-3
https://doi.org/10.1016/j.jco.2023.101781
https://doi.org/10.3390/computation8010008
https://doi.org/10.3390/computation8010008
https://doi.org/10.3390/sym12060978
https://doi.org/10.33993/jnaat21-6
https://doi.org/10.1016/j.nonrwa.2011.07.039
https://doi.org/10.1007/s00211-008-0144-z
https://doi.org/10.1016/j.aml.2009.12.006
https://doi.org/10.1016/j.jco.2007.04.003
https://doi.org/10.1007/BF01437039
https://doi.org/10.1007/BF01437039
https://www.jstor.org/stable/j.ctt1bd6kg5
https://zbmath.org/0455.65042
https://zbmath.org/0455.65042
https://www.researchgate.net/publication/238701776

	1. Introduction
	2. Convergence
	3. Numerical Examples
	4. Conclusion
	References

