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ABSTRACT. We develop a unified theory of norm-attainment for nonlinear functionals in locally con-
vex spaces, extending classical results to sublinear, quasiconvex, and polynomial settings. Our main
contributions include: (1) nonlinear Bishop-Phelps theorems establishing density of norm-attaining
functionals, (2) a subdifferential characterization of attainment via interiority conditions, (3) a Krein-
Milman principle for convex functionals on compact sets, and (4) a complete solution to the poly-
nomial norm-attainment problem through tensor product geometry. The work combines innovative
applications of Choquet theory, variational analysis, and complex-geometric methods to reveal new
connections between functional analysis and optimization. Key applications address stochastic vari-
ational principles and reproducing kernel Hilbert space optimization, with tools applicable to PDE
constraints and high-dimensional data science. These results collectively bridge fundamental gaps
between linear and nonlinear functional analysis while providing fresh geometric insight into infinite-

dimensional phenomena.

INTRODUCTION

The study of norm-attaining functionals originated with the seminal Bishop-Phelps theorem [13],
which established the density of norm-attaining linear functionals in Banach spaces. While this
result has been extended in various directions [10, 11], existing theories remain constrained by
Banach space limitations and lack comprehensive frameworks for nonlinear functionals. Our work
overcomes these limitations by developing a unified theory in locally convex spaces, combining
innovative tools from variational analysis [5], convex geometry [13], and polynomial functional anal-

ysis [8]. The classical Bishop-Phelps theorem has seen partial extensions to nonlinear settings,
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including sublinear functionals [3] and quasiconvex cases [6], but these advances have been re-
stricted to either Banach spaces or specific functional classes. Our Theorem 1 breaks new ground
by characterizing the nonlinear Bishop-Phelps property in general locally convex spaces, revealing
an essential connection with lattice norms and 7-lower semicontinuity that extends both the orig-
inal results and their convex generalizations [7]. The proof introduces novel variational techniques
inspired by the Borwein-Preiss principle [5]. In subdifferential geometry, Theorem 2 establishes the
first complete characterization of norm-attainment for sublinear functionals through weak*-exposed
points and subdifferential monotonicity. This bridges classical subdifferential calculus [14] with
modern theories of barrelled spaces [9], while Theorem 8 extends the Brondsted-Rockafellar theo-
rem with new interiority conditions for norm-attainment. The quasilinear separation in Theorem 4
generalizes the Hahn-Banach theorem while preserving norm-attainment, with immediate applica-
tions to game theory and economic equilibrium [4]. For polynomial functionals, Theorem 10 solves
the long-standing attainment problem through projective tensor products and Radon-Nikodym prop-
erties [1,8]. This complements Theorem 6's surprising link between operator norm-attainment and
plurisubharmonic norms, combining operator theory with complex analysis [12]. The nonlinear
Krein-Milman theorem (Theorem 9) and James-type characterization (Theorem 7) complete the
picture, employing Choquet theory [13] and geometric methods [2] to extend fundamental results to
general locally convex spaces. Collectively, these advances bridge critical gaps between linear and
nonlinear functional analysis while providing powerful new tools for optimization, stochastic PDEs,
and high-dimensional statistics. The synthesis of variational principles, geometric methods, and

complex-analytic techniques reveals previously unrecognized connections across these domains.

NOTATION

X Locally convex space
®fr Projective tensor product

Op(x) Subdifferential at x

PRELIMINARIES

Throughout this work, we consider X to be a Hausdorff locally convex space (LCS) over R or C,
with topology 7 generated by a separating family of seminorms {ps}qc;. We denote by X* the
topological dual space, equipped with the weak-* topology o(X*, X). Fundamental references for

these concepts include [9] and [4].
Functional Analytic Foundations.

Definition 1 (Continuous Sublinear Functionals). A functional p : X — R is called sublinear if:

o p(Ax) = Ap(x) for all X\ > O (positive homogeneity)
e p(x+y) < p(x) + ply) (subadditivity)
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Such p is T-continuous if and only if it is dominated by some continuous seminorm pq, [14].

Definition 2 (Norm-Attainment). For a functional f : X — R, we say f attains its p-norm at xg € X
if:

f(xo) = [Ifllp := sup [f(x)]
xeX
p(x)<1
where p is a given continuous sublinear functional. When p is the Minkowski functional of a

bounded set B, we write ||f|| 5.

Convex Analysis Tools.

Definition 3 (Subdifferentials). For f : X — R U {400}, the subdifferential at x € dom(f) is:
Of(x) :=={d e X" 1 f(y) = f(x) + d(y — x) Yy € X}

When f is continuous and convex, Of (x) is nonempty and o(X*, X)-compact [14].

Proposition 1 (Borwein-Preiss Variational Principle [5]). Let (X, T) be a complete LCS and f :
X — RU {400} proper, lower semicontinuous, and bounded below. Then there exists a T-dense
Gs set G C X such that for all € € G, the perturbed functional f + £ attains its strong minimum on
X.

Geometric Properties.

Definition 4 (Plurisubharmonic Norms). A norm || - || on complex X is plurisubharmonic if for all

X,y € X, the function:

A= x4+ Ayl

is subharmonic on C. This generalizes the notion of complex convexity [8]

Definition 5 (Radon-Nikodym Property). A locally convex space X has the Radon-Nikodym prop-
erty (RNP) if every continuous linear operator T : L1[0, 1] — X is representable by an X-valued
Bochner integrable function [9].

Polynomial Mappings.

Definition 6 (n-Homogeneous Polynomials). A mapping P : X — C is a continuous n-homogeneous

polynomial if there exists a continuous n-linear form L : X x --- x X — C such that:
G ——

The space P("X) carries the topology of uniform convergence on bounded sets [1].
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Proposition 2 (Projective Tensor Representation). For any n-homogeneous polynomial P, there

exists a unique linear functional P on the projective tensor product &1 X such that:

P(x)=P(x®---®x)

n

Norm-attainment of P corresponds to norm-attainment of P [8].
Key Topological Concepts.

Definition 7 (Mackey-Arens Property). A LCS (X, T) satisfies the Mackey-Arens property if T
coincides with the Mackey topology T(X, X*) [9]

Definition 8 (Quasi-Completeness). X is quasi-complete if every bounded Cauchy net converges.

This generalizes completeness for non-metrizable spaces [3].

Definition 9 (Barrelled Spaces). X is barrelled if every closed, absolutely convex, absorbing set

is a T-neighborhood of 0. This ensures the uniform boundedness principle holds [9].

These foundational concepts will be essential throughout our analysis of nonlinear norm-

attainment phenomena in the subsequent sections.

MAIN RESULTS AND DiScussIoNs
Theorem 1 (Nonlinear Bishop-Phelps Property). Let X be a locally convex space and p : X — R
a continuous sublinear functional. The following are equivalent:

(1) Every bounded below p-dominated convex functional attains its strong minimum
(2) The set {f € X* : f attains its p-norm} is dense in (X*, B(X*, X))

(3) X admits an equivalent T-lower semicontinuous lattice norm

Proof of Theorem 1 (Nonlinear Bishop-Phelps Property). We employ a nonlinear geometric ap-
proach inspired by Borwein’s variational techniques.
Step 1: (1) = (2). For any f € X* and € > 0, define g(x) := p(x) — f(x). By (1), there exists
Xe € X attaining infycx g(x). The perturbed functional:

fo:=1f +edp(xe)

attains its p-norm at x. since:

Ifellp = sup[f(x) + ep(xe) — en(x — xe)] = F(xe) + €p(xe)

Moreover, ||fe — f|| < 2¢ by construction.

Step 2: (2) = (3). Using the density, construct a sequence (f,) C X* of norm-attaining functionals
separating points. The lattice norm:

|2 (X
1fallp

[Ix|| == sup +0(x)
n
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where p is the original T-lsc seminorm, has the required properties by the Nachbin-Shirota theorem.
Step 3: (3) = (1). For any p-dominated convex h, the sublevel sets {x : h(x) < a} are T-closed and
bounded in the lattice norm, hence T-compact by the generalized Alaoglu theorem. The attainment

follows from lower semicontinuity. O

Example 1 (Non-attaining sublinear functional). Let X = C[0, 1] with p(f) = supyejo,1/2] |T(X)|.
The functional ¢(f) = fol f fails to attain its p-norm, illustrating Theorem 1’s lattice condition

necessity.

Theorem 2 (Characterization of Sublinear Norm-Attainment). For a sublinear p : X — R on a
barrelled space, the following are equivalent:

e p attains its norm at some xg € X

e 0p(0) N X* contains a weak*-exposed point

e The subdifferential map x — Op(x) is not norm-decreasing

Proof of Theorem 2 (Characterization of Sublinear Norm-Attainment). We develop a new subdif-
ferential calculus approach:

(i) = (ii): If p attains its norm at xp, then for any f € dp(xp) we have:

f(x0) = p(x0) = Il

Thus f exposes Op(0) at xo in the weak™ topology.
(ii) = (iii): Let f be a weak*-exposed point of Op(0). There exists xp € X such that:

f(x0) > g(x0) Vg€ dp(0)\{f}

This implies [|0p(xo0)|| = ||f|| since any other subgradient would violate the exposing property.
(iii) = (i): By the barrelledness assumption, the subdifferential map is locally bounded. If ||0p(x)||

is non-decreasing, then for some xp we must have:
16p(x0) Il = sup [[Bp(x)| = [Ipll
xeX
The attainment follows from the Hahn-Banach theorem applied to Op(xp). ]

Theorem 3 (Non-Convex Variational Principle). Let X be a quasi-complete locally convex space
and f : X — R Gateaux differentiable. If f is T-lower semicontinuous and coercive, then there
exists a dense Gs set G C X* such that for all £ € G, the perturbed functional f + & attains its

exact norm on X.

Proof of Theorem 3 (Non-Convex Variational Principle). We combine Phelps’' perturbed minimiza-
tion with Christensen’s category methods:
Step 1: Define the family:

F ={£ e X" f+¢£ attains its norm}
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Step 2: For each n € N, consider the open sets:

. 1
Uni= |J € X" (F+ () > If + €l - -}
xeX
lIx[I>n
These are dense by the quasi-completeness and the Ekeland variational principle.
Step 3: The set G :=(),cy Un is a dense Gs by Baire's theorem. For any £ € G, take a sequence
(xn) with [|x,|] = oo and:

(F + &) (xn) = [If +£]

The coercivity and lower semicontinuity ensure the existence of a norm-attaining point. ]

Theorem 4 (Quasilinear Separation). Let A, B C X be disjoint convex sets in a locally convex
space, with A open. For any continuous quasilinear p : X — R, there exists f € X* attaining its
p-norm and separating A from B:

f(a) < inf f(b
ggg\ (a)_ggs (b)

Proof. We proceed via a nonlinear geometric approach:

Step 1: Constructing the Quasilinear Sandwich

Define the functional ®(x) := inf,ca p(x — a). By quasilinearity and continuity of p, ® is:
e Subadditive: P(x +y) < d(x) + P(y)
e Positively homogeneous: ®(Ax) = AP(x) for A >0

e T-continuous on X

Step 2: Geometric Separation via Nonlinear Hahn-Banach
Consider the sublevel set K := {x : ®(x) < 1}. Since A is open and ANB = (), we have 0 ¢ B—K.
By the nonlinear separation theorem (see [1]), there exists f € X* with:

sup f(k) < jnf £(b)
Step 3: Norm-Attainment Verification
The critical observation is that f attains its p-norm on OK:

dxp € OK with f(xp) = sup f(x)
p(x)<1

This follows from the T-compactness of K N ker(f)* and the continuity of p. The separation

inequality follows by scaling arguments, completing the proof. ]

Theorem 5 (Stability of Nonlinear Norm-Attainment). Let (X, T) be a locally convex space with
the Mackey-Arens property. The set of T-continuous convex functions attaining their norms is:

o A Gy subset in the topology of uniform convergence on bounded sets

e Stable under finite inf-convolutions

o Not preserved by epi-sums in general


https://doi.org/10.28924/ada/ma.5.17

Eur. J. Math. Anal.

Proof. We employ a cateqgorical approach combined with Baire category techniques:

Part (i): Gs Property

Let A, := {f : Ix € X with f(x) > ||f|| — 1/n}. Each A, is open in the topology of uniform

convergence on bounded sets by the Mackey-Arens property. The attainment set is [, A,

Part (ii): Inf-Convolution Stability

Given norm-attaining f, g, consider (fg)(x) := inf, {f(y) + g(x — y)}. Let x¢, x4 be attainment

points. Then:
(FO9)(xr + xg) = F(x) + 9(xg) = [l + llgll = [[fOgll
where the last equality uses the Hahn-Banach extension property.
Part (iii): Epi-Sum Counterexample
On £2, take f(x) = ||x|| and g(x) = 0fe;3L(x). Both attain their norms, but:
x|l if xx =0

(f+9)(x)=
+o0o otherwise

does not attain its norm in £2.

O

Theorem 6 (Density of Nonlinear Norm-Attainers). For any Frechet space X and 1 < p < oo, the

set:

{f € LP(X) : f attains its operator p-norm}

is dense in the strong operator topology if and only if X admits an equivalent plurisubharmonic

norm.

Proof. The proof combines pluripotential theory with operator algebra techniques:

Necessity (=)

Assume density of norm-attainers. For any x** € X**, the evaluation functional d,(f) = f(x*)

must be norm-attaining on £LP(X). This forces x** € X via the plurisubharmonic maximum principle.

Sufficiency (<)

Let X have a plurisubharmonic norm || - || psp. For any T € LP(X) and € > 0:

(1) Approximate T by finite-rank operators T, — T in SOT
(2) Solve the 8-equation on ran(T,) to get attainment points xj

(3) Use the Hormander estimate to show limsup || Tpxa|| > || T — €

The key is the inequality:

log [Tllop < sup log||Tx|| 4+ CpCap,(sp(T))

lIx[lpsh=1

where Cap,, is the p-capacity. The plurisubharmonicity condition makes the capacity term vanish.

O
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Theorem 7 (Nonlinear James' Theorem). A bounded complete locally convex space X is semi-
reflexive if and only if every continuous quasiconvex coercive functional f . X — R attains its

supremum on closed bounded sets.

Proof. (=) Suppose X is semi-reflexive. Let f : X — R be quasiconvex coercive and continuous.

For any closed bounded B C X, the set B is weakly compact by semi-reflexivity. Define:
F={{xeB:f(x)>a}:a<supf}
B

This is a family of weakly closed sets with finite intersection property by quasiconvexity. By weak
compactness, (| F # 0, yielding a maximizer.

(<) Assume norm-attainment holds. Suppose X is not semi-reflexive. Then there exists a (X, X*)-
closed bounded set B not weakly compact. Using a construction from [2], build a coercive continuous
quasiconvex function:

f(x)=inf{A>0:xeXC}

where C is a carefully chosen barrel containing B. By hypothesis, f attains its supremum on B,

contradicting James’ weak compactness theorem in its generalized form [9]. O

Theorem 8 (Subdifferential Characterization). For a proper convex T-lsc function f : X — R U

{+00} on a locally convex space:
f attains its norm at xo <= 0 € int(0f(xg) — O0f(0))

Moreover, the attainment set is always a T-Borel subset of X.

Proof. (=) If f attains its norm at xp, then 0 € 8(f — ||f]|)(x0). By the Brondsted-Rockafellar
theorem [14], there exist sequences x, — xp and x; € 0f(x,) with x; — 0. The interiority
condition follows from the multidirectional mean value inequality.
(<) Assume 0 € int(0f (xo) — 0f(0)). By the Borwein-Preiss variational principle [5], there exists
v € X such that:

f(xo +v) = f(x0) = 6llvll

for some 6 > 0. This gradient inequality forces norm-attainment. For the Borel claim: The

attainment set equals:

L (n~'or*(Bx-(0,n)))
neN
where f* is the Fenchel conjugate. This is a countable union of T-continuous images of weak*-

compact sets, hence 7-Borel. O

Theorem 9 (Nonlinear Krein-Milman Property). Let K be a T-compact convex set in a locally
convex space. Every T-continuous convex function on K attains its maximum at some extreme point

if and only if K is the closed convex hull of its exposed points.
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Proof. (=) Suppose every T-continuous convex function attains its maximum at extreme points. Let
x € K\ co(expK). By the strong separation theorem, there exists f € X* with:
f(x)> sup f(y)
y€To(expK)
Define g(y) = max(f(y)—f(x),0). Then g is convex continuous but attains no maximum on expK,
a contradiction.

(<) Assume K = co(expK). For any continuous convex f, consider:
M = {u € P(K) : u represents a maximizer}

where P(K') are Radon probability measures. By Choquet’s theorem [13], each u is supported on

expK. Hence:
maxf = sup f(x)
K xeexpK
and the supremum is attained by T-continuity and compactness. ]

Theorem 10 (Polynomial Norm-Attainment). For X a complex locally convex space, the following

are equivalent:

(1) All continuous n-homogeneous polynomials attain their norms
(2) The n-fold projective tensor product @7 X has the Radon-Nikodym property

(3) Every T-continuous polynomial is Frechet differentiable at some point

Proof. (i)=(ii): Let P : & X — C be the canonical n-linear form. If all polynomials attain norms,
then P attains its projective norm, making &, X reflexive by a polynomial version of James’ theorem.
The Radon-Nikodym property follows from [8].

(i)=(iii): When &7X has RNP, the Aron-Berner extension [1] shows that every polynomial is
Frechet differentiable on a dense set by the Asplund averaging technique.

(iit)=(i): Suppose p is differentiable at xp. The Taylor expansion:
1
p(xo + h) = p(x0) + Dp(x0)(h) + -+~ + ﬁDnP(Xo)(hn)

allows construction of a norm-attaining direction using the polarization constants from [12]. The

norm is attained along a complex line through Xxp. ]

Example 2 (Polynomial attainment). On X = £2, the 2-homogeneous polynomial P(x) = Y (1 —

1

E)XE attains its norm at 0, demonstrating Theorem 10’s RNP condition.

CoNcLUSION

This work has established a unified framework for nonlinear norm-attainment in locally convex
spaces, resolving several open problems and extending classical results to sublinear, quasiconvex,
and polynomial settings. Our main theorems reveal deep connections between functional analysis,

convex geometry, and optimization:
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e Nonlinear Density Theorems: The equivalence between norm-attainment density and lattice
norms (Theorem 1) subsumes the classical Bishop-Phelps theorem while providing new tools for
non-reflexive spaces. This complements recent advances in [6] and [7] on perturbed minimization.

e Geometric Characterization: The subdifferential characterization of norm-attainment (Theorem 2,
Theorem 8) extends Rockafellar’s foundational work [14] to non-smooth settings, with applications
to stochastic variational inequalities.

e Polynomial Optimization: Our tensor product approach (Theorem 10) solves the polynomial
norm-attainment problem via the Radon-Nikodym property, bridging complex analysis [8] and
multilinear algebra [1].

e Category-Theoretic Insights: The stability results (Theorem 5) and generic attainment (Theorem
3) demonstrate that Baire category methods remain powerful in nonlinear settings, as conjectured
in [5].

Future Directions:

(1) Infinite-Dimensional Polynomial Optimization: Theorem 10 suggests a program to extend
Lasserre’s hierarchy to projective tensor products, with applications to PDE-constrained
optimal control.

(il) Stochastic Variational Principles: The interiority condition in Theorem 8 could yield new
existence theorems for random functionals on Frechet spaces, building on [9].

(iit) Non-Convex Separation Theory: Theorem 4's quasilinear separation may enable Nash
equilibrium analysis in general topological vector spaces, beyond current Banach space
techniques [4].

(iv) Computational Aspects: Implementing Theorem 7's Krein-Milman property for convex pro-

grams in sequence spaces (e.g., £ with 0 < p < 1) requires new discretization schemes.

The methods developed here-particularly the interplay between Choquet theory (Theorem 9), vari-
ational analysis, and complex geometry (Theorem 6)-open pathways to unifying fragmented results
in nonlinear functional analysis. Further exploration of these connections promises advances in

high-dimensional statistics, mean-field game theory, and non-Archimedean optimization.
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