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ABSTRACT. The aim of this paper is to give a characterization of Hardy-Fofana spaces via Riesz
transforms. This characterization allows us to describe the distributions belonging to these spaces

as a bounded solutions of Cauchy-Riemann’s general temperature equations.

1. INTRODUCTION

Let RY (d is a positive integer) be the Euclidean space of dimension d equipped with the
Lebesgue measure dx and the Euclidean norm. The classical Hardy space HP(R?) (0 < p < o)
is defined as the space of tempered distributions f satisfying || Mf||, < oo, where the maximal

function Mf is defined by

M (x) =sup |(f x @) (x)], (1.1)
>0

with ¢ in the Schwartz class S(RY) having non vanish integral, and @:(x) = t=9p(t~1x).

It is well known that not only this space does not depends on ¢, but one can replaced Schwartz
function by Poisson kernel in the definition of the maximal function (1.1).

In [1], Ablé and the second author studied Hardy-amalgam spaces H(9(R?) (0 < p, g < o)
by taking in the above maximal characterization of classical Hardy space the Wiener amalgam

quasi-norm |[|-[|, , instead of Lebesgue’s.
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A locally integrable function u belongs to the amalgam space (LP,£9)(RY) if

1

ullpg = 1| > lluxqlly| < oo
kezd

where for k € Z9, Qx = k + [0, 1)¢ and XQ, stands for the characteristic function of Q.

Multiple characterizations of H (P9 (R9) spaces including atomic and Poisson kernel character-
ization, were given in [1]. We notice that the atoms in this context are exactely the one used in
classical Hardy space.

Recently, Assaubay et al in [3] characterized this spaces by using first-order classical Riesz
transforms and composition of first-order Riesz transformations. They also describe the distributions
in H(P-9) (R?) as the boundary values of solutions of harmonic and caloric Cauchy-Riemann systems.
Here we intend to prove that similar characterizations are possible in the context of Hardy-Fofana
spaces.

It is well known that for 0 < p, @, ¢ < co and r > 0, there exists a constant C,., > 0 depending

on r and o such that
C;é“UHp,q <|[[St7ullgp < Crallullp.qg. u € (LP,L9)(RY), (1.2)

where (St2u)(x) = r—au(r~1x). It follows from the above relation that for u € (LP,£9)(RY),
we have St%u € (LP,£9)(RY) for o > 0 and r > 0. Unfortunately, the family {St&u},., is not
bounded in (LP,£9)(RY). Ibrahim Fofana considered in [7], the spaces (L, £9)*(R?) defined for
0<p,ga<ooby

(LP,e)*(RY) = {f € (LP, &) R/ |fll g0 < o0}

where

1fllp.q.0 = sup 1St 1l q - (1.3)

These spaces known as Fofana’s spaces are non trivial if and only if p < o < g (see [7]). In the
rest of the paper we will always assume that this condition is fulfilled. It is proved in [6] that for
u € (LP,£9)*(RY), we have || St¥ullp.g.e = ||Ullp.q.c @nd that (LP,£9)*(RY) (1 < p < a < q) is the
biggest norm space which is continuously embedded in (L, £9)(R?) and for which the translation
St¥ is an isometry. These spaces can also be viewed as some generalized Morrey spaces since for
p < a, the space (LP, £°)*(RY) is exactly the classical Morrey space LP7a (RY).

For 0 < p < a < g < oo, Hardy-Fofana space H(P-9®)(R?), introduced by the authors in [4] is

a subspace of Hardy-amalgam spaces consists of tempered distributions f satisfying

||f||7-[(p,qva) = [[MFllp,ga < 0.
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The purpose of this article is twofold. We first characterize these spaces via Riesz transforms and
secondly, we describe the distributions belonging to these spaces as bounded solutions of certain
general temperature equations of CAUCHY-RIEMANN.

This paper is organized as follow:

The next Section is devoted to the prerequisites on Hardy-Fofana spaces. In Section 3, we
give the characterizations of Hardy-Fofana spaces with Riesz transforms. In the last section,
we characterize distributions belonging to our spaces as bounded solutions of certain general
temperature equations of CAUCHY-RIEMANN.

In this work, S := S(R?) will denote the Schwartz class of rapidly decreasing smooth functions
equipped with its usual topology. The dual space of § is the space of tempered distributions
denoted by &' := S’(RY). The pairing between S’ and S is denoted by (-, -).

We denote by |E
means that there exist two constants 0 < C; and 0 < C; such that A < ;B and B < (A, while
A := B means that B is the definition of A.

, the Lebesgue measure of a measurable subset E of RY. The notation A~ B

2. PREREQUISITES FOR HARDY-FOFANA SPACES

Fofana’s spaces have among others, the following properties (see for example [6] and [7]):
(1) let 0 < p,a, g < oco. The space ((LP,£9)*(RY), ||'||p'q'a) is a Banach space if 1 < p <
a < g and a quasi-Banach space if 0 < p < 1;
(2) if a € {p, g} then (LP,£9)*(RY) = L*(R?) with equivalent norms;
(3) if p < a < g then LX*(RY) C (LP,£9)*(RY) C (LP,£9)(RY);
(4) let f and g be two measurable functions on RY. If |f| < |g

s then [[fllp.q.0 < [l9llp.g.0-
For many operators including the maximal Hardy-Littlewood operator, norm inequalities are
given in these spaces for 1 <p <a <gq.
Let f be a locally integrable function and 2i(f) be the centered Hardy-Littlewood maximal
function defined by
M) 1= sup B )| [
r>0

1f(y)ldy, ¥ x € RY,
B(x,r)
It is proved in [6, Proposition 4.2] that 9t is bounded on (L, £9)*(R?), whenever 1 < p < a < g <

oo. Using [8, Proposition 11.12], it is easy to extablish the following result whose proof is omitted.

Proposition 2.1. et 1 < p < a < g < o0 and 1 < u < +oo. For all sequences {fp},~, of

measurable functions, we have

> 1(f)" > Il

n>0 n>0
p.q.c p.q,a

=
<

Q

with the equivalence constants not depending on the sequence {f,} .
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As Hardy-Fofana spaces are concerned, we have among others, the following properties which

can be found in [4].

Proposition 2.2. [et1 <p<a < g < oo.

(1) If1 < p then the space HP- %) (RY) and (LP, L9)*(RY) are equal with equivalence norms.
(2) The space H(19)(RY) is continuously embedded in (L', £9)*(RY).

Notice that for p < 1, we have as in the classical Hardy and Hardy-amalgam spaces, that the
spaces (’H(p""a)(Rd), || - ll4p.0.c)) are quasi-Banach and for f, g € H(P.a.2)(RY),

”f + g”g.[(pvq,a) S ||f||'l,|3.[(p,q,a) + Hg”%(p,q,a) .

We can also define (see [5]) these spaces as subspaces of Hardy-amalgam spaces for which the
familly of dilations {Stg}p>0 is locally bounded.

More precisely, for a tempered distribution f, p > 0 and a two real numbers we put
(Stef, ) := <f, Stgil<p> ,
where 5 + é = 1. We have (see [4]) that for 0 < p < a < g < o0,
||f||7-t(p,q,a) = sup ||Stgf”7—[(w)- (2.1)
p>0

Just as Hardy-amalgam spaces was characterized in [1] with Poisson kernel, so are Hardy-Fofana'’s
spaces. In fact, a tempered distribution f belonging to Hardy-amalgam spaces is bounded; i.e
fx € L2®(RY) for all 9 € S(RY). A convolution of such distribution with integrable functions
can be defined in term of distribution. More precisely, if f € S’(RY) is bounded and v € L}(RY),

then the convolution f * u is defined as a tempered distribution acting on S(R?) by the pairing
(Fru, @) = (f*@ 0) = p € S(RY)

where {(x) = u(—x) and (f * @, i), = ;1) is the pairing between L>®(RY) and LY(RY). But if we
take as u the Poisson kernel P defined by
d
G 1

P(x) = x € RY,
- 1+ |X‘2)%

then f * P; can be identified for all £ > 0, to a well defined bounded function. As we can see for

example in [9], there exist , ¥ € S(RY) such that
fsPr=(f*x@)* P+ fxy for t > 0.
It is proved in [1] that for an element f € H(P9(RY), we have

[x = sup sup [f x Pe(¥)lllp,q = [MFllpq (22)
t>0 |x—y|<t
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where Mf is the maximal function defined in Relation (1.1). It follows that

[x = sup sup | * Pe(Y)lllp,g.a = IMFllpqg.a (2.3)
t>0 |x—y|<t

thanks to Relations (2.1) and (2.2) and the fact that Stj commute with the maximal function M.
Lemma 2.3. Let f € S'(RY), p € S(RY), p and « positive real numbers. We have
Sty (fx¢) = (Stg‘f) *@pr, t>0.
Infact,

pa (Fro)(0%) = p= (fp%p(x —p))
= 7 (F, Ppu(x — p))
= <f, St;‘il [0pr(x — )]> = (Stg‘f * <ppt) (x).

Lemma 2.4. Let f € S'(RY), p € S(RY), p and o positive real numbers. We have
Stg‘ [(f %) % P] = (Stg‘f * (ppt) * Pot. (2.4)
Relation (2.4) follows from the fact that

—d _ —d _
po (Fxppie) * Pri(p'x) = p Rd(f*(pp’lt)(p "X = y)Py1e(y)dy

= / (Stg‘f* (pt) (x = 2)P(z2)dz = (Stg‘f* (pt) * Pr(x).
Rd
It comes from Lemma 2.3 and 2.4 that for a bounded tempered distribution f and u(x, t) = f*P¢(x),
(StSu) (x.t) = [(Stof) * P:](x), p>0and >0 (2.5)

for all t > 0.

3. CAUCHY-RIEMANN EQUATIONS, RIESZ TRANSFORMS AND HARDY-FOFANA SPACES

Let u be a harmonic function on Rf’l; Le u € C2(Ri+1) and Au = Zf’;rll (3)2932 = 0, where

Xd+1 = t and ]Ri“ :=R9x%]0, +00[. We define its non tangential maximal function u* by

u*(x) :=sup sup |u(y.t)] ¥x € R (3.1)
t>0 |x—y|<t
Let f be a bounded tempered distribution, and u(x,t) = P * f(x). As we can see in [4]

vt € (LP,£9)* (RY) whenever f € H(P92)(RY). We give in the next result a necessary and
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sufficient conditions for a harmonic function v in R9*? to have its non tangential maximal func-
tion in (LP,£9)*(RY). The proof is based on the dilation characterization of Hardy-Fofana spaces

and [3, Proposition 2.1 |.

Proposition 3.1. Let 0 < p < a < g < 400 and u an harmonic function on ]Rﬁ’fl. The maximal
function u* belongs to (LP,£9)*(R?) if and only if there exists f € H(P92)(R9) such that

u(x, t) :=f x Pe(x), (x, t) € R{TL

Moreover, ||f|l3yp.a0 = 0" 5 4.0 -

Proof. Let u be an harmonic function on R‘j’fl, and u* the associate non tangential maximal function
as defined in Relation (3.1).

We suppose that there exists f € H(P9%)(R?) such that u(x, t) := f*P(x) forall (x, t) € Riﬂ.
From the Poisson characterization of Hardy-Fofana spaces (see [4, Theorem 2.3.8 ]), we deduce
that 16l q.0 < € [1Fllp00-

For the converse, let us suppose that u* € (LP,£9)*(R9) C (LP,£9)(RY). It comes from [3,
Proposition 2.1 | that there exists f € H(P9(R?) and a constant C > 0 such that

u(x, t) = (f * P)(x), (x,t) e R (3.2)
and
oo < 16%na < Cliflagon.
Since St f € H(P-O(RY) for all p > 0, Sty u harmonic on R4t and (Stu) (x, t) = (Stof) = Pe(x),
it comes that (St§u)* € (LP, L9)(R) and
1St Fllgnr < I(StE0)" g < CIISES Pl

This relation being thrue for all p > 0, we have

1
EHfHH(qua) < ||U*||p,q,oc < C||f||H(p,q,a),
where we use the trivial identity (Styu)* = Styu*, p>0and 0 < a < oco. O

We say that a vector values function F := (uy, uo, ..., Ugy1), with uj : Rﬁjfl —R,je{l,2, .. d+
1}, satisfies the generalized Cauchy-Riemann equations (in short F € CR(Ri+1)) if

ou; ou gt
U "k 1<jk<d+1 and
Oxk ox;

o

5 =0 (33)

j=1
where we set xg11 = t. Also recall that for j € {1,2,...d}, the j-th Riesz transform R;(g) of a
measurable function g is formally defined by

Ri(g)(x) := lim [lxy|>EKj(x—y)g(y)dy ae x€eRY

€—0t
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where Kj(x) := T e X e R9\{0}.

In [2, Corollary 4.19], Ablé and Feuto demonstrated that Riesz transformations are extendable

into bounded linear operators on Hardy-amalgam spaces H (P9 (R9) for 0 < p < 1. We will keep

the notations R, j = 1,---, d for these extentions. Assaubay et al proved the following result.

Proposition 3.2 ( [3], Proposition 2.3). Let % < min{p, g} < +oo. Suppose that u is harmonic
function in Riﬂ. Then u* € (LP,£9)(RY) if and only if there exists an harmonic vector F :=
(U1, ..., Ug+1) € CR(RETY) such that ugyy == u and sups ||| F (., .4 < +oo.

Furthermore, sups~g |||F (., t) ~ lu*]l .4

llp.q

Since u* € (LP,£9)(RY) if and only if u = f * P; for some f € H(P9D(RY), they proved that one
can take uj(x,t) = R;(f) * Pe(x), j=1,--- ,d.

In the case of Hardy-Fofana’s spaces, we have the following.

Proposition 3.3. Assume that % < p<a<qg<+4ooand u is an harmonic function in Rﬁjfl.
Then u* € (LP,£9)*(RY) if and only if there exists an harmonic vector F = (uy, ..., Ugy1) €

CR(R‘}FH) such that ugy1 := u and supy~o [|[|F(., )|l 5, g0 < +00. Furthermore

Sup J[IF G Blllp.q. 107150, (3-4)

Proof Let % < p<a<g<+oo and u an harmonic function on Rﬁ’fl.
We suppose that u* € (LP,£9)%(R9). Since (LP,£9)*(R9) c (LP,£9)(RY), Proposition 3.2
assert that there exists f € (LP,£9)(RY) so that:
o u(x,t) ="f=*Pi(x),
e the harmonic vector F = (uy, -+, ug4+1) with uj(x, t) = R;(f) * Pi(x) for j € {1,---,d}
and ugy1 = u belongs to CR(Rf’l),
® supeso [[IFC )lllpg = U™ lp.q-
Since u* € (LP,£9)* (RY) we have that the tempered distribution f belongs to H(P9:%)(R?), thanks
to Proposition 3.1. All we have to prove now is that x —+ F(x,t) belongs to (LP,£9)*(RY) for
t > 0 and that Relation (3.4) is satisfies.
Fix t > 0 and p > 0. Since v* € (LP,£9)* (RY) and (Stg‘u)* = Sty (u™), we have that for p > 0,
I (Stg‘uyk lp.g < llu*|lp.g.a- Hence (Stz‘u)* € (LP,£9) (RY) so that there exists f, € H(PD(RY)
satisfying
(Stgu)(x. t) = (fo* Pr)(x),
with
Fo(x, 1) i= (Ra(f) * Pe(x), - -+, Ra(f?) * Pe(x), (fp) * P)(x)) (3.5)
belonging to CR+(]R1+1) and

sup [[[Fo (-, )lllp.g = (ISt (u™)llp.q- (3.6)
>0
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Moreover (Stgu)(x, t) = (Stgf)*Pt(x), thanks to Relation (2.5). It follows that fx Py = (St f)* Py
for all t > 0 so that f, = Stjf. We recall that the last equality comes from the fact that for
f € HPO(RY), £+ P; tends to f in S'(RY) as t goes to 0. Replacing f, by Sty f in Relation (3.5)
yields Fy(x, t) = (Rl(Stg‘f) * Pr(x), -+, Ra(Styf) * Pr(x), (Stof) * P:)(x)). Since the operator
St commute with R; we have that

Fo-.t) = (StY(Raf)* Pe(-), -, St (Raf) * Pe(-), (St F) x Pr)(-))
= (Stg‘ (v1(p71t)) - .Sty (ug(- o7 10)) .Sty (ugs1(- p711)))

= St (F(.p'1)).
If we take this expression of F, in Relation (3.6) we obtain that
sup [[[St (F(, P ) llp.q = IS5 (1) llp.q-

But supeso lISt3(F (. 07 0))llp.g = SuPeso [IISt5(F (-, £)lllp,q and the result follow from the defi-

nition of Hardy-Fofana space. O

The next result gives a characterization of #(P%:%)(R?) via Riesz transforms Rj(f x ¢). Since

we need to use the characterization of H (P9 (R9) given in [3], we give the following definition.

Definition 3.4. Let 0 < p < a < g < co. A tempered distribution f is said to be :

e (p, q)-restricted at infinity if there exists uo > 1 such that for u > o, we have
fxge (LPH L) (RY), ¢e S(RY).
e (p, q, a)-restricted at infinity if there exists o > 1 such that for u > po, we have
fxg e (LPH L) H(RY), ¢ e SRY).

It is easy to see that tempered distributions which are (p, g, a)-restricted for p < a < g, are also
(p, q)-restricted. Theorem 1.1 in [3] assert that a tempered distribution f belongs to # (%) (R9)
for % < min(p, q) < oo, if and only if it is (p, q)-restricted at infty and, for ¢ € S(RY) with non

vanish integral,
d
sup | [IF % ellp.q + > I(Ryf) % bellpg | < oo.
j=1

When this is the case,

d
IFllzeo0 2 sup [ I1F*dellog + > N(RF) * dillpg
j=1

In the case of Hardy-Fofana space, we have the following result.
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Theorem 3.5. Let % <p<a<qg<oo feSRY).Then f € HPI)(RY) if and only if f is
(p, q, a)-restricted at infinity and, for ¢ € S(R?) with non vanish integral,

d
sup | [1F 5 @ellpq0 2 [I(RiF) 9t 0 | < +oc. (37)
Jj=1
Moreover,
d
1l ~ sup | 1F 5 @ellpga+ ) _N(RiF) Gl g | - (3:8)
j=1

Proof Let 251 < p<a < g <ooand f € S'(RY).
We suppose that f is (p, g, a)-restricted at infinity and satisfies (3.7) for non vanishing Schwartz

function ¢. There exists g > 1 (large enought) such that for u > g, we have
fxpe (LPH 09 (RY)), ¢ e S(RY). (3.9)
It comes from the definition of Fofana spaces that
St (f « @) € (LP#*, ) (RY) ¢ € S(RY), p>0.

Taking p = 1, we obtain that f is (p, g)-restricted at infinity. Since for all ¢ € S(RY) with non

vanishing integral we also have that

d
A= sup SgpHStS‘<f*¢>r)||p,q+j:Zl§ggHSt?((Rff)*d%)Hp,q < 00,

it follows that
d
sup | [1F 5 Gllpg + ) _[[(RiF) % el | <A
j=1
Thus f € H(P-9(R?) thanks to [3, Theorem 1.1]. It remains to prove that the familly {Stg‘f}p>0 is
uniformly bounded in H(P 9 (RY).
Fix p > 0. We have St7'f € HP-D(RY) so that

d
1Stg fll 3000 igg HStg‘(f) < ¢thyq + Zl HRJ.(Stg‘f) « d)f”p,q
J:
thanks once more to [3, Theorem 1.1]. But we have in one hand that
Ri(f) * ¢t = R, (f * ¢¢), so that
Sty [(Rif) 6] = StI[R; (F * ¢e)] = Ry [St5 (F x ¢0)]. (3.10)

where the last equality comes from the fact that dilation comute with Riesz transforms. In the other

hand we have that

sup [|Sty (' @t) [[p.q = sup [IStg (F) * P¢llp.q. (3.11)
>0 >0
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thanks to Lemma 2.3. Therefore, we have

Sup sup ISt5 (F) * dellp.g = supsup ISty (F * ¢¢) lp.g < A
p>0 t>0

>0
and
d d
supsupZ ||R Sto‘ (f = ¢t)] lp.g = supsupZ ||St°‘ R f) * qbt] lp.g <
>0 t>O o>

We deduce that sup,~g [ISty fl[3».a < oo, which prove that f e #Pa(RY).
For the converse, we suppose that f € H(P9)(R?). It follows that Stgf € HPD(RY) with
ISt Iy < fllyepac < oo for all p > 0. It comes from [3, Theorem 1.1] that St3f is (p, q)-

resticted at infinity and
d
ISt oo ~ sup ( StE(F) * ], +JZI ISt (R ) = el

for all ¢ € S(RY) with non vanish integral.
From Relations (3.11) and (3.10), and the definitions of || - ||5 g, and of || - || (p.a.c), We have that

d
e~ s ( 15 0l ge+ YIRS el ) < co.
=1

Let ¢ € S(RY). We have ||f * Bllpga < Clifllgwan. For w > 1 we have f x ¢ € (LPH, £9H)*,

In fact assuming that || * ©||oc # 0 we have
1
f*d) € (LP,ZCI)Ol and ||f*¢||pu qu, o — C||f*¢‘|00 Lt ||f*d)||5

and then f is (g, p, a)-restricted at infinity. OJ

4. TEMPERATURE CAUCHY-RIEMANN EQUATIONS AND HARDY-FOFANA SPACES

Avector F = (uy, tua, -+, Ugy1) of functions in Rﬁjfl satisfy the generalized temperature Cauchy-
Riemann equations, if it satisfies the following conditions :
d 0 1
(1) T 5 = 10y %t
ou; )
2) 5 = “kforjk—12 ,d
(3) %t = —/a§/2uj,1 =1,2,--+,d, with
1/2 e/'7r/2 o0 g’(s)
(09)(1) =
VT )i s—t

when g is a smooth enough function on (0, co)

ds, t >0

In [3], the authors defined the space Hp'q(Rf’l) (0 < p,g < o) as the vector space of vector
functions F = (u1, up, -+ -, ugs+1) satisfying generalized temperature Cauchy-Riemann equations
and such that

||F||Hp,a(Ri+1) = igg I1FC Elllp.g < oo.
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They also proved that under appropriate conditions on the exponents p and g, the space Hp'q(Riﬂ)
is topologically isomorphic to H”9(R9). To carry out the proof of this result, they use a subspace

of what they call the temperature space 7(RY'); that is the space of functions u € C2(RZ™),

satisfying
d
0 0
ou_ = U b
ot &~ 0ox:
_/:]_ J

More precisely, for 0 < p, g < oo, they put

TPAURE) = {u e TRI™M) : |l < 00}

where
ullrea = sup[lu., t)llq.p-
t>0
They proved [3, Proposition 3.2 (i)] that for % <p,g< oo, F=(u,tn,-,Ugp1) € HPI(RIT)
implies that u := ugy1 € TPI(RL™) and u;(-, t) = Rj(u(-, t)), t>0, j=1,---,d.

We claim that for 0 < p < a < g < oo and r > 0, the space T”"’(Riﬂ) is stable under the
dilation St%. This is due to the fact that for f € (LP, £9) (R?), there exists a constant C(a, r, p, q) >
0 such that

Cla b, @) Il < ISt Fllp.g < Cler P, @)1 llp.g.

and this dilation commute with Riesz transforms. It follows that if F = (u1, -+, ug+1) € Hp'q(Rﬁlfl)
then St F € Hp"’(Riﬂ).
We put

P (e}
1 F o000 := fgg [|St7 FHHp,q(Riﬂ)

and defined the space H(p'q'a)(Rffl) as the subspace of ]HIp'q(RiH) consits of F satisfying

| F g0 < 00. We have the following result in Hardy-Fofana spaces.

Theorem 4.1. Let % <p<a<qg<oo, and W; the heat kernel defined by
o—IxI?/4t

Wt(X) = W

The map L define on H(P-9)(RY) by
L(F)(x, t) := ((Raf) x We)(x), -+ (Raf) x We) (x), (F x Wi)(x))
for all x € RY and t > 0, is a topological isomorphism from HP:9:%)(R?) onto ]H[(p""o‘)(RiH).

Proof. Let f € H(P9)(RY). For r > 0 we have St%f € #P9(RY), thanks to the definition of
H(P-92)(RY). It comes from [3, Theorem 1.3] that

L(Stﬁxf) c HPﬁ(Ri‘f‘l)y with ||E(Stcrxf)||leq(Ri+1) < C”St?f”er,q(Rd) (4.1)
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for all r > 0. Since R;(f * W;) = R;(f) * W; and St commute with Riesz transforms, we have
that L(St&f) = St*(L(f)), r > 0. Thaking this remark in (4.1) we obtain that

I1£(f) ||H(p,q,oc)(]1{i+1) < (| fHH(MM(Rd) :

Let now F = (uy, Up, -+, Ug, Ug+1) belonging to H(p'q'o‘)(RiH). This implies that St*F =
(St¥uy, St¥un, - -+, StYug, Stlug+1) € ]H[p'q(RiH) for all r > 0. As we can see in the proof

of [3, Theorem 3.1] this implies that for all r > 0, there exists f, € HP9(RY) so that St%ugy; €
T”'q(Riﬂ) with St¥ugi1(x, t) = fr * Wi(x) and

[ £ll3pa < Csup IStFF (. Dllp.g < ClIF llgwaa, (4.2)

and StYu;(+, t) = Rj(St¥ug+1(- 1)), t >0,/ =1,---,d.
We put f := 1. We have St%f = f, for all r > 0. Taking this in estimate (4.2) yields

1St Fllpes < ClIF o

wich prove that f € H (P-4 (RY).

The vector
G(x, 1) = (Ru(F) % P)(x), -+, Ra(f) x Pe)(x). (F+ P)(x)), x €R% t>0
is harmonic, satisfies the generalized Cauchy-Riemann equation, and

sup [|G(, D)lllp.g.a < ClIF g0
t>0
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