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ABSTRACT. In this paper, we study a general high-order iterative method for solving nonlinear sys-
tems in Banach spaces without requiring higher-order derivatives. The proposed method constructs
each iteration by combining evaluations of the operator and its derivative, together with an adapted
correction scheme. A detailed local convergence analysis under majorant conditions is provided, es-
tablishing the convergence to the solution. We also show a semi-local convergence by introducing
new majorizing sequences. The theoretical results are illustrated with examples, and confirm the

theoretical predictions.

1. INTRODUCTION
Numerous problems in applied mathematics, scientific computing, and engineering are modeled
by nonlinear systems of the form
G:DCcC BO — B,
where D is an open and convex subset of the Banach space By, and B is another Banach space.
The goal is to find x* € D satisfying
G(x) =0. (1)
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Finding exact analytical solutions to such nonlinear systems is typically difficult or impossible.

Consequently, iterative methods are commonly employed. Newton’s method, defined by
Xn+1 — Xn - G/(Xn)_lG(Xn),

is among the most classical and efficient iterative schemes, offering quadratic convergence under
suitable conditions. However, many real-world problems demand faster convergence with lower
computational cost, motivating the development of high-order methods.

Following this line, we study a general high-order iterative method, which extends classical
schemes by incorporating additional correction steps while using only evaluations of G and G’
(without requiring higher derivatives). Inspired by the high-order framework of Behl et al. [9], which
attains order 3(k —1) for systems in R by reusing a frozen inverse Jacobian and relying solely on
first-order information, the present study generalizes that scheme to Banach spaces, discards the
seventh-derivative assumptions underpinning their local Taylor analysis, and furnishes a unified
local and semi-local convergence theory with computable error bounds, larger attraction regions,
and sharpened uniqueness criteria—thereby achieving broader applicability.

Let k > 3 be a natural number and xp € D an initial point. Then, the method is defined for each
n=0,1,2,... by

Y = xa = G’ (xn) "1G (%),

y,§2) =X, — 2T 1G(xn),
v =y = MG, (2)

xor1 =5 =y — MG (),
where the operators T, L, and M are given by
T =To=G"(xa) + G (",
L=L,=3F -6 (x),
M=M,=L"1TG (x,) .

The method (2) is shown in [9] to possess convergence order 3(j — 1) for j = 3,..., k using
Taylor expansions when By = B = R™ (m natural number), assuming the existence of at least the
seventh derivative G(7), although the derivatives G”, G, ..., G(7) are not explicitly required in the
iteration steps.

Unlike many classical methods that impose strong smoothness assumptions, this method is de-
signed to work under weaker differentiability conditions. It builds upon ideas from previous studies,
including Parhi and Gupta [14], Wang et al. [18], and Cordero et al. [10], while aiming for a better

balance between convergence speed, computational cost, and robustness.
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To illustrate the need for such an approach, consider the scalar function g : D — R defined by

bit"logt + bit® + bt t#0,
9(t) =
0, t=0,
where D = [-2,2), and by, by are real constants with b; # 0 and b; + b, = 0. Although g has
a zero at t* = 1, the seventh derivative gm(t) does not exist at t = 0, showing that classical
convergence assumptions based on higher derivatives are not satisfied.
This observation motivates the use of generalized majorant conditions rather than strict smooth-
ness hypotheses. Moreover, method not only achieves high-order local convergence but also pro-
vides a semi-local convergence analysis by constructing suitable majorizing sequences.

The main contributions of this paper are as follows:

e A local convergence analysis is established that depends only on G, G’, and suitably
constructed auxiliary operators, thereby eliminating any need for higher-order derivatives.

e Semi-local convergence results are provided through the use of majorizing sequences, guar-
anteeing convergence even when the initial quess is relatively far from the solution.

e Computable radii of convergence and explicit error bounds are derived, permitting a priori
estimates of the number of iterations required to achieve a prescribed accuracy.

e Conditions are specified that ensure the uniqueness of the solution within a neighborhood

of the limit point.

The remainder of the paper is organized as follows. In Section 2, we introduce the assumptions
and establish the local convergence theorems, including uniqueness and error estimates. Sec-
tion 3 presents the semi-local convergence analysis via majorizing sequences. Section 4 discusses

examples and practical aspects. Finally, conclusions are drawn in Section 5.

2. CONVERGENCE ANALYSIS

2.1. Local. Some real functions which are defined on the interval A = [0, +0) play a crucial role
in the local convergence analysis of the method (2).

Suppose

(H1) There exists a nondecreasing and continuous function ¢o : A — A such that the function
1 — ¢o(t) has a smallest positive zero in A, which is denoted by sp. Define the interval
Ao = [0, s0).

(H2) There exists a nondecreasing and continuous function ¢ : Ag — A such that for h; : Ag — A
defined by

1
hat) = ] #((t —m)t)dn 3)
0
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the function 1 — h1(t) has a smallest positive zero in the interval Ag, which is denoted by
r.
(H3) For p: Ag — A defined by
1
p(t) = 5 (¢o(t) + do(Mi(1)t)) (4)

the function 1 — p(t) has a smallest positive zero in the interval Ap, which is denoted by
s1. Define the interval A; = [0, 51).

(Hq) For¢: Ay — A ha: AL — A p: A — A, defined by

¢((1+ hi(t))t)
o(t) =1 or

$o(t) + po(hi(t)t),

() = 5 (80(8) + ol (6)0)).

and

1
fl(bo((l —mt)dn (1) |1+ f¢o('f)t)d77)
ho(t) = 2 N 0 |
1—¢o(t) 2(1 = ¢o(t))(1 — p(t))

the function 1 — hy(t) has a smallest positive zero in the interval A;, which is denoted by
.
(Hs) For g : A1 — A defined by

a(t) = 5 (G0(t) + 30o(m(1)1)

the function 1 — g(t) has a smallest positive zero, which is denoted by s,. Define the
interval A, = [0, sp).
(Hs) Forj=3,..., k, Ai—1 =1[0,5-1), hj : Aji_1 = A
the functions 1 — ¢g(hj—1(t)t) and 1 — h;(t) have smallest positive zeros in the interval
Aj_1, which are denoted by s;_; and rj, respectively, where
1 1
[ (1 —m)hi_1(t)t)dn (1 +do(h(t)t)) | 1+ [ do(nhj—1(t)t)dn

. _ 10 0 .
Ui e e e O R 21— do(0)(1 — a()) hi-1(t)

Define
r*=min{rj}, m=1,2,..., k and A*=][0,r") ()

It follows by these definitions and conditions (H1) — (Hg) that for each t € A*
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0 < ¢o(t) <1, (6)
0<p(t) <1, (7)
0<q(t) <1, (8)
0 < go(hj-1(1)t) < 1, (9)
and (10)
0 < hi(t) < 1. (11)

Notice also that the parameter r is shown to be a radius of convergence for the method
(2) (see Theorem 1).
Next, we relate functions ¢ and ¢ to the operators in the method (2).
(H7) There exists a solution x* € D and a linear operator £ € £(By, B) which is invertible such
that for each z € D

IE7H(G(2) = E)II < ¢o(llz = x*[1).

Define the region Dy = DNU(x*, sp), where U(x,5) stands for an open ball in By centered
at x and of some radius s > 0. The set U[x,5] denotes the closure of U(x,5), which is a
closed set.

(Hg) |E71(G'(22) — G'(21))Il < ¢(l|z2 — z1]|) for each z1, z € Do.

(Ho) U[x*, r*] C D.

Remark 1. Some possible selections for the linear operator E can be E = /, the identity operator,
or E = G'(2) for some Z € D with Z # x* or E = G'(x*). The last choice of E implies x* is a
simple solution of the equation G(x) = 0. It is worth noting, though, that such an assumption is

not made or implied by the conditions (H1)-(Ho).

The local convergence analysis of the method (2) is provided in the next result. Let Uy =
U(x*, r*) — {x*}.
Theorem 1. Suppose that the conditions (H1)—(Ho) hold. Then, the sequence {x,} generated for

the starting point xo € Uy is convergent to the solution x* of the equation G(x) = 0.

Proof. The following assertions shall be established using induction on n=0,1,2, ...

IySD = X1 < g1l — XD l1xa — x*|| < [ — x*|| < r*, (12)
1S3 = 511 < golllxn — XD l1xa — x*[| < J1xn — X711, (13)

Iy = X1 < gi (10 = XD 1xa = x*| < |30 — x*]). (14)
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* k
o1 — x| = I8 = ¥ < grllx0 — x*Dlxn = X < [lxa — x*]. (15)

Pick u € Up. It follows by conditions (H1), (H7), and (5), (6)
IETHG () = E)II < ¢o(llu = x*[1) < do(r”) < 1. (16)

So, the linear operator G'(u) is invertible by the lemma due to Banach [13] and
1
(lu =)

In particular, if u = xg, the iterate yél) exists by the first substep of the method (2) for n =0,

16/ () El < 5= (17)

and we can write

yé” —x* =xg— x* — G'(x0) 'G(x0)

1 (18)
— [6(x0) '] / E-1(G(x0 + n(x* — x0)) — G'(x0))dn(x0 — x°)

0
Using the condition (Hg), (5), (11) (for i = 1), (17), and (18), we get from (18)
1
" [ 61 =l = x* Nl = x|
—x*|| <
HyO || — 1—¢0(||X0—X*||)

Thus, the assertion (12) holds if n = 0 and the iterate yél) € Up. Next, we show Tg is also

< q1([xo=x"DlIxo=x"[| < Ixo—x*[| < r*. (19)

invertible. In view of the conditions (H7), (5), (7), and (19), we can have

2E)™(To ~26)]) < 5 { dolllxo — x*1) + do(lls” — x'I)

1
< 2 (dolxo = x°ID + 8o (110 X" Do —x*||))
=po < 1.

Thus, the linear operator Tg is invertible and

1

TYE| < ———.

(20)

Moreover, the iterate yéz) is well defined by the second substep of method (2), from which we

can also write

W =X = x0 — x* = G'(x0) 16 (x0) + (G'(x0) ™ — 2T5 1) G (x0)
=x0 — x* = G'(x0) 'G(x0) — 2Ty 1 = G’ (%) 1)G(x0) 20
= x0 — x* — G'(x0) 16 (x0) — Ty H(G'(x0) — G'(V§V)G' (x0)) G (x0)

= xo — x* — G'(x0) 1G(x0) + [Tg *ENEHG (") — G'(x0))]G" (x0) "1 G (o)
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By the conditions (H1), (H7), (Hs), (17) (for u = xp), (19), (11) (for i = 2), (20) and (21), we

obtain
1 1
Jo((1=n)lixo = x*[Ndn  ¢o(1+ Ofcbo(nIIXo —x*[)dn)

0 +
1 — ¢o(llxo — x*]) 2(1 = ¢o(|[x0 — x*][))(1 = po)

2 *
ly§? = x*| <

< g2(llxo = x*DlIxo = X*[| < [Ix0 — X7

(2)

%0 — x*|

Hence, the assertion (13) holds if n = 0 and the iterate y;~’ € Up. Similarly, from (8) and (H~)

we can have

IET)(L —26)] = SIIE™ (3(6' (4™ ~ E) + (6'(0) ~ ) |

1
< 5 (30008 = <)+ dolllxo = x*I)) < 00 < 1.

S0
1
L7YE < — . 23
Thus, the iterates yé3) ..... yék) = Xy exist, since L is invertible and we can write for j =
3.4,..., k
vy —x =y = x = G TG0 ) + (= Mo)Glyg ) o
=y X =GN — LI )G (0) G ()
which can be implied by (5), (11), (22), and (23)
; (-1)
0 oo =n)llyg ™" — x*II)dn
lys” —x* < |2 —
U R )
(25)

_ . 1 .
(14 Go(lyy ™ = x* N + ({mmnyéf‘” — x*[)dn)

- 2(1— o(Jx0 —x* D)L — o)

—1 * —1 * *
< g(I™ = DIvd = x| < JIxo — x*|

where we have also used the estimates

ly9=1 — x

Il

IE"H(G' (V) — 6" o))l < d(Iys) = x0ll) < o(llys? = x*|| + lxo — x*||) < o

or

IETHG (™) = G o)l S IETHG (M) = G/ () + |E7H(G (x0) — G'(x))

< do(Iys? = x*11) + ¢o(llx0 — x*|I) < o,
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IETWGOHM = 1ETY GO = E+ B)| <1+ |EHG () = B) < 1+ do(Ivd? = x*|).

and

IETLGOE = [ E7HG (¢ + 0§ = x))dn(y§ — x*)

EYG (x* + (Y = x*)) — E+ E)dn(y{P — x*)

o . O—

IN

(1+ / So(nllyY) — x| Iy = <.

Therefore, the assertions (14) and (15) hold if n = 0 and the iterate y(J)Xl € Up.

The induction for assertions (12)—(15) is completed if xp,y, (1 )y(2 )yé”) are replaced by
Xj y( )y( )y(’) respectively.

Furthermore, by estimate (15) and dx = gk(||x0 — x*||) € [0, 1), we can get

(k)

31 — x| = [lyS) = x*||
< di|lySY — x|
< didi 1|y = x| (26)

< oo < didy o dsllySY — x|
< didy—1 - o[ X — X7
It follows by the definition of dx that there exists d € [0, 1) such that
b, ds, ... de < d (27)
So, by (26) and (27), we get
xegr = x*[| < a5 Hp = x| < dBTDE g — x| < . (28)

Finally, if we let n = 400 in (28), we conclude that ET X, = x*, and all the iterates
n o0

{Xn} C Uo. ]

The uniqueness of the solution x* is established in a neighborhood of it next.

Proposition 1. Suppose that the condition (H7) holds in the ball U(x*, R1), for some Ry > 0 and
there exists R> > Ri such that

[ do(nR2)dn < 1. (29)
0

Define the region D1 = D N U[x*, Ry].

Then, x* is the only solution of the equation G(x) = 0 in the region D;.
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Proof. Suppose that there exists a solution z* € D; of the equation G(x) = 0 such that z* # x*.

Then, define the linear operator

1
E; = [G’(X* +n(z* — x*))dn.
0

By this definition, the condition (H7) and (29) we get in turn

1 1
|ETYE, - B)| < /¢o(n||z* —x|)dn < /(bo(??Rz)dn <1
0 0

Thus, the linear operator £ is invertible. It follows by the identity
7 —x*=EYG(z") - G(x*)) = E;1(0) =0,
and we conclude z* = x*. O

Remark 2. Under all the conditions (Hs4)—(Hg), one can set Ry = r* in Proposition 1.

2.2. Semi-local. The calculations and formulae are as in Section 2.1, but x*, ¢, ¢ are exchanged
by Xo, 1o, and 9, respectively.
Suppose
(C1) There exists a nondecreasing and continuous function 9o : A — A such that the function
1 —1o(t) has a smallest positive solution in the interval A, which is denoted by ty. Define
the interval S = [0, tp).

(C2) There exists a nondecreasing and continuous function ¢ : S — A.

Define the sequences {ai,} for a8 = 0, some aé >0 i=0,..., k, and each n =
0,1,2,... by
Y(ap —af),
an — or

Po= 5 (Yo(a2) + ¥o(ah)).

@n(a% — ag)
2(1 _ﬁn)

2 _ 1
an_an+

1
Mt = [ - mad - addn (@t - ad)+ (L+ vn(ed)) (e - ad),
0

G = 5 (300(c) + Yo(aD))
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(Po(@l) + Polad) +2)X,
2(1 —4o(af))(1 —7q,)

o, = 4

1
Bnt1 = /¢((1 —n)(ad; —af))dn(ad,; —ad) + (1 +¥o(ad))(ad —ad),
0

and
1 __ 0 Mnt1
Qpy1 = Qppq + T—vo(a®.)’
n+1

0 k

where again o | = af.

The sequence {a’}, is shown to be majorizing for {y,gi)}n in Theorem 2.
But let us first provide a convergence condition for it.
(C3) There exists t € [0, tp) such that for each i =0,1,2, ..., k and each n=20,1,2,...

Yo(@d) <1, B,<1, Go<1, and o) <%

It follows by this condition and (30) that the sequence {a!} is nondecreasing and
bounded from above by t and as such it converges to some a* € [0, f]. The limit point o*
is the unique least upper bound of the sequence {a/}.

As in the local analysis, the operators on the method (2) connect to the functions 1y and

.

(C4) There exist xp € D and a linear operator E such that for each u € D
IE7H(G"(u) = E)| < Wo(llu = xoll)-
It follows by the conditions (C1), (C4), and (30) that if u = xg, we get
IE7(6"00) = BN < 40(0) < 1.
So, the linear operator G'(xp) is invertible, in which case we can take
ag > [|G'(x0) TG (x0)|l-

Define the region
D> = U[Xo, Oé*] NnD.

(Cs)
||E_1(G/(U2) — G/(Ul))H < ’LP(HUQ — U1||), for each up, U1 € D2.

(Ce)
Ulxo, &*] € D.

Remark 3. As in the local analysis, possible selections for E can be E =/ or E = G'(Z) for some

auxiliary point X € D such that X # xp, or E = G'(xp), or some other selection.
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The semi-local analysis of the method (2) follows in the next result.

Theorem 2. Suppose the conditions (C1) — (Cg) hold. Then, the sequence {x,} generated by
the method (2) is well-defined in U(xo, @*), remains in U(xp, a*), and is convergent to a solution

x* € U[xo, a*] of the equation G(x) = 0 such that for each n=0,1,2, ...
Ix* — xpl] < a*ap.

Proof. As in the local analysis, induction is used to first establish the assertions

Iy = xall < 0} — 0, (31)
ly$? — vV < o — o, (32)
ly = y¥ VN < o — o7t (33)

By switching the conditions (H1) — (Ho) by (C1) — (Cs) but using the same formulas, we get in

turn
v =y =T (6'0AY) = 6'0n)) G'0n) G (x0)

=—[TE™'] [E_l(G’(yﬁl)) - G’(Xn))] (i = xn),

En(a% - ag)
-5, SO

1S = xoll < 182 = v + v = xoll

2 1

Iy =y < ol

<ai-al+tal-ad=a2<a"

So, the estimate (32) holds and the iterate v e Ulxo, o]
Then, by the identity
G ™) = 60i ™) = 6m) — GG = xa),
=65 ™) = Glxa) = G'Oa) 0 = xa) + G O) i = i),

which can imply

1
IEGOA ™) < [ (e ad)dn(ad T ~ad)+ (Lol @) t-a) = X, F (39
0

(Yo(a®) +olah) + 2N
20— Do) —qy) o

Ily9 = y¥=) <
Thus,
IV —oll < Iy =y ™+ Iy¥ Y = xol < oy — ot —ad = o, < o,

Thus, the assertions (33) hold and all the iterates {y,gj)} C U(xp, o).
It is left to show that assertion (31) holds if n+ 1 replaces n.
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But we can write in turn
G(Xn+l) = G(Xn+1) - G(Xn) - G/(Xn)()/1 - Xn)
= G(%n41) — G(%n) = G'(xn) (o1 — Xn) + G'(xn) (a1 — yiV),

which can give, as in (34),

1
IETIG ()l < /w((l—n)(agﬂ—ag))dn(agﬂ—a2)+(1+¢o(ag))(ag+1—a%) = Mnt1- (39)
0

Consequently, we obtain

1 _ _
Iy, = xopll < 16" (1) LENNE G (),
Mn+1 1 0
<——— =0, —
=1 _¢O(a97+1) n+1 n+1

and
1 1
sty = xoll < llyads = xnsall+ xnes = o
< (ogiq —ayy) + (ahg —af) = apyy <o
Thus, the induction for assertions (31)—(33) is completed, and all the iterates {y,gi)} € U(xo, o).

It also follows that the sequence {x}} is complete in Banach space By, since {a/} is also

complete as convergent by the condition (C4). Therefore, there exists x* € U[xg, @*] such that

. k .
lim y,g ) —x* or im x, = x".
n—-+o00 n—-4o00

Moreover, by letting n — +oo in (35), we obtain G(x*) = 0, where the continuity of the operator
G has also been used. Furthermore, by noticing that aXk = a1 and af = 0‘97+1' estimate (33)

can be rewritten for j = k as
||Xn+1 - Xn” < apy1 — Qp,

)
IXnan — Xnll < @pep —an, h=0,1,2,... (36)

Finally, by letting h — 400 in (36), we show the assertion (2).

Next, we study the uniqueness of a solution in a certain region.

Proposition 2. Suppose there exists a solution y* € U(xp, R3) of the equation G(x) = 0 for some
R3 > 0, the condition (C4) holds in the ball U(xo, R3), and there exists R4y > R3 such that

1
/ Wo((1 — m)Rs + nRa)dn < 1. (37)
0

Define the region D3 = D N U[xg, Ra].
Then, y* is the only solution of the equation G(x) = 0 in the region Ds.
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Proof. Suppose there exists y** € D3 solving the equation G(x) = 0 such that y** # y*.

Then define the linear operator
1
E2= [ G0+ n( — y)dn.
0
By applying the condition (C4) and (37), we obtain in turn

1 1
IEY(Es— E)| < /wo«l — )y = xoll + mlly* — xoll)dn < /wo«l R34 nRa)dn < 1.
0 0

It follows that the linear operator E5 is invertible. Hence, again we conclude y** = y*. O

Remark 4.

e The limit point a* given in the condition (C1) can be replaced by tg in (Ce).

e If all conditions (C1) — (Cg) hold, then we can set R3 = a* and y* = x* in Proposition 2.

3. NUMERICAL RESULTS

To comprehensively evaluate the performance and robustness of the proposed high-order iterative
methods, we present five numerical examples of different complexity and dimensionality. These
test problems have been selected from the literature and include systems with diverse nonlinear
characteristics, such as trigonometric, exponential, and polynomial structures. The examples are
designed to assess the methods’ accuracy, convergence speed, and stability.

In all numerical experiments, the stopping criterion was based on achieving a residual norm below
certain €, ensuring a high level of numerical precision. A maximum of 50 iterations was imposed
to prevent excessive computational effort. This limit is justified by empirical evidence indicating
that well-designed, high-order methods typically achieve convergence within this range. To ensure
reliable performance metrics, CPU execution times were averaged over 50 independent runs, thereby
mitigating the influence of background system noise and transient operational conditions

All simulations were conducted within a Google Colaboratory runtime environment. This envi-
ronment was configured with an Intel Xeon CPU operating at 2.20 GHz, 13 GB of system RAM,
and an NVIDIA Tesla K80 GPU equipped with 12 GB of VRAM. Numerical computations were
performed using the Python library mpmath, with the arithmetic precision set to 100 decimal dig-
its. This standardized setup was maintained across all test cases to ensure fair and reproducible
comparisons.

We compare method (2) with several established iterative methods, specifically the sixth-order
method (29) of Wang et al. [18], the method (14) by Hueso et al. [12], the scheme (6) of Cordero et
al. [10] and the method (14) proposed by Abbasbandy et al. [1]. These benchmark techniques are
well known in the literature for their high-order convergence properties and are frequently used for

testing nonlinear solvers. Our method is evaluated against these in terms of number of iterations,
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residual norm ||G(x)
in Tables 1-b.

|, step difference ||xp+1 — X»||, and CPU time. The results are demonstrated

Example 1. Consider the nonlinear system defined as:

20
Gi(x) = arctan(x;) + 1 — QZXJ-2 =0, i=12,..., 20.
=1
Jj#i
The methods converge to the zero x* = (0.1757683, 0.1757683, ..., 0.1757683)", starting from
the initial approximation xp = (0.15, 0.15, ..., O.15)T.

TaBLE 1. Results for Example 1

Method Iterations G (x)]| IXn+1 — Xl  CPU Time (s)
Method (2) 2 6.7121 x 10731 8.1782 x 10730 0.342917
Wang et al. 3 1.8677 x 107°2 1.4708 x 1072°  0.656792
Hueso et al. 4 6.4643 x 107** 8.6687 x 1074°  1.112088
Cordero et al. 2 1.8677 x 107°2 1.0138 x 1071°  0.333056
Abbasbandy et al. 3 1.2046 x 10723 2.0006 x 10723 0.307392
Example 2. Consider the nonlinear system:
50
Gi(x) = x; — cos 27rx,-—ij =0, i=1,2,..., 50.
Jj=1
The solution is x* = (0.5018261, 0.5018261, ..., 0.5018261)7, with the initial quess xp =
(0.51, 0.51, ..., 0.51)7.
TaBLE 2. Results for Example 2
Method Iterations G (x)]| IXn+1 — Xnll CPU Time (s)
Method (2) 2 2221 x 1072°  4.9027 x 10712 4127071
Wang et al. 7 6.9532 x 1072? 3.6049 x 10720 17.881168
Hueso et al. 8 5.4021 x 1072% 2.8007 x 10722 29.956985
Cordero et al. 7 5.5536 x 10723 2.8792 x 10721 15.002068
Abbasbandy et al. 9 6.4707 x 10716 7.4808 x 10716  12.348433
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Example 3. Let us consider the following system of 99 nonlinear equations:

XiXip1—1=0, 1</<098,
G,‘(X): IA+1

Xo9X1 — 1=0, | =99.

The exact solution is x* = (1, 1, ..., 1)7, with the starting vector xg = (2, 2, ..., 2)7.

TABLE 3. Results for Example 3

Method Iterations ||G(x)||  ||xp+1 — Xl CPU Time (s)

Method (2) 2 0.0 9.3704 x 107> 21.838247

Wang et al. 4 0.0 4.0358x107%°  56.250490

Hueso et al. 5 0.0 8.9985x 1073°  99.436670
3 0.0 7.0416 x 10715 33.705407
4

0.0 1.3554 x 10717 24.382990

Cordero et al.
Abbasbandy et al.

Example 4. Consider the following system of nonlinear equations

~

xX1+x0—1 =0,

2x1+x0+2x3—2 =0,
G(X) = <

X1+ Xo + X3 — Xq =0,

X2X3 2 _

| 22— (0.647) =0.

The solution vector is x* = (0.422499, 0.577501, 0.288751, 1.288751)", obtained from the
initial estimate xo = (0.8, 0.2, 0.9, 1.8)".

TABLE 4. Results for Example 4

Method Iterations G (x)]| IXn+1 — Xnl|  CPU Time (s)
Method (2) 4 1.4315 x 107> 4.334 x 10716 0.04373
Wang et al. N/A N/A N/A N/A
Hueso et al. N/A N/A N/A N/A
Cordero et al. 4 2.3346 x 107> 1.243 x 1072 0.01554
Abbasbandy et al. N/A N/A N/A N/A

N/A indicates that the method did not converge to the required solution within the

prescribed iteration or tolerance limits.
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Example 5. Consider the nonlinear system of equations of size 200

200
Gi(x)=e =) x=0, i=12...,200
j=1

J#i
The initial approximation is set as xp = (% % cen %) , with parameters a = —2.0 and b = 2.0,

leading to the solution: x* = (0.0050, 0.0050, ..., 0.0050)".

TABLE 5. Results for Example 5

Method Iterations G (x)|| IXn+1 — Xl  CPU Time (s)

Method (2) 2 3.4388 x 1071 4.7064 x 10737 50.414524

Wang et al. 3 6.8725 x 10752 7.9328 x 1072°  86.904696

Hueso et al. 3 1.1438 x 107> 1.4069 x 1078 129.807516
3 25137 x 1071 3.0846 x 10~ 71.584528
3

6.5891 x 10722 1.7579 x 10720  98.961347

Cordero et al.
Abbasbandy et al.

4. CONCLUSIONS

This paper presented a general high-order iterative method for solving nonlinear systems without
requiring higher-order derivatives. We established both local and semi-local convergence results
using majorant conditions and majorizing sequences, providing rigorous guarantees even from dis-
tant initial guesses. Numerical experiments on benchmark problems confirmed the method’s ac-
curacy, fast convergence, and low residual errors compared to existing high-order methods. The
results validate the theoretical findings and highlight the method’s applicability to a wide range of
nonlinear problems, suggesting potential for further extensions and refinements.

Author Contributions. Authors contributed equally. All authors have read and agreed to the

published version of the manuscript.
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