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ABSTRACT. For the parameter appearing non-linearly in the drift coefficient of homogeneous It6 sto-
chastic differential equation having a stationary ergodic solution, the paper obtains the strong con-
sistency of an approximate maximum likelihood estimator based on Stratonovich type approximation
of the continuous Girsanov likelthood, under some regularity conditions, when the corresponding dif-
fusion is observed at equally spaced dense time points over a long time interval in the high frequency
regime. Pathwise convergence of stochastic integral approximations and their connection to discrete
drift estimators is studied. Often it is shown that discrete drift estimators converge in probability. We
obtain convergence of the estimator with probability one. Ornstein-Uhlenbeck process is considered

as an example.

1. Introduction and Preliminaries

Parameter estimation in diffusion processes based on discrete observations is being paid a lot of
attention now a days in view of its application in many fields such as biology, physics, oceanograpgy
and especially in finance, see Kutoyants (2004) and Bishwal (2008, 2021).

Consider the It stochastic differential equation

dXt == f(Q,Xt)dt+th, tZO

1.1
X, = XO (1.1)

where {W;,t > 0} is a one dimensional standard Wiener process, 6 € ©, © is a compact subset
of R, f is a known real valued function defined on © x R, the unknown parameter 6 is to be
estimated on the basis of observation of the proces {X:, t > 0}. Let 6y be the true value of the
parameter which is in the interior of ©. We assume that the process {X;, t > 0} is observed at
O=to<t <..<tp=TwithAt;:=t,—ti_1=L=h i=12..,nand T = dn/?
for some fixed real number d > 0. We estimate 6 from the observations {X¢,, X¢,,..., Xt,}. This
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model was first studied by Dorogovcev (1976) who obtained weak consistency of the conditional
least squares estimator (CLSE) under some reqularity conditions as T — oo and % — 0. Kasonga
(1988) obtained the strong consistency of the CLSE under some reqularity conditions as n — oo
assuming that T = dn'/? for some fixed real number d > 0.

Note that the conditional least squares estimator (CLSE) of 6 is defined as

0,1 = i 0
nT arggnel(an,T()

L [th - Xt,; - f(GvXt,; )h]
where Q. 7(0) = Z : At :

i=1

2

Note that the CLSE, the Euler-Maruyama estimator and the IAMLE are the same estimator
(see Shoji (1997)). For the Ornstein-Uhlenbeck process, Bishwal and Bose (2001) studied the
rates of weak convergence of approximate maximum likelihood estimators, which are of conditional
least squares type. For the Ornstein-Uhlenbeck process Bishwal (2010a) studied uniform rate of
weak convergence for the minimum contrast estimator, which has close connection to Stratonovich-
Milstein scheme. Bishwal (2009a) studied Berry-Esseen inequalities for conditional least squares
estimator discretely observed nonlinear diffusions. Bishwal (2009b) studied Stratonovich based
approximate M-estimator of discretely sampled nonlinear diffusions. Bishwal(2011a) studied Mil-
stein approximation of posterior density of diffusions. Bishwal (2010b) studied conditional least
squares estimation in nonlinear diffusion processes based on Poisson sampling. Bishwal (2011b)
obtained some new estimators of integrated volatility using the stochastic Taylor type schemes
which could be useful for option pricing in stochastic volatility models. In mathematical finance,
almost sure optimal hedging has received recent attention. Gobet and Landon (2014) studied the
optimal discretization error in the context of hedging error in a multidimensional 1td6 model where
the convergence is studied in an almost sure sense and the discrete trading dates are stopping
times which includes the sampling scheme of Karandikar (1995) who studied pathwise convergence
of stochastic integrals. Bishwal (2011c) studied higher order approximation of hedging error in
the mean square sense. Almost sure hedging and optimality of discretization error motivates our
almost sure consistency in estimation problem.

Florens-Zmirou (1989) studied minimum contrast estimator, based on an Euler-Maruyama type

first order approximate discrete time scheme of the SDE (1.1) which is given by
Zy, — 2y, =10, 2y )(ti —tic) + Wy =W, 121, Zg = X°.

The log-Llikelihood function of {Z;,0 </ < n} is given by

n 2
[Zfi - Zt/fl - f(@, Zti—l)h]
C; At .
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where C is a constant independent of 8. A contrast for the estimation of 6 is derived from the above

log-likelihood by substituting {Z;,0 < i < n} with {X,0 </ < n}. The resulting contrast is

(6, Xe,_ 1)h]

”T_CZ B At

and the resulting minimum contrast estimator, called the Euler estimator, is

g, = inH, (6
n.T = arg min nT(0)

Florens-Zmirou (1989) showed L, consistency of the estimator as T — oo and % — 0.
If continuous observation of { X} on the interval [0, T] were available, then the likelihood function
of 6 would be

L7(8) = exp {IOT £(6, Xt)dX; — % /OT £2(6, Xt)dt} , (1.2)

(see Liptser and Shiryayev (1977)). In our case we have discrete data and we have to approximate
the likelihood to get the MLE. Taking It6 type approximation of the stochastic integral and rectangle

rule approximation of the ordinary integral in (1.2) and obtain the approximate likelihood function

Ln,T(e) = exp {Z f(@, Xti—l)(Xti - Xtiﬂ) - g Z f2(9, Xfil)} : (1-3)
i=1

i=1

An approximate maximum likelihood estimate (AMLE) based on L, 7 is defined as
Ot = Ln7(6).
nt = argmax Ly 7(6)

Weak consistency and other properties of this estimator were studied by Yoshida (1992) as T — ¢
and % — 0.

Note that the CLSE, the Euler estimator and the AMLE1 are the same estimator (see Shoji
(1997)).

In order to obtain a better estimator, which may have faster rate of convergence, we propose a

new algorithm. Note that the 1t6 and the Stratonovich integrals are connected by

T T 1 T ]
/ f(G,Xt)dXt:/ £(6. X2) odXt—Q/ £(6. X,)dt.
0 0 0

(see lkeda and Watanabe (1989)). We transform the It6 integral in (1.2) to Stratonovich integral
and apply Stratonovich type approximation of the stochastic integral and rectangular rule type

approximation of the ordinary integrals and obtain the approximate likelihood

Lor(6) = exp { ! > (F(8, Xe ) + (8, Xe))(Xe, — Xe,,)
=1 (1.4)

_g Z(f(@, Xfi—l) + f2(9, Xtil))} :
i=1
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The Stratonovich approximate maximum likelihood estimator (SAMLE) based on Z,,,T is defined as
.7 = LnT(6).
n.T = argmax Lo 7(6)

This estimator is known to have faster rate of convergence (in the mean square sense) than the
conditional least squares estimator, see Bishwal (2009b).

For Monte Carlo simulations in finance, one would be interested for pathwise convergence of
the estimator. In this paper prove the strong consistency of the SAMLE under some regularity
conditions given below as n — oco. We shall use the following notations : AX; = Xy — Xg,_,,
AW, = Wy, — W

may depend on 6). Prime denotes derivative w.r.t. 6 and dot denotes derivative w.r.t. x. Suppose

.., C is a generic constant independent of h, n and other variables (perhaps it
that g denote the true value of the parameter and 6y € ©. We assume the following conditions:
(A1) The parameter space © is compact.
(A2) [£(6. )] < K(6)(1 + |x]),
(6, x) = (6, )] < K(6)Ix —yl.
|f(6,x) — f(d,y)] < C(x)|6 — ¢ for all 6,9 € ©, x, y € R where

sup |K(8)| = K < o0, E|C(X®)|™ = Cip < 0o for some m > 16.
CISS]

(A3) The diffusion process X is stationary and ergodic with invariant measure v, i.e., for any g

with E[g(-)] < oo

1 n
- Zg(Xt,.) — E [9(Xo)] as. as T — oo and h — 0.
i=1
Further E|X°|™ < oo for some m > 16.
(A4) E|F(0, Xo) — £(8, Xo)]2 = 0 iff 0 = 6.

(AD) f is twice continuously differentiable function in x with

Esup |f(X:)|? < o0, Esup |f(X:)|? < 0.
t t

2. Main Results
We shall use the following theorem to prove the strong consistency of the SAMLE.

Theorem 2.1 (Frydman (1980). Suppose the random function D, satisfy the following conditions:
(C1) With probability one, D,(6) — D(6) uniformly in 6 € © as n — oc.
(C2) The limiting nonrandom function D is such that

D(60) > D(6) for all 6 € ©.
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(C3) D(6) = D(6o) iff 6 = 6.

Then 6, — 6y a.s. as n — oo, where 8, = supgeg Dn(6).
We need the following lemmas in order to prove our main result.

Lemma 2.1 Under (A1)- (A5),

sup {Z [v(6, Xs,,) + v(6, X5.)] AW, — g Z [V(6, Xs,_,) + v(6, xt,)]} —0 as.

2T
€0 i—1 i—1

T

asT—>oo,;—>O.

Proof. Let v(6, x) := f (8, x) — f(0o, x). The Fourier expansion of v(8, x) in L(©) be given by
v(0, x) = Z am(x)e™m j=+/-1 x€eR
m=1
where ax(x) are the Fourier coefficients. Thus

% {Z [v(6, X¢,) + v(8, Xe,) ] AW; — g > [v(6. Xe,) + v (6, Xt,.)]}

i=1 =1
1 | )
- ﬁ { Z [am(th—1) + am(Xfi)] emmgAW/
m=1 /=1
h & & .
5303 [anlt ) antx] e
m=1 /=1
where
am()] < el Y mTEl, < oo
m=1
Let

n

Am.n(s) = %Z [am(th—l) + am(th)] /(t/fl’t"](s)
i=1

where /(ti—l_ti]’ I =1,2,..., n are indicator functions. Then

n

1 T
5 Z [am(Xt,‘_1) + am(Xt,-)] AVV, = / Am'n(S) 0 dWs
i=1 0
and
h < T
§Z[am(Xt,71)+am(Xt,)] = [ Am'nds.
i=1 o
But

T 1 T T
/ Am,n(s) o dWs — / Am,nds = / Am,n(s)dWs.
0 2 Jo 0
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By exponential inequality for martingales, we have

T a T
P {/0 Am’n(S)dWS — 2/ A,2n’nd5 > ,6} < e_aﬁ
o

for any o, 3 > 0. Thus

P 1/TA (s)dW. >6~I—Ol/TA2 dst < e P
T ) =™ STT 2Ty, " mn =

and
1 (7 B ah< ) -
P{’TA Am,n(s)dWs > ? + 877_ - [am(Xt,,l) + am(th)] < e aﬁ_
Since
h <& 5 n
f Z [am(th 1) + am(Xt,)] S Cm* Z [(Xt,',l)z —|— (th_)z]
i=1 =1
and by (A3)
h n
o= 0 [(Xe )2+ (X0)?] = EOR) > 0 as.

=1

there exists a random variable V' such that
h n
T Z [(Xt/—l)Q + (th)z] <V as.
i=1

forall T>0,n=1,2,.... where P(V < o0) = 1.

Denote

1t

Zm’n - — Am'n(s)dW_g
tn O
Recall that T = t,. Choose
m? oot
o = Tg ﬁ . W,
where § <y <1land i <b< 1P
Then
1 ac2yv by
P\ |Zm.nl > M Em? | < pe=m™*t™"

+
th Tmb 2t
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This
o o
1 mac2V
P Z2 >
Y Zho> Y (ot ad )
m=1 m=1
o
1 mac2V
< P|Z2 >( — + 2 )
[ee]
1 mac2V
= P(|Zmn|>1 + ’")
: Y mb 5
— 2t9
[oe)
<2y et
m=1
76 o0
< et Ze_'"afb
m=1
Hence
(o0} oo [ee]
1 Y4
> Pz ) (2 )
Y b q
n=1 m=1 m=1 th 'm 2t
tl ¥ s ma—b
<zzgn Y e <o
m=1

since y—90 >0and a— b > 0. The above implies

ZP ZZ 200 y)Zme t252m234) oo

m=1
By Borel-Cantelli lemma,

i (1 Z [am(thﬂ) + aITI(Xti)] AW; — % Z [V(Q, Xfiﬂ) + V(Q, Xti)]

2t
m=1 " =1 mi=1
— 0 a.5. as n — 0.

This completes the proof of the lemma.

Lemma 2.2 Under (A1)- (A5), with probability one,

sup — 0.

0€O

1 (0
23 [ 1760, X0 ~ 60, Xe IV, s )ds
i=1 7 ti-1

Proof. For m > 0, we have
2m

E < sup
6cO

sup
0c©

;Z L [£ (80, Xs) — (60, Xt )Iv(0, Xe_, )ds

L[ G0 }
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where Gn(S) = er-]:l ;il[f(eo, XS) — f(@o, XtH)]v(Q, thil) ifti_1 <s<t.
Holder’s inequality implies that
2m}

1 (T
E { sup / Gn(s)ds
oco | T Jo

-
T‘sz{sup T2m_1/ |Gn(s)|2md5}
0

IN

€O

T2"E

IN

HSS)

n ti
sup T2m-1 Z/ |£ (B0, Xs) — (60, X5, )P (8, Xe,,)|*Mds
i=1 7ti-1

ti—1

n ti
<T W,y / E(IF (80 Xs) — F(80 Xe_)IPIC(Xe,_, )™ ds)
=1 i

by condition (A2) where Uy, := supgee |6 — 60/ < .

By Cauchy-Schwarz's inequality the above term is

n t;
<T 'Un Z/ (EIf (60, Xs) = £ (60, Xe,_)|*™) 2 (E(C(Xy,)|*™)/?ds
i=17ti-1

n ti
< T UL K2(80)(EIC(X0)*™) 2 / (EIXs — Xe_,)[*™)¥2ds
=1 7 ti-1

by condition (A2). Since E|X; — Xs|?™ < M(t — s)™, from Gikhman and Skorohod (1975, p.48),

the above term
n 1_-[.
< TR EICCO MM Y [ (s~ b1)7ds
i=17ti-1

— UK EICO Ty A
— m+ 1

UmKZm(QO)

< ] (E|C(X)|*"M)Y2hmn=m/2  m > 4.

Chebyshev's inequality and the above implies that for any € > 0,

i P {sup
n=1

SS)

1 (&
- Z/ [F(80, Xs) — (60, Xt )IV(6, Xy, ,)ds
i—1 Zti-1

>E}<OO.

Hence Borel-Cantelli lemma yields the result. 0

Lemma 2.3 Under (A1)- (A6), with probability one,

1 n
= Y16, Xe,) — F(B0, X5, )I2Dt — EJv(8, XO)
=1

uniformly in 6 as T — oo, % — 0.
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Proof. By the strong law of large numbers (ergodicity),
1 T
T/ lv(8, Xs)2ds — E|v(6, Xo)|°.
0

as. as T — oo for each 8 € ©. The condition (A2) implies that

1 (7 1 T
T/ Iv(8, Xs)?ds < T|9—90|2/ |C(Xs)|?ds
0 0

1
<sup|0 60| = /|C(X)|2ds<5

almost surely for some random variable B by (A1), (A2) and (A3). It also follows easily by (A1)-(A4)
that

1 (7 1 (7
'T/ lv(61, Xs)%ds — T/ lv(62, Xs)?ds| < J|6; — 65
0 0

almost surely for some random variable J and 61,60, € ©. Thus the family of functions

{;]OTvc,xs)Fds, Tzo}

is equicontinuous. Hence by Arzela-Ascoli theorem, the convergence is uniform. Denote

92(9) = g Z [(Xf/ﬂ)z + (Xfi)z] :

i=1

Now it is enough to show that

1 T 2 1 2
T | 106, X:)Pds — 2.63(6) = 0

a.s. uniformly in 8. We have

.
E{sup\ |V(9,Xs)2d5*95(9)|2m}

0co Jo

T n
E{sup|/ v(@,Xs)st—hZ|v(9,Xt,.1)|2|2’”}
oco Jo i

— {sup|Z/ Z(v(@ Xs —v(8, Xe ) (v(8, Xs + v(8, Xy, 1))ds|2m]»
=1

/1,1
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Holder inequality implies the above expectation

n

tj
< T2 1E sup Z{/ Iv(8, Xs — v(6, Xt )IP™v(8, Xs + v(8, Xe._,))*™}
6cO i=1 ti—1
n t
<72ty [ Elsup V(0. Xe = V(0. X4 )™ sup [v(6. Xe + (8, X, )P ds
—Ji., eeco 6cO
n t;
<72y, ST X - Xy PPACOGRT 4 IE(Xe )PTds
i=1 7 i1

n t;
< TEMLREM2MELY Y ] (EIXs = Xe )I*™)Y2(EIC(XS)*7 + EIC(Xy,,)[*™) 2 ds
i=1 7 ti-1

n t;
< 7—2m—1K2m22m+1UmM1/2(E|C(XO)|2m))1/2 Z/ (5 o t,',l)md5|
=1 7 ti-1

(by stationarity)
< RmTZm—ln(T/n)m+l

where Up, := supgee |0 — 60]2™ < oo and Ry, 1= K2m22m+2()  M/2(E|C(Xo)[*™)'/2. Hence if
m > 4,

1 (7 1
E{sup|= / V(6. Xs)[2ds — Zg2(6)P™ } < Rm(T/n)™ < Ryh™2n=m/2,
oco T Jo T

Borel-Cantelli argument yields the result. 0

Now we are ready to present the main result of the paper:

Theorem 2.2 Under the conditions (A1)-(A5), the SAMLE is strongly consistent, i.e.,

T
On1T — 00 as. as T — oo, - — 0.
Proof. Let

/n,T(e) = |Og LnT(Q)

and

v(0, x) :=f(0,x) — (B0, x).
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Note that
1 ~ ~
? [/nT(Q) - /n,T(GO)]
1 n
= 57 20 Xe_) + F(8. Xe)I(Xe, — X))
i=1
1 n
~57 [f(60. Xt, ) + f (60, X¢,)|(Xt, — Xt )
i=1
1 <« . .
—o- ) [F(6.X5,) = F(60. Xe,,)]
i=1
1 n
—- > 1720, X)) — F2(60. X¢,.,)]
i=1
1 [< ‘
= = {Z [v(6. Xz ,) + v(8. Xe)| AW, — hY v(e,xt,l)}
i=1 i=1
1 n
_% Z VZ(Q, Xti—l)
i=1
1 n tl'
_TZ/ V(Q,th._l)[f(eo,xt) + f(OOvXt,'_l)]dt
i=17ti-1
1 n t;
- Z/ v(8, Xt)f (60, Xt) — v(B0, Xt,_,)f (6o, Xt_,)]dt
=1 7ti-1
= /1—/2—/3—/4.
Let
1 ~ ~
D 7(8) = - [/n,T(e) - /n,T(QO)] :

Below Lemma 2.1-2.3 show that
T
D,7(6) — D(6) as. as T — oo, r —0

where
1
D(6) == —5EIf (6, X%) — (60, X°) 2.
Thus condition (C1) of Theorem 2.1 is satisfied. The limiting function D(0) satisfies the conditions

(C2) and (C3) of Theorem. Hence as a consequence of Theorem 2.1 we obtain the result. 0O


https://doi.org/10.28924/ada/ma.2.7

Eur. J. Math. Anal.

3. Ornstein-Uhlenbeck Process

Consider the Ornstein-Uhlenbeck process satisfying
dXt =0Xedt +dWe, t >0, Xo =0, 6 <0.

The Euler Estimator (conditional least squares estimator) is given by

9V - = Z?:l Xt/—l(th _ Xti—l)
" hZIn:l Xl?,'_l

Strong consistency of this estimator is obtained in Kasonga (1988). As a consequence of Theorem

2.2, we obtain the strong consistency of three estimators with

~  (X2-T)/2 5 _ X2/2 ~ ~T/2

R e IR wity I w e
which are SAMLE, YAMLE (Young AMLE) and , AMCE respectively as T — oo and T/n — 0.
SAMLE is the linear combination of AMCE and YAMLE.
Define the continuous MLE, YMLE and MCE respectively

) XedX, _X2/2 T2
[Txzde’ 7T [Txzat 7 [T x2dt

Interpreting fOT X¢dX¢ to be the Young (1936) integral, it equals X% /2. Belfadli et al. (2011)
(see also El Machkouri et al. (2016)) obtained the strong consistency of 67, as T — oo. The
YAMLE 8, 75 is the Euler discretization of 675. Lanksa (1979) obtained strong consistency of
the MCE 613 as T — oo whose Euler discretetization is 5,,,7,3. Liptser and Shiryayev (1978)

obtained strong consistency of the MLE 671 as T — oo whose Euler discretetization is 6, 71.

Concluding Remark It would be interesting to extend the results of the paper to diffusions driven
by persistent fractional Brownian motion which are neither Markov processes nor semimartingales,

but preserved long memory property of the model.
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