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ABSTRACT. The main purpose of this paper is to find a common element in the solution set of equilibrium
problem and fixed point problem of non-expansive mappings in the real Hilbert space with the help
of normal S-iteration process. Also, under some acceptable assumptions, we prove the sequences
induced by above stated process converge weakly to a point in the solution set of above stated
problems. At the end, we give a numerical example to justify our work. The results studied in this

work philosophize and boost some contemporary and known results in this direction.

1. Introduction and Auxiliary results

Everywhere in this paper except stated otherwise, let H be a real Hilbert space equipped with
inner product (-, -) and induced norm || - ||. Let C be a non-empty closed and convex subset of
H. We denote strong and weak convergence of a sequence {x,} € H by the symbols — and —
respectively.

Let T : C — H be a nonexpansive mapping. The so called fixed point problem for mapping T is to
find an element p € C such that

Tp=np. (1)

Denote the set of solution of the problem (1) by Fix(T) = {p € C : Tp = p}. T is said to be

nonexpansive iff

ITp—Taql?><|p—ql>. Vp,geC.
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In 2011, D.R. Sahu [4] studied problem (1) and proposed an iterative method known as Normal

S-iteration Process which is defied as follows: Let x; € C be chosen arbitrarily,

Yn = (1 - o"'n)Xn +an T xp,

Xny1 = Tyn, Vn=>1, (2)

where {a,} € (0,1). Under some acceptable conditions of {c,}, Sahu proved that the sequence
{xn} induced by the algorithm (2) converges weakly to an element of solution set of problem (1).
The performance of normal S-iteration process is much better than Mann and Picard iteration
process for nonexpansive mappings(see [4], [5]).

Elsewhere, let F : C x C — R be a bifunction such that for all p € C, F(p, p) = 0. Then the so
called equilibrium problem is to find p € C such that

F(p.q) >0, VgeC. (3)

Denote the solution set of problem (3) by EP(F). Problem (3) contains Nash equilibrium prob-
lems, fixed point problems, variational inequality problems, minimization problems and optimization
problems as its special cases(see [7,16]).

In this paper, we consider a problem which is formulated as follows: Find p € C, such that
peQ:=Fix(T)nEP(F). (4)

In past few years, many researchers have found a common solution of problem (4) by various
techniques(see [4], [3], [2], [12], [1], [14], [10]). Impelled and inspired by these approaches, the main
objective of this paper is to find a common element in the solution set of problem (4) with the help
of Normal S-iteration Process in the framework of real Hilbert space. Also we prove some weak
convergence theorem under some acceptable conditions.

Now we define some basic auxiliary results which are very helpful throughout this work.

The metric projection Pc from H into C is defined as: for any p € C,
lp=Fe(P)l <llp—al. VageC
It is to be noted that the metric projection is nonexpansive. Further for any p € H and s € C,
s=Pc(p) <= (p—s,s—q) >0, VgeC
A mapping T is said to be monotone iff for all p, g € H
(Tp=Taq.p—q) =20.
Lemma 1.1. [9] Let H be a Hilbert space. Then for all p, g € H and a € [0, 1] the followings hold:

(D) lp—qll® = llpll® = llgll* —2({p — q. q);
(i) I+ qll® < lpl* + 2{a.p + q);
(iil) flap+ (1 —a)ql® = allpl® + (1 — a)||g]* — a(l — a)|lp — gl
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Assumption 1.1. [6] Let F : C x C — R be a bi-function satisfying the subsequent conditions:

(i) F(p,p) >0, VpeC;
(it) F is monotone, t.e. F(p,q)+ F(q,p) <0, Vp,qgeC;

(iiY) F is upper semi continuous, i.e. for each p,q,s € C,

lim supF (As + (1 = A)p, q) < F(p. q);
t—0

(iv) For each fixed p € C, the function g — F(p, g) is convex and lower semi continuous;

Lemma 1.2. [7] Assume that the bi-function F : C x C — R satisfy the conditions of Assumption

1.1. Then for fixed r > 0 and p € H, there exists s € C such that

1
Fla.p)+ {a=p.p—s)20 VgeC

(6)

Lemma 1.3. [12] Assume that the bi-function F : C x C — R satisfy the conditions of Assumption

1.1. lf for r > 0 and p € H, defined a mapping T/ : H — C as follows:

Tf(p):{seC:F(s,q)+i<q—s,s—p)20, quC}.

Then the followings hold:
(i) T/ is non-empty and single valued.
(i) TS is firmly non-expansive, i.e.,

1T (p) = TE(@)I? < (T7(p) =T (). p—a) Vp,q € H.

(iii) Fix(T)) = EP(F).
(iv) EP(F) is closed and convex.

Lemma 1.4. [11] Let {a,} be a sequence of non negetive real numbers such that
ant1 < (1_an)an+an6n+'yn: Vn>0,

where o, € (0, 1) and 6, C R satisfies the following conditions:
(i) 252 &tn = 00;
(i) lim supd, < 0.
n—oo
(iit) v, > 0(n>1),>_ v, < 0.
Then lim a, =0.
n—oo

(7)

Lemma 1.5. [13] Let C be a closed and convex subset of H and T : C — C be a non-expansive

mapping. Then
(i) Fix(T) is a closed and convex subset of C;
(ii) I =T is demiclosed at 0.
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Lemma 1.6. [8] Let F : C x C — R be a non linear bi-function satisfying the Assumption 1.1 and
let TrF be defined as above in Lemma 1.3. lf for r > 0, let p,g € H and r1, » > 0, Then

rn—n

1T (@) = TSP < lla = pll + IT5 (@) = all.

r
Lemma 1.7. [15] Let x, and y, be two bounded sequences in a Banach space X and let 3, be a

sequence in [0, 1] which satisfy the following conditions:

0< lim infB, < lim supB, < 1.
n—oo n—o0

Suppose Xp+1 = (1 — Bn)zn + Bnxy for all integers n > 0, and

lim sup ([|zn+1 — Znll = lIXn+1 —X%nll) <0, Then lim ||x, — za|| = 0.
n—o0 n—oo

2. Main Result

In this section we study and analyze Normal S-iteration process for solving equilibrium problem

and fixed point problem for nonexpansive mapping and its convergence analysis.

Theorem 2.1. Let C C H be a nonempty closed and convex subsets of H. Let F : C x C — R be

a nonlinear bifunction satisfying Assumption 1.1. Let T : C — H be a nonexpansive mapping such
that Fix(T) # . Assume that 2 := Fix(T) N EP(F) # . Let {x,}be a sequence defined as follows:
Choose x; € H arbitrarily,

Yn — TrI;(Xn),
zp=(1—ap)yn+anTyn,
Xpt1 =Tz, Vn=>1, (8)

where {a,} C [0,1] and {r,} C (0, 00) satisfying the following conditions:

C1: nIi_)mOO ap=0, Y X an(l—ap) =00, Y 2ilan—on_1|<oo;

C2: nli_}moo infro >0, Y 2q|rm+1— ] < oo;

Then the sequence {x,} induced by process (8) converges weakly to an element in Q.
Proof. Take p € Q2. Then by process (8), we obtain
[Xn41 = pll = ITzn = pll < |20 — pII,
<X = an)yn +anTyn = pl.
< (1 —an)lyn = pll + ol Tyn = pll.
< (@ =an)lyn = pll + anllys = pll.
< lyn = pll < NITE (xa) = pll.

< [Ixn = plI.
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By using mathematical induction, we have

[IXne1 = pll < lixa = pll < lxa = pll, V=1

Hence the sequence {x,} is bounded and so are the sequences {y,},{z,},{Tyn} and {Tz,} are
also bounded.

Let M = supn>o{llyn — Xall + [Ixo — all® + [ Tyall + 1Tzl }-

Since y, = Trf(x,,) and y,_1 = Tr’;__l(xn,l), Then we obtain

1
F(yn.q)+7<q—yn,yn—xn>20, Vaged, (9)
n

F(yn-1,q)+ (q = Yn—1.Yn—1 —xn—1) >0, VgeC. (10)

'n—1

Replace g by y, in (10) and g by g,—1 in (9) and adding them with the Assumption 1.1(it),we obtain

Yn-1—Xn—1 Yn—X
(Yn = Yn-1, — -2y >,
n—1 I'n
and hence
rn—1
<J/n —VYn—1,Yn-1—Yn— Xn-1— ()/n - Xn)> > 0.

n

This implies that by using Lemma 1.6

Fn—1
H)/n - )/n71||2 < <Yn — Yn—1,Xp — Xp—1 + (1 - = ) ()/n - Xn)>v

I'n
||yn—xn||},

rn — -1

< lyn— yn_ln{nxn ol +

n

'n — r'n—1

1Y = Yn-1ll < [Ix0 = Xp—1ll + 1¥n = xall,

n

From process (8)(C2), we have ILm inf r, > 0. Therefore there exists r > 0 such that r, > r for
n—,oo

large enough n € N. Then for n > 1,
e A R 1Y) (1)
Consider
X1 = Xall = 1T 2 = Tzn-1ll < [120 — Za-1l,
ST —an)yn+anTys— (1 —ap-1)¥Yn-1— an-1T Y1l
<A =an)yn — (T —an)yn-1+ (1 —an)yp-1— (1 —an1)yn1
+anTyn—anTyn-1+ —anTyn-1 — An-1Tyn-1,
< (1 —an)lyn = ynall + 2|y — an-1IM + anllyn — yn-all,
< Wyn = Yn-1ll + 2lan — ap1| M. (12)
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Using (11) and (12), we obtain
1
”Xn+1 - Xn” < HXn - anlu + ?|rn - rnfllM + 2‘Oln - Otnfl‘M-
By applying Lemma 1.4, we obtain
n“_>moo [Xn+1 = xall = 0.
By using process (8)(C1)(C2) along with Lemma 1.7 and (13), we obtain

lim ||x, — zx|| = 0.
n—oo

Furthermore, for any p € 2, we have from process (8)

Iy — I = 1T, () — IP,
F F
< (TEGa) = TE(P). 3 — ),
< Yn—pP. X0 = P),
1
S L R L A
< I = I 1o — 30l

From convaxity of function x — ||x||?> and (16), we obtain

IXn1 = PlI? = 1Tz — pII?,
< llza = plII?,
< [I(1 = an)yn + onTyn — plI°,
< (1= an)llyn = plI? + anl Ty — plI?,
< llya =PI,

< 1% =PI = lIxa = yall.

And so,
10 = yall® < lxa =PI = lIxa+1 = pII?,
< (%o = pll = [Ixa1 = PIDUIxn = Pl + X041 = pID).
< Ixn = Xnt1ll(Ulxa — pIl + X012 — PII)-
Since the sequence {x,} is bounded and Ii_}m [IXn+1 — xnl| = 0. We have
n—oo

lim ||x, — yal = 0.
n—00

(14)

(17)
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Further,

IXp1 =PI = T 20 — pII%,
< HZn - PH2v
S ”(1 - an)yn + anTYH - P||2,

< (1 —an)lyn = plI? + anllTyn — plI? = an(l = an)llys — Tyall?,

< |lyn— p||2 —an(l —ap)llyn — TYHHZv

< ||Xn - p”2 - ||Xn - yn”2 - O‘n(l - O‘n)”)/n - TYnHQv
and so,
an(1 = an)llyn — Tyall? < 1x0 = pIIZ = X012 — PIZ = %0 — yall?,

<X = Xox1[(Ixn = Pl + IXn41 — pII) — [ Xn _Yn||2v

using process (8)(C1), (14) and (17), we obtain

lim {|yn — Tyal = 0. (18)
n—oo
consider
1z = Tzall <20 = yall + 1l¥n = Tyall + [ Tyn — T zall, (19)
< zn = yall + lyn = Tyall + llvn — zall- (20)
By using (15) and (18), we obtain
lim ||z, — Tzy|| = 0. (21)
n—o0

Since {x,} is bounded. There exists a subsequence {x,} C {x,} such that x, — p. Since

ILm |xn — ynll = 0 and {y,} is bounded, this implies that y, — p € C. Now by (18) we have
n—,oo

1Ty = Yyl = 0. (22)

From (22) and Lemma 1.5, we conclude that p € Fix(T).
Next we prove that p € EP(F). Since y, = T} (x,), we have

1
F(yn,q)+r—<q—yn,yn—xn> >0, VgecC.
n

By using Assumption 1.1(ii), we obtain

1
7(67 — Yo Yn — Xn) = F(q, ¥n),
n
and so,
Yn,v _Xn,
g )

nj

(q— Yn;, > F(q. yn,)- (23)
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Since ”y"”r:vxn’” < ||y"’:X"’|| — 0 and y,, — P, therefore by Assumption 1.1(iv), we obtain
lim inf F(q,yn) < lim (q—yn, 22—y = 0.
ni—oo nj—o0 n;
That is,
F(q,p) <0, VgeC. (24)

Further for any A € (0,1) and g € C, let g» = A\g + (1 — A\)p, then g5 € C and so we have
F(qx, p) < 0. It follows from the Assumption 1.1 and (24), that
0=F(ax o),
< AF(gx. q) + (1 = X)F(ax. p),

< AF(gx. q).

This implies that F(gx,q) > 0, VX € (0,1). Letting A — 0" by Assumption 1.1, we have
F(p.q) > 0, Vg € C. This implies that p € EP(F) and hence p € Q. This completes the
proof. O

3. Numerical Example

Here we give numerical examples for supporting our main results. All codes are done by Matlab
2021a.

Example 3.1. Set H =R. Let C = [0 4 o0). Suppose T : C — H, is defined by T(p) = . It
can be easily seen that, here Fix(T) = {0}. Also, we define F(s, q) = 3G° + 2sq — 55, It is easy
to check that F satisfy the conditions of Assumption 1.1. So, for r, = r >0, T/ (p) is non-empty

and single-valued for each p € C. Hence for r > 0, there exists s € C such that
1
Fs.a)+ {g=ss=—p)20VgeC,
which is equivalent to

3rg? + (s —p+2rs)qg+(ps—5rs>—s2)>0, VqeC.

After solving the above inequality, we get s = 1f8r for each r > 0 ie. TF(p) = 1f8r for each

r > 0. It can be easily seen that here EP(F) = {0}. This implies that Q2 := Fix(T)NEP(F) = {0}.

Now, let us choose r = %, and {ap} = ﬁ. {an} satisfy the conditions of main result.

Table. For different initial value, we present a table of iterations here.
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No. of iterations xg=1 xXg=—1
1 1.000000 -1.000000
2 0.150794 -0.141923
3 0.023038 -0.020407
4 0.003555 -0.002964
5 0.000553 -0.000434
6 0.000087 -0.000064
7 0.000014 -0.000009
8 0.000002 -0.000001
9 0.000000 0.000000

I I I I I
2 4 6 8 10 12 14 16 18 20
Number of iterations

Ficure 1. Graphical representation of sequence {x,} for different choices of initial

value xg.
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