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ABSTRACT. This paper aims to find numerical solutions of the non-linear Black-Scholes partial dif-
ferential equation (PDE), which often appears in financial markets, for European option pricing in
the appearance of the transaction costs. Here we exploit the transformations for the computational
purpose of a non-linear Black-Scholes PDE to modify as a non-linear parabolic type PDE with reli-
able initial and boundary conditions for call and put options. Several schemes are derived rigorously
using the finite volume method (FVM) and finite difference method (FDM), which is the novelty of this
paper. Stability and consistency analysis assure the convergence of these schemes. We apply these
schemes to various volatility models, such as the Leland, Boyle and Vorst, Barles and Soner, and
Risk-adjusted pricing methodology (RAPM). All the schemes are tested numerically. The convergence
of the obtained results is observed, and we find that they are also reliable. Finally, we display all

the approximate results together with the exact values through graphical and tabular representations.

1. INTRODUCTION

Understanding and accurately evaluating transaction costs in a financial market is vital for
security trading, asset pricing, stock market requlation, and many other issues. During the last few
decades, pricing options more accurately after including realistic assumptions-such as transaction
cost, getting more importance from both the traders and the investors.

The literature’s [1-6], contains descriptive discussions of options. Fischer Black and Myron
Scholes [7] worked jointly, and first disclosed the concept of the Black-Scholes model for options
pricing and corporate liabilities, and was published in 1973, while Robert Merton [8] advanced this
model in the article "Theory of rational option pricing" in the same year. Their derived equation is
based on the assumption that there are no fees for buying and selling options and stocks, as well

as no trade barriers (i.e.,, no commissions and transaction costs). In other words, this model makes
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a friction-less assumption (which is indispensable, as actual costs correlated with practical market
applications) to implement a hedging plan for any contingent claim of the European type.

Various studies have been conducted about the linear Black-Scholes model [9-15] though it
adopts the unrealistic assumption of no transaction costs. Several studies have been attempted to
evaluate the price of European options [16-23], American options [24-28], Asian options [29, 30],
and Barrier options [31] in a completely friction-less market. Recently, the fractional Black-Scholes
model [32-34] received some attention.

Contrastingly, the non-linear Black-Scholes PDE, where the non-linear term denotes the pres-
ence of transaction costs, is of great importance to our contemporary world over some time both in
terms of approach and applicability. Several models [35] consider transaction costs: Leland model,
Paras, and Avellaneda model, Boyle and Vorst model, Hodges and Neuberger model, Barles and
Soner model, and RAPM (Risk-adjusted pricing methodology) model. If the transaction cost pa-
rameters are equal to zero, all of these non-linear transaction cost models are unvarying with the
linear model.

Soner et al. [36] showed that there is no nontrivial hedging portfolio for option pricing with
transaction costs. They also suggested that the best hedging strateqy is buying an asset and
taking on it for a certain period as a call or put option. Leland [37] inaugurates the idea of using
transaction costs at discrete times. He also indicated that the hedging error could be minimized if
the length of re-balancing frequency approaches zero. Later, Boyle and Vorst [38] demonstrated fur-
ther in a discrete-time framework with a binomial tree model for the option prices with proportional
transaction costs, and it is pretty accurate for possible parameter values. Besides, Dewynne et
al. [39] considered path-dependent and exotic options with transaction costs. Recently, asymptotic
analysis [40] and Markov chain approximation [41] were also studied for pricing European options
with transaction costs in some previous literature.

On the other hand, few researchers [42-46,49-51] paid their attention to solve the non-linear
Black-Scholes equation numerically. For example, the exponential time differencing (ETD) method
[44] was applied to solve the non-linear Black—Scholes model for pricing American options with a
highly stable and efficient transaction cost. Lesmana and Wang [45] developed the numerical method
based on an upwind finite difference scheme for a non-linear parabolic PDE, and they attempted
to pricing European options under transaction costs. Ankudinova and Ehrhardt [46] focused on the
non-linear Black-Scholes equation for European call options using several transaction cost models
as well as Crank—Nicolson and Rigal compact schemes. R. L. Valkov [47] has solved the non-linear
Black—Scholes-Bellman model numerically as well as discuss the monotonicity and consistency of
his suggested scheme in considerable detail. A monotone finite volume spatial discretization and a
second-order predictor-corrector scheme in time are considered by Radoslas Valkov [48] to handle

the Black—Scholes equation with uncertain volatility and dividend. The applicability of implicit
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numerical schemes for the valuation of contingent claims in non-linear Black—Scholes models has
been discussed by Pascal Heider [49]. He also studied the practical implications of the derived
stability criteria on relevant numerical examples. He claimed that if certain stability requirements
are satisfied, it is possible to construct convergent implicit algorithms for non-linear Black—Scholes
equations. Ekaterina Dremkova and Matthias Ehrhardt [50] have solved non-linear Black-Scholes
equations for American options with a non-linear volatility function using various compact finite
difference techniques to improve the order of the accuracy. The existence and uniqueness of
solutions to the well-known non-linear Black-Scholes equation have been demonstrated by Naoyuki
Ishimura [51] for both in the classical and weak senses.

However, in this paper, we work on approximating non-linear Black-Scholes PDE for valuing
European options when there are transaction costs. For this, we organize the present research work
as follows: we modify the original model into parabolic type PDE exploiting the transformations [46]
which are written in section 2. A brief description of different volatility models is given in section
3 subsequently. Section 4 is devoted to discretize the transformed parabolic type equation by
using some numerical schemes. Stability and consistency analysis are included in sections 5 and
6, respectively. In section 7, numerical examples are given to show the efficacy of the proposed
schemes. Subsequently, a general conclusion is drawn in section 8. Finally, all relevant references

are included.

2. THE MobDEL EqQuATION

This section considers a non-linear Black-Scholes PDE and modifies it to a non-linear parabolic
type equation with appropriate and available transformations, which would be easy to compute

numerically. Let us consider the non-linear Black-Scholes PDE [46],

OF _OF 1_, ,0°F B
E—FrS%nLEUS@ rF=0,0<S<o00,te(0,7) (1)

subject to the terminal and boundary conditions for European call and put options:

F(S,T) = max(S — K,0), F(S,t) = 0 when S = 0,F(S,t) = S — Ke"(T=t) when S — oo
and F(S,T) = max(K — S5,0), F(S,t) = Ke "(T=1), when S = 0, F(S,t) = 0, when S —
respectively. Throughout this paper, we use the notations: F = F(S, t) = the option price, S =
stock price, K = strike price, T = maturity time, r = interest rate, t = time in years, and

0=0 (t, S, g—g, %) depends on the volatility model.

Now consider the transformations [46] as given below,
1
y=1In(KS), 7= Eaz(T —t)and u(y,t) = K teVF(S,t)

and substituting these into Equation (1) to obtain the following non-linear parabolic PDE
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ou_2rou (5\(&u ou) e (0.7 2)
67__0_2 ay o 8y2 8y x)/mm y _Vma><y ' 2

with the modified initial and boundary conditions for European call and put options:
u(y,0) =max (1 —e™¥,0)asy € (—o00,00),u(y,7) =0asy — —oco,u(y, T) = 1— e~ (y+2rr/o?)
as y — 0o, and u(y,0) = max (e — 1,0) as y € (—o0, 00), u(y, T) = e~ (r+2rm/o®) sy 5 — oo,

u(y,7) =0 as y — oo, respectively.

3. VOLATILITY MODELS

This section concerns four stochastic volatility models to discretize the non-linear Black-Scholes
PDE, whose solution provides the option price for transaction fees. We give a short description,

but details are available in some previous literature [46].

Leland Volatility Model (LVM). Leland [37] developed a technique for replicating options in the
presence of transactions costs for a small time interval. He proposed that the option price is

the solution of the non-linear Black-Scholes Equation (1) but with the adjusted volatility [46] as

- 2w
a:o\/l—k\/;a AtSIQn(FSS) (3)

where, o is the original volatility, u is the round-trip transaction cost per unit dollar of the trans-

follows:

action, and At is the transaction frequency. In this formula, both 1 and At are assumed to be small

while keeping the ratio \/% of order one.

Boyle and Vorst Volatility Model (BVVM). Boyle and Vorst [38] derived a method for calculating
option prices in a discrete-time where option price meets to Black-Scholes price with the modified

volatility [46] given by

~ 1% .
oc=o0,/1+ sign (F. 4
\/ U9 (Fss) (4)
where, o, u, and At represents the same meaning as Leland.
Barles and Soner Volatility Model (BSVM). Barles and Soner [43] evolved a model using the

utility function approach of Hodges and Neuberger [52] along with asymptotic analysis of partial

differential equations. For this case, the formula for the modified volatility [46] is given by

& =0V1+e(T-Da252Fss (5)

where, u = a\/€ is the round-trip transaction cost per unit dollar of the transaction for some

constant a > 0 and €— 0.
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RAPM Volatility Model (RAPMVM). Kratka [53] took the first step for this model and later

improved by Jandacka and Sevéovi¢ [54]. Here the modified volatility is of the form [46]

o= \/1—|—3X \/75::55

where, M > 0 is the transaction cost measure and C > 0 is the risk premium measure.

4. DERIVATIONS OF COMPUTATIONAL SCHEMES

In this section, we derive five computational schemes, in detail, for Equation (2) using two

well-known numerical methods.

4.1. Dufort-Frankel Finite Difference Scheme. The Dufort-Frankel FD scheme [55] can be applied

to solve various kinds of problems which occur in finance. This scheme is a multi-step method, and
Ou Ou and 6 u

requires another scheme for simulating the first temporal vector. In this formulation 52, 57,

are discretized by central difference and 7 s replaced by (LII]-+1 + u{ )/2. Thus, dtscrettzmg

!

Equation (2) by Dufort-Frankel FDM, we obtain
N LA N I
e (47 =) = (2) [ (- (4

+
(2 [z (- )]+ iy o)

or, equivalently

; i 2r(AT)(Ay AT (G
U{—H:u{ 1 M(uf u{—l)—’—(o.

o2

+ ?Z?/;z) (i) (“{—1 —ut _”{.71+U{+1)

which can be written as

W= a4 bl b i=012 n-1j=012_ . m-1

where
] SR o _
a= | eawn (2] x|@n (2) e-an-enenZ
- U N ;
by = (Ay)2—|—2(AT)(Z) x (A’T)(g) (2+Ay)+(Ay)(AT)%
and _ _ _ _

— [(Ay)2 + 2(AT) (i)zl_l X [(Ay)2 —2(AT) (2)2]

which is our proposed Dufort-Frankel Finite Difference Scheme (DFFDS).
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4.2. Laasonen Finite Difference Scheme. The Laasonen finite difference scheme [55] can be ap-

plied to solve linear and non-linear partial differential equations. This method metamorphosed

partial differential equations into a system of linear algebraic equations. In this formulation %

is approximated by a central differencing at a step AZT, and 8“ g 5 are approximated by central

differences at time levels j + 1. Now the discretized form of Equatlon (2) is as follows
Lofjs1 1 5\? +1 1, i+l 1+l
(47~ ) e (5] ottt o o - )

2(Ay)?
= (o] - v

asz

After simplification, we get

rAT AT 5\ 2 oAT [5)\?]
lAya2 2(Ay>2() (b= 2)] 4% +[”(A )2() ]“fﬂ
rAT AT
Aya2+2(Ay)2

~\ 2
2) (Ay+2>] Sii=

The above equation reduces to

dut+(1+e) T+l =ui=01,2...,n-1=012...,.m-1 (8)
where
~\ 2 ~\ 2
=ty 2y o) @ 2= (7]
and
~\ 2
=~ ye agy (o) @7+

4.3. Finite Volume Schemes. The finite volume scheme is a scheme of solving different kinds of
time-dependent or independent partial differential equations in algebraic equations. In this scheme,
we divide the physical space into a finite number of control volumes. In this section, we describe
it in a few lines, but details are available in the previous study [56] conducted by Malalasekera et

al.

Applying the finite volume integration in Equation (2) over a control volume (CV) with a finite time

step AT, we obtain

T+AT T+AT
—dVdT = / / —d\/d’r
/ /v or cv Oy

E )
=\ 2 rT+AT 2

v (U) / / 0 S avdr
o T cv ay
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After rearranging, we get

T+AT
/ [/ aUdT] dv =
cv LJr oT

\
>

N

2 T+AT
G L e
g o T CV’ay
~\ 2 r74+A 2
o o<u
+ (= 2 Zav|dr
o) L L s

Applying Gauss's divergence theorem, the above equation leads

1{2r [5)2 T+HAT
(uP—u,O;)AV:§ 02—1—(0) )A/T (ug — wy) dT
(9)
=\ 2 rTH+AT _ _
MENANIC = N (C el I
ol Jr oypPe oywp
For 0 <6 <1, we assume
T+AT
/ updT = [Bup + (1 — 0)up] AT (10)
.
Applying Equation (10) into Equation (9) and dividing by we get
Ay 1 [2r 5\?2
(UP_U%)E = (02+ (0) ) [Q(UE—Uw)—l-(l—@)(U%—U\(/)V)]
~\ 2
+(U) Q(UE_UP_UP_UW) (11)
o dyPE dywp
~\ 2
e en )
o dyPE oywe

For convenience, we put dyy,yp = 0ype = Ay on the following three schemes.

Explicit Scheme. Substitution of 6 = 0 into Equation (11) gives the following explicit discretized
equation,
o\ By _1(2r (6\) o oy 1[G\ 0 0. 0
(UP—UP)E_E 2Tl (UE_UW)+F = (uB —2up + uy)
This equation may be re-writtens as

up = ajudy + (1 +B;) ud +v;ud (12)
A7 (5\*_Ar [2r (5\*) o 287 (5)°
oL'_(Ay)2 o 20y \ 02 o P (Ay)? \o

N AN AR
ry'_(Ay)Q o 2Ay | 02 o

which is the desired Finite Volume Explicit Scheme (FVES).

where

and
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Crank-Nicolson Scheme. Putting 6 = % into Equation (11), we get the following Crank-Nicolson

discretized equation,

Ay 1 [2r 5?2
(UP—U%)AT:4(02+(U) )(UE_UW+UOE_U\(/)\/)
1 (5)?
+2Ay(0) (ug —2up + uy + v — 20D + uy)

After simplification, we get the following equation

Nithy + (1+ &) up +mjug = —Xjug + (1 — &) up — mjug (13)
o AT for (V) Ar (5)\* . A7 (6)°
" 4Ay | 02 o 2(Ay)2 \o | " (Ay)2 \o

vl [ ) ) o (2]

which is the proposed Finite Volume Crank-Nicolson Scheme (FVCNS).

where

and

Fully Implicit Scheme. Substitution of 6 = 1 into Equation (11) leads to the following form:

( O)Q_l &+ gz ( )_,_i éz( 2up + uw)
UP—UPI AT T2 | 02 o UE — tw Ay \o vE Up T tw
and the reduced formula is then
qgiuw + (1 4+ rj) up + siug = U,% (14)
where
AT for (G\T)  Ar (5)* 2AT (5)°
9= 5ny | 02 o (Ay)2 \o) " (Ay)2 \o
and
AT | 2r A AT 5\2
s=———|>S+|=] | -—5 =
20y | 02 o (Ay)?2 \ o

which is our proposed Finite Volume Fully Implicit Scheme (FVFIS).

5. STABILITY OF THE NUMERICAL SCHEMES

To test the stability of the derived schemes in section 4, with the help of the Von-Neumann

stability method [55], let us consider a Fourier component for u{ and u} as
W =Ue% and ul = Ve (15)

where | = /=1, i.e., imaginary unit, ( is the amplitude at a time level j, (= RAy) is the phase

angle, R is the wave number in the x-direction, and / represents the index of the node.
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Similarly,

Wil = UFLelo0FD) )0 = elfi=1) @ = (elflitD)  yp = (ytleld .
uy = Uitlelfli=1) o = (+1elb(i+1) (16)

i+t
w
Applying Equation (15) and Equation (16) into Equation (7), and dividing by e'%, we get

For convenience, let us suppose that G = Thus, the stability requirement is |G]? < 1.

2 2
1 5\° 2r ()7
2 2 2 2
|G| =2 {4AT (a) cos@i\/Z} +4(AT)*(Ay) 2t (0) ) (1 —cos®0)
o (17)
X ((Ay)2+2AT () )
o
where
~\ 4 ~\ 2 2
2 (@ 2 2 o [ 2r o 2 4
A=16(A7)* (| cos”0 —4(AT)%(By)* | —5 + | = (1 —cos®6) + 4(Ay)
g\* g\>[2r (&)\°
— 16(AT)? (U) + 116(AT)?(Ay) (U) Pl (U) cos0V/1 — cos? 6
For extremum value of |G|?, solving % = 0 for cos 9, and substituting it into d((fcf‘@; < 0. Then

from Equation (17), we cannot confirm that the maximum value of |G|?> would occur. However, the
extreme values of cos® must yet be investigated. For cosf = 1, Equation (17) gives |G|?> = 1, and
the stability requirement is satisfied. For cos§ = —1, Equation (17) also yields |G|?> = 1 and, and
the stability requirement is satisfied. Thus, the DFFDS proposed in Equation (7) is unconditionally
stable.

Similarly, we can show that LFDS and FVFIS wrote in Equation (8) and Equation (14), respectively,

both are unconditionally stable.
Again, applying Equation (15) and Equation (16) into Equation (12) and dividing by e’%, we get
20T (67 AT [2r  [&)?
G=14+—=|— -+ /1— | = — in@
+(Ay)2(a) (cos )+ Ay(a2+(0) )sm

Then we may obtain easily,

|G|]? = {1+(2AAy;2 (i)Q(COSQ—l)}z—{— (ﬁ;)z (§;+ (;)2)2(1—@529) (18)

diGP?
d(cos )

S|

For extremum value of |G|? such that =0, we can find

-1

[()()()] (())()() )
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Considering % < 0, and substituting the value of cos 8 from Equation (19) into Equation (18),

which does not provide us the maximum value of |G|?. But, the extreme values of cosf must be

investigated. For cos® = 1, Equation (18) gives |G|?> = 1, and the stability requirement is satisfied.

972
For cosf = —1, Equation (18) yields |G|*> = {1 - (2%2 (g)z} and, imposing the requirement of

|G|?> < 1, yields, FVES in Equation (12) is conditionally stable and the condition is

HPe

Similarly, we can state that FVCNS, Equation (13) is also conditionally stable and the condition

(6)2 _ By o)

o AT

is

6. CONSISTENCY OF THE NUMERICAL SCHEMES

For consistency, the finite difference equation (FDE) approximation of a PDE must reduce to

the original PDE as the step sizes approach zero [55].

Now expanding each u(y, T) in a Taylor series expansion about u’;, we get

- : ou (AT)?8%u  (AT)38%u
+1 _ ou otu 4
A A e T R T R C (22)
du 6‘u 1 ) 9 \?

3
;(A §<+Ay§) u+O[(AT)*, (a)]

du ou 1 ) o \?2
u’ UJ+A76——A 6+(A G_Ayay) u

5 (24)

1 AT 3—Ay 0 u+O[(AT)* (Ay)Y]

3' or Oy '

Applying Equations (22), (23), and (24) into Equation (8) yields

(87)? &
2 0r2

82u (Ay)2 82

- 0
(d,-+e,-+f,-)u{+(1+d,-+e,-+ﬁ)A78—u+(1+d,-+e,-+f,-)

+ (- d—i—f)Ay8 + (- d+f)ATAy

+0[(a1)3, (Ay)*] =0

from which we get

ou AT d%u (2r (5)2

ar T 282 |2 o

%_A er g ? 82U
dy T\ o2 o dyorT

~ 2
- (Z) g s o[ (by)?] =
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It is obvious that if AT, Ay — 0, then the original PDE (2) is recovered. Therefore, the Laasonen
finite difference scheme, Equation (8), is consistent. Now according to Lax’s equivalence theorem,
[55], LEDS is convergent for all values of the parameters. Similar arguments hold for DFFDS and
FVFIS. On the other hand, FVES and FVCNS are also convergent if the conditions (20) and (21)

respectively, are satisfied.

TaBLE 1. Call option prices using the Leland volatility model.

S Exact Finite Difference Schemes Finite Volume Schemes
(Linear) DFFDS LFDS FVES FVFIS FVCNS
37.00 0.00001 0.04734 0.04893 0.00000 0.00054 0.00050
47.00 0.00182 0.30914 0.31368 0.00006 0.01340 0.01297
57.00 0.05078 1.09349 1.09949 0.00036 0.10771 0.10588
67.00 0.45226 2.93576 2.94472 0.00335 0.65191 0.64795
77.00 1.97686 6.06630 6.07104 0.01709 2.26632 2.26230

87.00 5.46222 10.56460 10.56947 1.25649 5.63768 5.63688

97.00 11.17037 16.34912 16.34757 6.49278 11.07370 11.07714
107.00 | 18.71972 23.33442 23.33541 16.15278 18.66210 18.66616
117.00 | 27.48006 31.19401 31.19406 26.33380 27.42028 27.42359
127.00 | 36.91158 39.65579 39.65486 36.72393 36.83405 36.83640
137.00 | 46.67034 48.63231 48.63285 46.68664 46.59745 46.59938
147.00 | 56.57397 57.89847 57.89955 56.61703 56.45705 56.45879
157.00 | 66.53723 67.45340 67.45432 66.59903 66.46595 66.46767
167.00 | 76.52370 77.08904 77.08984 76.50332 76.39766 76.39940
177.00 | 86.51886 86.88858 86.88931 86.48557 86.40846 86.41023
187.00 | 96.51716 96.75424 96.75478 96.48843 96.43330 96.43508
197.00 | 106.51657 | 106.59706 106.59728 106.40288 | 106.36023 | 106.36202
207.00 | 116.51636 | 116.67091 116.67078 116.55261 | 116.52319 | 116.52499
217.00 | 126.51629 | 126.48888 126.48906 126.39973 | 126.37558 | 126.37738
227.00 | 136.51627 | 136.46008 136.46065 136.39791 | 136.37870 | 136.38049
237.00 | 146.51626 | 146.57401 146.57489 146.53847 | 146.52419 | 146.52597
247.00 | 156.51626 | 156.41475 156.41484 156.38607 | 156.37369 | 156.37545
257.00 | 166.51626 | 166.40053 166.39979 166.37904 | 166.36868 | 166.37039
267.00 | 176.51626 | 176.52571 176.52411 17651173 | 176.50347 | 176.50515

7. ResuLTs AND DiscussioNns

In this section, we choose the same parameters: r = 0.1, 0 = 0.2, K =100, T =1, u = 0.05,
At = 0.01, a = 0.02, M = 0.01, and C = 30, as illustrated in the literature [46]. Then we
calculate the call option values using the proposed schemes, described in previous section 4, for
different volatility models. We compare the approximate results with the exact value of the linear

Black-Scholes model and among themselves also.
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FiGure 1. Approximate results of Equation (1) by using (a) Boyle and Vorst volatility

model, and (b) Barles and Soner volatility model.

From Table 1 and Figure 8.7 (see Appendix), we observe that fully implicit FVS and Crank-
Nicolson FVS provide comparatively better results than the other methods. Note that all of the
methods provide poor results when the initial stock price is less than the strike price (here strike
price, in comparison with the exact value of the linear Black-Scholes model.

From Table 8.3 in Appendix 8 and Figure 1 (a), we can make similar comments, but here the
FVES gives a very poor approximation than the other methods when the initial stock price is less
than the strike price (K = 100). Table 8.4 in Appendix 8 and Figure 1(b) show that all of the
methods provide a closer approximation to the exact value of the linear Black-Scholes model for

all of the initial stock price, whether it is greater than the strike price, K = 100.

TaBLE 2. Call option prices using RAPM volatility model.

S Exact Finite Difference Schemes Finite Volume Schemes
(Linear) DFFDS LFDS FVES FVFIS FVCNS
37.00 0.00001 0.09975 0.10198 0.00075 0.00054 0.00050
47.00 0.00182 0.64320 0.64859 0.02029 0.01340 0.01297
57.00 0.05078 2.01164 2.01581 0.16518 0.10771 0.10588
67.00 0.45226 458788 4.59820 0.97606 0.65191 0.64795
77.00 1.97686 8.35995 8.36458 3.28335 2.26632 2.26230

87.00 5.46222 13.24558 13.25523 7.65193 5.63768 5.63688

97.00 11.17037 19.14277 19.14296 13.90023 11.07370 11.07714
107.00 | 18.71972 25.95302 25.96004 21.59995 18.66210 18.66616
117.00 | 27.48006 33.49710 33.50138 30.05441 27.42028 27.42359
127.00 | 36.91158 41.58132 41.58229 39.02457 36.83405 36.83640
137.00 | 46.67034 50.16133 50.16454 48.32523 46.59745 46.59938
147.00 | 56.57397 59.07941 59.08280 57.80665 56.45705 56.45879
157.00 | 66.53723 68.31796 68.31997 67.49623 66.46595 66.46767
167.00 | 76.52370 77.71942 77.72089 77.20105 76.39767 76.39941

177.00 | 86.51886 87.32671 87.32812 87.03280 86.40846 86.41023
187.00 | 96.51716 97.04281 97.04399 96.91429 96.43330 96.43509
197.00 | 106.51657 | 106.79810 106.79881 106.75046 | 106.36023 | 106.36202
207.00 | 116.51636 | 116.77932 116.77954 116.81690 | 116.52319 | 116.52498
217.00 | 126.51629 | 126.56491 126.56478 126.62193 | 126.37555 | 126.37734
227.00 | 136.51627 | 136.50685 136.50637 136.57895 | 136.37864 | 136.38041
237.00 | 146.51626 | 146.59198 146.59115 146.67807 | 146.52410 | 146.52585
247.00 | 156.51626 | 156.42589 156.42489 156.50633 | 156.37350 | 156.37521
257.00 | 166.51626 | 166.40454 166.40336 166.47896 | 166.36838 | 166.37004
267.00 | 176.51626 | 176.52231 176.52094 176.59035 | 176.50307 | 176.50468
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Finally, from Table 2 and the corresponding Figure 8.8 in Appendix 8, we may observe that
for the RAPM volatility model, the FVCNS and FVFIS give better approximation than the other
numerical schemes when the initial stock price is closer to and/or greater than the strike price.
On the other hand, from Figures 2, 3, 4, it is clear that FVFIS and FVCNS produce comparatively
better results than the other schemes for all of the volatility models. Figures 5, 6 depict the option
prices at various time periods (from initial time t = O to maturity time, t = T) with different initial
stock values. The similar results of solution surface for option price by using Barles and Soner

volatility model and RAPM volatility model are presented in Appendix 8, see Figures 8.9,8.10.
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FiGure 2. Approximate results of Equation (1) using (a) Dufort-Frankel Finite Dif-
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(c) LVM (FVES)

(0) LVM (FVCNS) (E) LVM (FVFIS)

FiGure 5. Solution surface for option price by using Leland volatility model.

(c) BVWM (FVES)

(0) BVVM (FVCNS) (£) BVVM (FVFIS)

Ficure 6. Solution surface for option price by using Boyle and Vorst volatility

model.

8. CoNcLUSION

In this research work, we have derived some numerical schemes using the FVM and FDM to
solve the non-linear Black-Scholes PDE for European option pricing with the transaction costs by
exploiting the transformations available in the existing literature [46]. Thus we have modified the
model equation accordingly to a non-linear parabolic PDE. For the convergence of these schemes,
stability and consistency have been shown rigorously. Then these schemes have been applied to

various volatility models. According to the visible results, as presented in the earlier sections, it
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is noted that all of the proposed schemes provide the best approximation to the exact value of the
linear Black-Scholes model for all initial stock prices, regardless of whether they are closer to or
greater than the strike price; particularly in the case of Barles and Soner Volatility Model. We
may claim that the FVFIS and FVCNS approximate better than the other methods for all four-
volatility models. Thus, it is observed that the FVFIS and FVCNS are very effective and proficient
in locating approximate solutions to non-linear Black-Scholes models. Notice that the limitation
of these schemes is that they may offer poor results sometimes when the initial stock price is less
than the strike price compared to the exact value of the linear Black-Scholes model. Finally, we
may conclude that the proposed schemes may be applied to other non-linear partial differential

equations to compute the numerical solutions with the desired accuracy.
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APPENDIX

This section contains the supporting figures and tables to observe the accuracy of the solution

methodologies.
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Ficure 8.7. Approximate results of Equation (1) by using Leland volatility model.
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Ficure 8.8. Approximate results of Equation (1) by using RAPM volatility model.
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TaBLE 8.3. Call option prices using Boyle and Vorst volatility model.

S Exact Finite Difference Schemes Finite Volume Schemes

(Linear) DFFDS LFDS FVES FVFIS FVCNS
37.00 0.00001 0.08130 0.08362 0.00000 0.00054 0.00050
47.00 0.00182 0.44919 0.45475 0.00016 0.01340 0.01297
57.00 0.05078 1.43187 1.43827 0.00137 0.10771 0.10588
67.00 0.45226 3.52436 3.53389 0.00181 0.65191 0.64795
77.00 1.97686 6.88032 6.88512 -0.01095 2.26632 226230
87.00 5.46222 11.52515 11.53065 -0.03314 5.63768 5.63688

97.00 11.17037 17.36380 17.36252 1.18226 11.07370 11.07714
107.00 | 18.71972 24.30605 24.30805 14.49730 18.66210 18.66616
117.00 | 27.48006 32.07120 32.07189 26.66264 27.42028 27.42359
127.00 | 36.91158 40.41514 40.41449 37.98090 36.83405 36.83640
137.00 | 46.67034 49.26375 49.26507 47.25031 46.59745 46.59938
147.00 | 56.57397 58.41457 58.41649 56.80881 56.45705 56.45879
157.00 | 66.53723 67.86188 67.86337 66.66025 66.46595 66.46767
167.00 | 76.52370 77.41353 77.41510 76.50821 76.39767 76.39940
177.00 | 86.51886 87.14056 87.14251 86.47640 86.40846 86.41023
187.00 | 96.51716 96.94695 96.94884 96.47214 96.43330 96.43509
197.00 | 106.51657 | 106.75019 106.75144 106.38908 | 106.36023 | 106.36202
207.00 | 116.51636 | 116.78198 116.78255 116.54146 | 116.52319 | 116.52500
217.00 | 126.51629 | 126.57938 126.58055 126.39087 | 126.37558 | 126.37738
227.00 | 136.51627 | 136.53059 136.53250 136.39143 | 136.37869 | 136.38048
237.00 | 146.51626 | 146.62463 146.62715 146.53436 | 146.52418 | 146.52596
247.00 | 156.51626 | 156.45839 156.45983 156.38285 | 156.37367 | 156.37541
257.00 | 166.51626 | 166.43684 166.43715 166.37675 | 166.36863 | 166.37034
267.00 | 176.51626 | 176.55434 176.55347 176.51042 | 176.50341 | 176.50508

TaBLE 8.4. Call option prices using Barles and Soner volatility model.

S Exact Finite Difference Schemes Finite Volume Schemes

(Linear) DFFDS LFDS FVES FVFIS FVCNS
37.00 0.00001 0.00056 0.00060 0.00047 0.00054 0.00050
47.00 0.00182 0.01448 0.01496 0.01255 0.01340 0.01297
57.00 0.05078 0.11766 0.11964 0.10402 0.10771 0.10588
67.00 0.45226 0.70853 0.71289 0.64387 0.65191 0.64795
77.00 1.97686 242414 2.42846 2.25831 2.26632 2.26230
87.00 5.46222 5.90671 5.90840 5.63756 5.63768 5.63688

97.00 11.17037 11.38951 11.38681 11.08596 11.07370 11.07714
107.00 | 18.71972 18.90018 18.89694 18.68219 18.66210 18.66616
117.00 | 27.48006 2757177 27.56903 27.44285 27.42028 27.42359
127.00 | 36.91158 36.90926 36.90718 36.85630 36.83405 36.83640
137.00 | 46.67034 46.63600 46.63420 46.61611 46.59745 46.59938
147.00 | 56.57397 56.47483 56.47316 56.47209 56.45705 56.45879
157.00 | 66.53723 66.47486 66.47318 66.47729 66.46595 66.46767
167.00 | 76.52370 76.40243 76.40071 76.40662 76.39766 76.39940
177.00 | 86.51886 86.41173 86.40997 86.41573 86.40846 86.41022
187.00 | 96.51716 96.43561 96.43381 96.43938 96.43329 96.43508
197.00 | 106.51657 | 106.36234 106.36053 106.36582 | 106.36022 | 106.36202
207.00 | 116.51636 | 116.52509 116.52327 116.52827 | 116.52319 | 116.52499
217.00 | 126.51629 | 126.37745 126.37563 126.38047 | 126.37557 | 126.37737
227.00 | 136.51627 | 136.38055 136.37873 136.38340 | 136.37869 | 136.38048
237.00 | 146.51626 | 146.52603 146.52421 146.52870 | 146.52418 | 146.52596
247.00 | 156.51626 | 156.37561 156.37380 156.37798 | 156.37368 | 156.37543
257.00 | 166.51626 | 166.37066 166.36886 166.37271 | 166.36866 | 166.37038
267.00 | 176.51626 | 176.50552 176.50374 176.50725 | 176.50346 | 176.50514
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() BSVM (FVCNS) (E) BSVM (FVFIS)

FiGure 8.9. Solution surface for option price by using Barles and Soner volatility

model.

(0) RAPM (FVCNS) (E) RAPM (FVFIS)

FiGure 8.10. Solution surface for option price by using RAPM volatility model.
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