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ABSTRACT. A geometric based approach for specifying approximations to the Lambert W function,
which can achieve any set relative error bound over the interval [0, o), is detailed. Approximations

that can achieve arbitrarily high accuracy for the interval [-1/e, 0], based on a two point spline

approximation, are specified. Iterative methods can be used to improve the accuracy of the
approximations.

Applications include, first, analytical expressions, with set relative error bounds, for the Lambert W
function over the interval [0, ©). Second, approximations, with an arbitrarily low relative error, for
upper and lower bounds for the Lambert W function. Third, analytical expressions for the evaluation

of | W(y)] and the integral of | W(y) ], for y € [0, ), without knowledge of W(y). Fourth, a direct
approach for evaluating the Lambert W function to achieve a prior set error constraint.

1. INTRODUCTION

The Lambert W function is associated with Lambert [19] and is a multivalued complex
function with the single valued function, associated with the kth branch, being denoted
w,. The principle branch of the Lambert W function, w,, is the function defined by the

inverse of y = f(x) = x¢' for the case of Re[x]>-1, iLe.

x = W) = £ ). M

The Lambert W function does not have an explicit analytical form but is of importance
consistent with increasing applications as detailed in the literature, e.g. [7], [3], [25] [9],
(6], [14], [26], [20], [18], [4], and [11]. Generalizations of the Lambert W function are also of
interest, e.g. [8] and [22]. Efficient numerical methods for computing values of the Lambert
W function have long been known, e.g. [10], and with an advance detailed by Fukushima
[12].

The focus of this paper is on the principle branch and the real case which continues
to receive research interest, e.g. [17]. The graph of the Lambert W function, for this case,
is shown in Figure 1 and, for notational simplicity, is denoted W in this paper. Existing
analytical approximations for the principle branch and real case of the Lambert W func-
tion, e.g. [5], [3] and [17], are, in general, custom and cannot be directly generalized to
obtain approximations of arbitrarily high accuracy. This paper provides a geometrical
basis for defining such approximations.
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FIGURE 1. Graph of f(x) = x¢' and its inverse which is the
Lambert W function for the principle branch and the real case.

The advances in this paper are twofold. First, a systematic geometric approach for
defining approximations to the Lambert W function, over the interval [0,%), with quad-
ratic convergence. Convergence is proved. The approximations can be used to specify,
with an arbitrarily low relative error, upper and lower bounds for the Lambert W function.
Second, a systematic method for combining series expansions at —1/¢, and the origin, to
define arbitrarily accurate approximations for the interval [-1/¢,0]. Applications of the
approximations include analytical expressions, with set relative error bounds, for the
Lambert W function over the interval [0,%), evaluation of [ W(y)| and the integral of
LW(y) ], for y e[0,0), without knowledge of W(y), and a direct approach for evaluating
the Lambert W function to achieve a prior defined error.

A review of published approximations for the Lambert W function is provided in sec-
tion 2. The proposed geometric approach for establishing approximations to the Lambert
W function is detailed in section 3. Convergence is discussed in section 4 and in section
5 convergent two point spline based approximations, for the interval [-1/¢,0], are
detailed. The use of iterative methods, to improve the accuracy of approximations, is dis-
cussed in Section 6. Applications are detailed in section 7 and conclusions are stated in
section 8.

1.1. Notation and Properties. The notation of x = W(y) is used which is consistent with
the principle value of the Lambert W being the inverse function of y = f(x) = xe', x>-1,
y>-1/e. Relevant properties of the Lambert W function are detailed in Appendix A.

For an arbitrary function 7, defined over the interval [a, B], an approximating function
f, has a relative error, at a point x, defined according to re(x,) = 1—f,(x,)/f(x;). The rel-

ative error bound for the approximating function, over the interval [a,B], is defined
according to

rep = max{|re(x))|: x; € [a, B1}. V)

k
The notation /(x) = ikf(x) is used.
dx

Mathematica has been used to facilitate analysis and to obtain numerical results. In
general, relative error results, associated with approximations to the Lambert W function,
have been obtained by sampling specified intervals, in either a linear or a logarithmic
manner, as appropriate, with 1000 points.
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2. PUBLISHED APPROXIMATIONS

A Taylor series expansion, at the origin, for the Lambert W function is well known, e.g.
[17], egn. 2, and yields the following approximation which has a limited region of conver-
gence:

3 4 5 6 7 8
203 8t 125)° 5400 168077 16384y ]
T(y) = p—y>+32 8V 4 _ + . + . <1 3
W) = vy + St 720 315 bl<? ©

The relationship y = xe¢* implies x+ In(+x) = In(zy) (positive sign for x,y>0; negative
sign for x,y<0) and, hence:

nlY bl «1 @
In(y) y»l.

Such approximations suggest the more general approximation for the Lambert W function

of
1

x = Wy)=In(l+y), y>_7 ®)
Fritsch et al., [10], eqn. 6, utilizes an initial approximation of W(y)~ In(y) which is suitable
for y>e.

2.1. Published Approximations. The following is an overview of indicative published
approximations for the Lambert W function. Additional useful references include [26] and
[14].

Boyd [5], eqn. 5-7, proposed the approximation

_ J2(1 +ey) ] _ ]
Wea») 1+ tanh[ln(lO) — ln[ln(IO)]} [ln(ll +ey)—In[In(11 +ey)] J

(6)
1+ L|:1n(1 + ey) — z:|exp|:__3 . |:11’1(1 + ey)_ ZJ2:|
10 5 40 5

which is valid for y>-1/e. Whilst the approximation is sharp at y = —1/e, it is not zero at
the origin and, thus, is not sharp at this point. It has a relative error bound for the inter-
val [1,0) of 0.0499.

Barry et al. [3], eqn. 12, proposed the approximation

Wy, () = In g- y )
1n[2.+}
5 W[+ 12/5]

for y>o0. This approximation was modified, [3], eqn. 15, to be valid for y>-1/¢ according
to

6 2
W, () = [1+8]In| 2 y —51n[m} 5 = 0.4586887. ®)

1n[£.+}
5 In[l+12y/5]
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1

The relative error bound, for y>0, is 1.96x 10 .
lacono and Boyd, [17], eqn. 17, proposed the following approximation which is valid

for ye[-1/e, )

Wll(y) = lnll + 9)

—ry |
1+ In(1+y)
2

This approximation yields a relative error bound of 3.53x 10> for y € [0, ). An improved
approximation, [17], eqn. 19, 20, is

W[(Y)z—l-i-a'ln[ 1 £yl +ey }
2 l+cIn[1+ J1+ey]
1/a ao
c=¢ —1-J2/a b=—@+c
1/a "’ a ’

1-In(2)e

which yields a relative error bound for y>0 of 4.53 x 10° (the bound occurs at y of the

order of 10'?) for the case of a optimally chosen as a = 2.036. The approximation is sharp
at y = -17e.

211. Padé Approximations. Padé approximates for the Lambert W function for the
interval y e [-1/¢, 1] have been proposed, e.g. [21], eqn. 34:

2
1+ 123y , 21y

w,0) = —20 10y, an
L 143y, 713y
20 240

Higher order Padé approximates are detailed in Fukushima [13].

21.2.  Comparison of Approximations. The relative errors in the above specified
approximations are shown in Figure 2 and Figure 3.

2.2. Classic lterative Approximations. The classical iterative approximation for the
Lambert W function, e.g. [17], eqn. 8-10, is based on the fundamental relationship
x = In(y)-In(x), x,y>0, and an initial approximation x~ W,(y) = In(1+y) as specified in

Ire(»)] 1

W, o) WBd(y )
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FIGURE 2. Graph of the relative errors, over the interval
[-17e, 1], in published approximations to W (y).
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Equation 5. A first order approximation arises by substitution of this approximation into
the expression In(x) to yield

W,(») = In(y)—In[In(1+y)] = 1n[1n(1y—+y)}

[teration yields

In general:

Wy(») = ln(y)fln[ln(y)fln[ln(l +)] J = In +
]n[ln(l +)
W.(») = In(y)—In[W, (] ie{1,2,3,...5, Wy(») = In(1+y).

12)

13)

14

2.21. Comparison of Approximations. The relative error in the iterative approximations,
of orders zero to three, are detailed in Figure 4 and Figure 5. The relative errors
decrease, for large values of y, at an increasing rate as the order of approximation is
increased. The approximations are poor for y<10 which is consistent with the
assumptions made in the iteration.

2.2.2. Alternative Iterative Approximations. An alternative iterative approach is to utilize
the relationship x = In(xy) - In(xx) and solve for the error given an initial approximation

|re(y)| 1 . ‘ .

w

0.100 - Wga(y) ] WL(V)

I »

0.010 - ]
W,2(y)
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FIGURE 3. Graph of the relative errors in published
approximations to W(y).
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FIGURE 4. Graph of the relative errors, over the interval
[-1/e, 1], in iterative approximations to W(y). The relative errors
in the approximations for W, and W are high.
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of x,. For y fixed, consider an initial approximation of x,, with an error of ¢,, which

implies y = (x,+¢y)exp(x,+¢,) and, thus, e.g. [17], eqn. 11:

€
Xo+Eg = In(dy)— In[+(x, +2g)] = ln[le—ln[l +x—°} 15)
0 0

For the case where the error is small and |¢,/xy| « 1, a first order Taylor series for the

logarithm function yields

y7]_%o Yo y
Xyt ey= lnL—J -—, ggx T—— [ln[X—J —xo} 16)
04 Xo 1 +x, 0

and the first order approximation

X = Xt egyR

X
0. [1 4 ln[lﬂ. a7
1 +Xx, X

The general iteration formula, e.g. [17], eqn. 12

Yo+ m[2 a8)
1+ ’
X i

then follows. Higher order iteration, based on a higher order approximation for
In[1+¢,/x,], is detailed in [10].

Xiv1 T

With a starting value, utilized in Fritsch et al. [10], of x, = In(y) (suitable for y>e) it
follows that a first order approximation is

W) = 1 -anl(I)lj()y) ' [1 i ln[ln)(/y)ﬂ' a®

The relative error in this approximation is shown in Figure 5 and the relative error bound

for the interval [e, o) is 1.47x 10 2.

A first order iteration, based on Equation 18, with xy(») = In , yields

e
1+05In(1+y)
the approximation [17], eqn. 18:

re(»)l1
0.100 "o0)
0.010 W)
0.001
104 W3(y )
10 y

FIGURE 5. Graph of the relative errors in iterative approximations
to W(y).
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ln|:1+——L——}

B 1705In(1+y) y

W13(y)71+1 I h— | 1+ml +—2> . =
n[ 1+0.51n(1+y)J n[ 1+O.51n(1+y):|

The relative error in this approximation is shown in Figure 4 and Figure 5. The relative

error bound, over the interval [0, ], is 2.16 x 1077,

2.3. Approximations via Newton-Raphson Iteration. Consistent with the illustration
shown in Figure 6, a direct Newton-Raphson method for solving for x, in the equation

X .
y = xe , IS

X

— —X

xiqe -y L
PRI TP e M T at— @1
Xi 1 1+xl71

i-1

Xi

-1
e tx;_qe

A first iteration, based on a known approximating function g for w, is, e.g. [17], eqn. 15:

W) ~ o(v)— —&WexpleW] -y  _ _g) —yexpl-gW)]
D0 0N s menleon VT 15e0) @

Halley's method can similarly be utilized, e.g. [26].

With an initial value of x, = In(1+y), the first and second order approximations,
respectively, are:

In(1+y)—y/(1+
Wy, () = In(1+y)- i 1+y1)n(iv+(y) Y, (23)

WNZ(y) = In(1+y)- In(1+y)—y/(1 +y)

I+ 1In(1+y)
In(1+y)— In(l+y)-y/d+y) _y . exp|:1n(l ) —-y/( +y)i| (24)
1+ 1In(1+y) 1+y 1+ 1In(1+y)
1+1In(1+y)- In(1+y)—y/(1+y)
1+ 1In(1+y)

2.3.1. Results. Graphs of the variation of the relative error, with iteration level, are
shown in Figure 7 and Figure 8 for the case of an initial approximation of x; = In(1+y).

h(x) = xe" -y

X

o Xy X X0

FIGURE 6. Newton-Raphson iteration for determining an
approximation to the solution, denoted x,, of y = xexp(x) for y

fixed and based on an initial value of x, .
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Note, for higher order iteration, the relative error increases, from an increasingly low
level, as y increases.

3. GEOMETRIC BASIS FOR ITERATIVE APPROXIMATIONS TO LAMBERT W
FUNCTION

3.1. Geometric Basis. To establish a systematic, geometrically based, approach for
establishing approximations to the Lambert W function of arbitrarily high accuracy,
consider a set value of y. The Lambert W function associated with y, denoted x , is such

o'’

that x, = ye ° and is the point defined by the intersection of the two curves x and ye

as illustrated in Figure 9 for the case of y>0. The geometry associated with this
intersection of the two curves is the basis for an initial approximation and for the
iterative approximations detailed in the following theorem.

Theorem 3.1. lterative Approximations for Lambert W Function. For y fixed, y>-17e,
approximations to the Lambert W function can be iteratively defined according to

WLi—l(l - WUi—l)

Ll_ 1+WL > 16{1327"'}3WL0:y7
i—1 (25)
Wy, = ln[—-n-)}/—-} e (1,2, .0 Wy =0
L
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FIGURE 7. Graph of the relative errors, in the zero to fourth order
iterative approximations to W(y), based on Newton-Raphson iteration

with an initial approximation of WNO( y) = In(1+y).
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FIGURE 8. Graph of the relative errors, in the zero to fifth order
iterative approximations to W(y) , based on Newton-Raphson iteration

with an initial approximation of WNO(y) = In(1+y).
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Proof. Consider the geometry detailed in Figure 9, for the case of y>0, and an initial
approximation to x, of Wy =y/(1+y) which is based the intersection of the first order
Taylor series for ye ™ at the origin, i.e. y—yx, and x. An associated approximation,
denoted WUI, arises from the intersection of the level defined by WL1 and the curve ye ™.
The solution is

Wy, = 1n[WL] = In(1+y). 26)

Ll

Second order approximations follow from the intersection of x with a first order Taylor

series of ye ™", based on the point Wy, Le. Wy —(=Wy)Ww, , to yield

Wy L1+ Wy, ]
LT, e
Ll

and by the intersection of this level with the curve ye ™ to yield

W, = m[L] - m[&]. 28)
2 W, 1+ In(1+y)
The general iterative form:
w, (1+Wg, )
w, = Lios Yial W, = ln[L], ie{2,3,..}, 9)
j 1w, ; w,

then follows. Whilst the geometry, and the defined approximations, are clearly defined for
the case of y>0, the approximations are also valid for y e (-1/¢,0) as simulation results,
shown in Figure 10, demonstrate.

3.1.1. Explicit Approximations. Approximations to the Lambert W function, of orders one
to five, are:

-2 -
W O) =1 v Wy, () = In(1+y) (30)

WLI L2 xo WU2 WUI
FIGURE 9. Illustration of the geometry underpinning an iterative relationship to find
an approximation to x, which is the solution of x = yexp(-x) for y fixed, y>0.
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W) = m‘%%%‘ty‘)‘]

Po ) = ]

1+ In(1+y)

y[1+In(1 +y)][1 + hl[rﬁ{—y)ﬂ

W, ) =

1+3y+yln(l+y)

1+3y+yln(l+y)

WU3()/) =In

WL4(y) =

y[1+1In(1 +y)][1 + ln[l—-lr—llni(fy—-iry_)ﬂ 1+

In

[1+ (14 1+ ln[rﬁi?—w—)ﬂ

1+3y+yln(l +y)

[1+ (141 1+ ln[rﬁf(%y—)ﬂ

1+4y +yln[_......li.g2..._} +yln(1 +y)[2 + h{__l_t_%z__ﬂ

[+ In[1+)] L+in(+)
Wy,0) =
L+4 _1*+2y _1+2y
In ’ y+yln[1 +1In[1 +y]J+yln(1+y)[2+ln[l +1In(1 +y)ﬂ

1+ In(1+y)

yns(y)
ds(»)

WLs(y) =

where

ng(y) = [1+1n(1+y)][1+1n[—-———l—-—+——2-2———-ﬂ 1+

1+ In(1+y)

+ +
1+1In ELSRED

[1+1n(1+y)][1+1ﬂ[“‘lﬂ‘v““ﬂ b

1+3y+yln(l +y)

In
_1+2y
[1+ln(l+y)][1+1“[1+1n(1+y)ﬂ .
ds(»)
w = In| 3~
Us(y) I{nS(y)}
N 1+3y+yln(l+y)

[1+ (141 1+ ln[rﬁf(?—w—)ﬂ

[+ 4y+y1n[___l_t%y__} +yIn(1 +y)[2 + ln[“‘u“zl“‘ﬂ

1+1In(1+y)

1+In(1+y)

[1+1n(1+y)][1+1n[“‘1‘i22‘“ﬂ e

1+3y+yln(l +y)

[1+1n(1+y)][1 HH{TI%;(%}-)H

In

(€29)

(32)

(33

34

(335

(36)

37
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dg(y) = 1+5y+yln 1+3y+yln(1+y) n
[1+In(1 +y)]|:l + ln[iﬂ
1+ In(l+y)
yln[ 1+2y J2+ln 1+3y+yln(l+y) n
+ +
L+ In(l+y) [1+1n(1+y)][1+1n[%ﬂ
T+ In(1+y)
) ) (38)
3+ 1n 1+3y+yln(l+y) i
1+2y ﬂ
1+ 1In(1+y)][ 1+ ] —L1F2r
N [+ In( y)][ n|:1+1n(l+y)
yin[l+y
ln[1+11+?jr J2+ln 1+3y+yln(l+y)
n(l+y) [1+1n(1+y)][1+1n[&ﬂ
L 1+ 1In(l+y)

3.1.2. Notes. The approximation Wy () = In(l+y) is the approximation stated in

Equation 5 and is the basis for the Newton-Raphson iteration leading to Equation 23
and Equation 24.

Consider the iteration formula specified in Equation 18 ([17], eqn. 12). With a starting
value of x, = y/(1+y), it follows that a first order iteration leads to the approximation

D
W, 2y [1+In(1+))], (39)

which is W, () as specified by Equation 31.

3.1.3. Results. The relative errors associated with the approximations, specified in
Theorem 3.1, are shown in Figure 10 and Figure 11, whilst the relative error bounds, for
the interval [0,], are detailed in Table 1. Note the quadratic convergence.

TABLE 1. Relative error bounds, over the interval [0, ], for

the iterative approximations to the Lambert ¥ function defined
in Theorem 3.1.

. Relative error Relative error
Iterathn bound for W, bound for W,
order: i i i
1 increasing 0.381
2 increasing 0.0569
3 832x10° 133x10°°
4 _ _

3.88x 10 723 %107
5 _ _

1.08 x 102 215x 10"
6

933x102° 1.90 x 102



https://doi.org/10.28924/ada/ma.2.14

Eur. J. Math. Anal. 2 (2022) 10.28924/ada/ma.2.14 128
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FIGURE 10. Graph of the relative errors in the iterative
approximations to the Lambert W function defined in Theorem 3.1.

lre(y) W
1 SAARTAE
0.100 | Wy ()
0.010.L 0,0
) WL3()’)
0.001 [ ] WU3(J’)
10
10°° E
WL )
10—6 L 4 W 4
S U4(y)

FIGURE 11. Graph of the relative errors in the iterative
approximations to the Lambert W function defined in Theorem 3.1.

3.2. Alternative lterative Formulas. The approximations w, and w, for the Lambert W

function, as specified in Theorem 3.1, can be also be defined via iterative formulas based
on numerator and denominator expressions.

Theorem 3.2. Alternative lterative Formulas for Lambert W. The approximations w, and

w,.,ie{l,2,..}, for the Lambert W function can be specified according to

W) = Z—ig-; Wy ) = 1n[dl.(y)]—1n['1’;;-y—)} e{1,2,...}, 0
where
n;_ )
m) = n o)1 +1n[d,-_1<y)]—1n[——;-——]], no() =y, do(») = 1, “

d(y) = n; ) +d; ().

Proof. The proof is detailed in Appendix B.
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3.21. Explicit Formulas. Explicit formulas, for the first to fourth order approximations,
are:

) =y, di(y) = 1+, 2)

ny(y) = y[1+In(1+y)], dy(y) = 1+2y, “3)

ny(») = y[1+In(1 +y)][1+ln[l+2y]fln[l +1In(1+ )] J

(44)
d;(y) = 1+3y+yln(1+y),
ny(») = y[1+1n(1+y)][1+1n[1+2y]71n[1+1n(1+y)] J
45)
1+ 1In[1+3y+yln(1+y)]-In [1+ln(1+y)]-[1+1n[1+2y]71n[1+1n(1+y)] J H
d4(y) = 1+3y+yln(1+y)+y[l+1n(1+y)]-[1+ln(1+2y)—1n[1+1n(1+y)] } (46)

3.3. Alternative Geometrical Approach. An alternative approach that leads to the
approximations wy, , W, , ..., as specified in Theorem 3.1, is to utilize the transformation

x = In(z), x>0, z>1 in the relationship y = xe* which implies y = zIn(z). The geometry
underpinning the iteration that leads to the approximations is illustrated in Figure 12.

Theorem 3.3. Alternative Geometrical Iteration. For y fixed, y>0, iterative approximations
for the Lambert W function can be defined according to

z. In[z; —
z.=zl.71————171 ;] y, zp = 1ty
In[z;, _]1+1 @7

x; = In(z)),

and it is the case that x, = W, (y) as specified in Theorem 3.1.

Proof. Consider the case of y fixed and the geometry illustrated in Figure 12 which is
based on affine approximations to find, iteratively, the solution z, to y = zIn(z). The ini-

zIn(z)
y _____________
V-7

z;In(z) +(z—z[In(z)) +1]
zp = 1+y

FIGURE 12. Illustration of the geometry underpinning the iterative relationship
to find approximations to z, which is the solution of zIn(z) = y for y fixed.
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tial value is established by the intersection of a first order Taylor series for zIn(z) at the
point z = 1, which is z—1, and the level y. The solution is z; = 1+y. A first order Taylor

series for zIn(z) at this point is z;In(z;) +(z—z))[In(z;) +1] and the intersection of this

approximation with the level y is the point z, defined according to

3 zlln[zl]fy
ST e (48)
In[z,]+ 1
Iteration in this manner leads to the stated general iteration formulas.
3.3.1. Explicit Formulas. Approximations, of orders one to three, are:
z21(0) = 14y, X = Wy () = In(1+y), (49)
_ 1+2y _ _ [ 1+2y :|
= =W = In| s 50
20) T Ty 2 = o0 = AT ) 0
1+3y+yln(l+
Z3(y) = 4 n( '}1})_"_2 s
[1+In(1 +y)]|:l +ln[—yﬂ
1+ In(l+y)
(51

1+3y+yln(l+y)

[1+1n(1+y)][1+ln[#ﬂy)ﬂ |

Xy = WU3(y) = In

3.4. lterative Algorithm for (-1/e,0]. For the case of ye(-17/¢0], the geometric
approach, illustrated in Figure 13, can be utilized to establish an algorithm for
determining approximations to the Lambert W function.

Theorem 3.4. lterative Algorithm for (-1/e,0]. An iterative algorithm for defining
approximations to x = W(y), for y e (-1/¢,01, is:

_ Y (T+x; ) _ _
X, = 1+—, XO_O,)’() =)
Yio1 (52)

Xi

y; = ve .
Proof. Consider the illustration shown in Figure 13. With an initial approximation for x,

of x, = 0, a first order Taylor series for ye ", based on the point (xy,y,), with y, =y, is

yol1=(x=xy)]. The intersection of this Taylor series with x, at the point x,, leads to

_ yo(l +x0)

53
1+y0 (53)

X1

The value of ye™ associated with x; is y, = ye_xl‘ A first order Taylor series approxima-

tion for ye™ at the point (x,,y,) is »,[1-(x—x,)] and the intersection of this approxima-

tion with x, at the point x,, leads to
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_ yi(I+x)
1+y1

X, (54)

The value of ye™ associated with this value is y, = yeixz. [teration in this manner leads to

the general formula as stated in the theorem.

3.4.1. Explicit Approximations. Approximations, for orders one to four, are:

w - Y W - y(1+2y)
EI(J’) 1+ya Ez(y) a +y)[y+gy/(1+y)] (55)

y[y(2+3y>+(1+y)ey“”” }
Wg () = (56)

(1+y)[y+ey/<”y>][y+exp{ ] ﬂ
(1+ny+” 0

2 /(1+y) y(1+2y)
Y (3 +4y)+2y(1 +y)e’ + (1 +y)exp — |+
[(1 )+ y’]J

wi+3y st ”)1}

(1+y)exp{ "
WG (1+ )+ o
) =
4 (14 + ey + exp| — 2220 -
| [(Hy)[wey“””]ﬂ

¥

Y2+ 3p) + (1 + ) )

/(1+) y(1+2y)
Aspbe e’y exp[(1 +y)[y+ey/(l+y)]ﬂ

y+exp

3.4.2. Results. The relative error in the iterative approximations specified in Theorem 3.4
are shown in Figure 14. For orders two, and higher, the approximation are more accurate
than the approximations detailed in Theorem 3.1.

3.5. Improved Approximations for [0,00). Improved approximations, for the interval [0, ),
can be established by using the iteration formula specified in Theorem 3.3 and by using

YT =(x—xp)]

FIGURE 13. [Illustration of the geometry underpinning the iterative
relationship to find approximations to x, the solution of x = ye_x , for the

case of y fixedand y € (—1/¢,0].
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an initial approximation of z,(y) = 1+ky rather than =z (») = 1+y. The resulting

approximations, of orders one to four, are:

21(0) = L+ky, Wi ) = In(1+ky), (58)
_ 1+ +ky W :1[1+(1+k)yJ 59
20 = T+ kY W) = I T A ) &

230) = 1+2+ky+yln(1+ky) ’

We ) = Inlz300)]

2,(0) =
G}
[1+1In(1+ ky)][l + 1n[11+ir(lél++kl);)ﬂ I+ 1n 1+Q2+ky+yin(1+ky)

[1+In(1 +ky)][1 + ln[%ﬂ

Wk4()/) = ln[z4(y)].

The improvement in the relative error bounds for the interval [0,), for values of k
close to optimum, are detailed in Table 2.

For the case of a third order approximation, and for k = 14—(;‘0%56' the maximum relative

error is 1.023x 10 *. Thus, the approximation

1+Q2+k)y+yln(l+ky) 4465

w = 1n s k = —_—
) L0ty ] 10000

1+ In(1+ky)

62)
[1+ln(1+ky)][1+1n|:

Ire()| [
0.100 §

| WEl(y)’ WLI(J’)
0.001

g WL 6]
Wy, () _10° 2
WL4(,V) —_—
W) — 7B W N B DN N N
-035 -030 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 Y

FIGURE 14. Graph of the relative error in approximations to W(y), for the interval

[-1/e, 0], based on the iterative algorithms specified in Theorem 3.4 and Theorem 3.1.
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.W *—0—0—— O P X

L U,
FIGURE 15. [Illustration of the geometry underpinning an iterative relationship,
based on quadratic approximations, to find an approximation to x, which is the

solution of x = yexp(—x) for y fixed, y>0.

represents a good compromise between accuracy and complexity for the interval [0, )

with a relative error bound of close to 107*.

TABLE 2. Relative error bounds, over the interval [0, ) , in the approximations W, (y), i€ {1,2,...,6},to
the Lambert ¥ function.

Iteration Relative error Relative error Relative error Relative error

order: i bound: k=1 bound: k= 0.4 bound: k= 0.45 bound: k= 0.5

1 0.381 0.570 0.518 0.465

2 0.0569 0.0335 0.0250 0.0184

3 -3 —4 -4 —4
1.33 x 10 1.87 x 10 1.05 x 10 1.50 x 10

4 _ _ _ _
723 %107 6.46 % 10~ 496 %10 9.97x 107

> 215%x 1077 7.98 x 10 ° 111 x107" 443x107"

6 1.90 x 10 ¢ 124 %1072 553%x 10 8.78 x 10>

3.6. Higher Accuracy via Iterative Quadratic Approximations. The iterative

approximation detailed in Theorem 3.1 can be improved upon by utilizing quadratic,
rather than affine, approximations as illustrated in Figure 15.

Theorem 3.5. lterative Quadratic Approximations for Lambert W Function. An iterative
formula, based on quadratic approximations, for the Lambert W function, and valid for
y>—1/e, is

WL[ N WL1 [1 - WL[-l[l - WUi-l]if\/l B Wii—l +2WL[-1[1 - WUi—l] }
! (63)
= In| £ =y =
Wy h{WJ, M= T Wy = In(1+7).
Proof. The proof is detailed in Appendix C.
3.6.1. Explicit Approximations. Approximations, of orders one to three, are:
L0 = T Wy, () = In(1+y) ©4)
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WLz(y) = l'[l+2y+yln(l+y)—»\/1+4y+2y2+2y(1+y)1n(l+y) ]
y
2 (65)
Wy () = In L -
1+2y+y1n(1+y)—«/1+4y+2y +2y(1+y)In(1 +y)
W, (v) = 1 :
3 1+2y+yln(1+y)-q,(»)
) E
y+|:l+2y+yln(l+y)—q(y):| 1+1n _
z 1+2y +yln(1+y)—q,(»)
2 2 66
—[1+2y+yIn(l +y) - g,(0)]" + 0
y2
2y[1+2y+yln(l+y)—q ) ] 1+ 1n
i 2 1+ 2y+yin(l+y) -~ 9,0 ||

0,() = A1+dy+2)%+2y(1 +y)In(1 +y)
oy
Wy, ) ln[WL3[i]] (67)

3.6.2. Results. The relative errors in the approximations specified in Theorem 3.5 are
shown in Figure 16 and Figure 17. The relative error bounds, for the interval [0, %], are
detailed in Table 3 and the convergence is cubic in nature. The approximation Wy, has a

relative error bound for the interval [0, %] of 1.26 x 10°°.

TABLE 3. Relative error bounds, over the interval [0, «], for
the approximations to the Lambert ¥ function detailed in

Theorem 3.5.

Maximum relative Maximum relative

Iteration errorin W error in W

order i L; U;

1 increasing 0.381

2 increasing 0.0122

3 -5 -6
1.02 x 10 1.26 x 10

4 _ _
1.66 x 107" 2.04x10 %

5 _ _
788 x 10 9.63x 10

4. CONVERGENCE

Consider the case of y>0, x, = W(y), and the error definitions

e, = %o~ WL; ey, = WUl-_xo’ (68)

associated with the ith upper and lower approximations detailed in Theorem 3.1 and as
illustrated in Figure 18. The following results hold:
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1
1
1
O o—o o @ - x
w, w, X, Wy,

i i+1 i+1 i

FIGURE 18. Error definitions associated with the ith upper and lower
approximations to x, = W(y).

Theorem 4.1. Convergence of lterative Algorithm. For the case of y fixed and x, = W(y),
the errors associated with the lower approximations W, , ie{1,2,...}, detailed in

Theorem 3.1, are

Wy Wy =Wy ] w, le, +ey |
i—1 i—1 i—1 e i—1 i—1 i—1 e = x — y . (69)
Ly 1+W, ’ L ° 1+y

o = &
I T
L,

1

Ire(y)l1

' w0
0.100 E I/VL1 (y)
0.010

0.001 -

3 WU )
3 WL 6]

2

10

108
I/VU3 o) —a

10

s

-0.2 0.0 0.2 0.4 0.6 0.8 10 y

FIGURE 16. Graph of the relative errors in approximations to
W(y) as specified in Theorem 3.5.

1§
I (y)l1 : —— W, )
/ Ul
0.100 / W, )
0.010 E WUz(y)
0.001 - ]
10 ¢
10 ¢ W)
10 ¢ /_\ Wy, ()
0.1 10 1000 108 Wy

FIGURE 17. Graph of the relative errors in approximations to W(y) as
specified in Theorem 3.5.
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The following results hold: First, the sequence W, is a monotonically increasing
sequence, i.e. W, >W, . Second, the errors ¢, , ie{1,2,...}, define a monotonically

decreasing sequence, i.e. ¢, <g, . Third, convergence is guaranteed, i.e. limeg, =0,
Livy ° 7L i Li

.hm WLi =x, and .hm WU,. =X,
1 —> 0 1 —> 0

Proof. The proof of these results is detailed in Appendix D.

5. SPLINE BASED APPROXIMATION FOR [-1/e,0]

The approximations, detailed above in Theorem 3.1 and Theorem 3.4, are sharp at the
origin but not at the point —1/e¢. It is useful to have approximations that are sharp at both
points and which converge throughout the interval [~1/¢,0], e. g. [3], eqn. 7 and [17], eqn.
20. The latter approximation is sharp at —1/e¢ but not at the origin. One approach, with
potential, is to utilize the two point spline approximation for a function f as specified by
Howard, [16], eqn. 40. For an interval [a, 8], the nth order approximation can be written
in the form (see Appendix E)

f@) = (=" 2 4, fr—a) +(r-a)" > b, (B-x), x e [a,Bl, (70)
r=0 r=0
where

I B CA YRR N

e ) (r—u)! uln! N
(B-a) u="0 (B-a) -

P Ry § A (1) JR ) S

nr ([3—(1)n+1 = (r—u)! uln! (B_a)u

5.1. Spline Based Approximations for [-1/e,0]. The spline approximation detailed in
Equation 70 has the potential to provide approximations for the Lambert W function in
the interval [-1/¢,0] with exact values at the end points of this interval. However, an
initial problem is that the derivatives of the Lambert W function are undefined at the
point —1/e. This problem can be overcome by utilizing two suitable transformations.

Lemma 1. Transformations. With f(x) = xe*, x>-1, the first transformation
1
Y1 :gl(xl):;"'f(xl*l), (72)
with x = x;—1,x20 and y = yl—é, yz_;l, y120 yields

X
g,(x)) = é-[l-l—(xlfl)e , X, 20, 73)

) =1 ) = g[{w ﬂ -1, yz—. (74)
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With the second transformation of g(x,) = ,/g,(x,), it follows that

g(x,) = f [1+(x;—1)e '], X, 20, (75)

e

-1
Wy) =g [ /y+lJ— 1, yZ—l- (76)
e e

Proof. The proofs for these results are detailed in Appendix F.

5.1.1. Graphs and Values. Consistent with Equation 76, the Lambert W function is
defined in terms of ¢ ' for ye[-1/e0]. Relevant values associated with the points
y=-1/e and y = 0 are specified in Table 4. The graph of g(x,), and its inverse g_l(yz),

are shown in Figure 19.

TABLE 4. Values associated with the points y = —1/e and y = 0.

y yi=y+tl/e  x = w(y) xp=xtl vy = g(x))
—17e 0 -1 0 0
0 1/e 0 I 1/ Je

51.2.  Spline Based Approximations. Consistent with Equation 76, and the values
tabulated in Table 4, an approximation for the Lambert w, over the interval [-1/e, 0],

requires an approximation to the inverse of g(x,), x, € [0, 1], Le. g*](yz), v, €[0,1/.e], to

be determined. A spline approximation for ¢ ', of order n, requires derivatives, of orders

zero to n, at the points 0 and 1/.e to be determined. Such values can be determined
from the derivatives of g at the points 0 and 1 as detailed in Appendix G. The following
approximations result.

Theorem 5.1. Spline Based Approximations for the Lambert W Function. The kth order
spline based approximation for the Lambert W function, based on the transformation g
and the points [-1/¢] and 0, is

3/2 k
W(k,y)=1+A/2—e/y+£{1+a] /y+£+(x2|:y+ﬂ+a3[y+ﬂ +...+0L2k[y+ﬂ , an

1.5

g ()

g(xl)

X2

FIGURE 19. Graph of y, = g(x,) and its inverse g_l(yz).
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for ke {1,2,...} and for appropriately defined constants.
Proof. The proof is detailed in Appendix G.

5.1.3. Explicit Approximations. Explicit approximations, of orders one to four, are:

W(l,y)=—1+JTeJ);T_ {l—zﬁ[wr?lz—e—z—f/_—zh/yj [ ﬁ+ﬁ:|[y+ J] (78)

v - L [ ]

[ 5] 1]

1 ﬁ/ lle[y+l}_
e 36 e
B 3/2
63/2[1_9_1_1sz L 25Je 8.2, 6[2}@ } .
e

O A S AT

- 2
W(3,y) = —1+.2e /y+l~ e2[2%—1463—ﬁJ+32A/5_e+22ﬁ+M}[y+1} - (80)
e L e e

5/2{335 4()[2} 5532 120,/ e+ 18[[2}[ j/er

:e [E—MJ-FSﬁe +6ﬁe+6ﬁ}[ 1}

36

WA4,y) =-1+

[ 3/2
e [T e ) 43¢” [q N
3 e 36 el 1352 e

'62[4075 895} 91e 61 27.2 64[2}[ J
e

272 124 p 2 e 3¢
i 3/ 5/2
65/2[665;[2_21926}_31% 020 1022 2563%3}@ J .
N7 (y+l- L J2 Je 3 € @81
€ |1 3[84674/2 1175 128./2 173
e[ iz . J 20726~ 149, /2¢ - 144&——}{y+—} _
L e e

27 3 Nz

_ 3 2 4
64[10843 _1315}_55e L4 ), 6442 [y+lJ
1352 361 2 N2 : ‘

[ 7/2
7/2{4904&_@}_24@ _90[263/2_9()@_256[[2}[”1} .
3./e e
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5.1.4. Results. The relative errors in the spline based approximations to the Lambert W
function, as specified in Theorem 5.1, of orders one to five, are shown in Figure 20. The
relative error bounds over the interval [-1/¢,0], for first to fifth order approximations,
respectively, are: 127x107, 968x10°", 869x10°, 846x10° and 865x10 . By
construction, the approximations are sharp at the points —-1/¢ and 0. The results shown
in Figure 20 indicate that the sequence of approximations have good convergence to the
Lambert W function over the interval [-1/¢,0] and modest convergence over the interval
[0,1].

6. IMPROVED APPROXIMATIONS VIA ITERATION

Iteration is, potentially, effective in improving the accuracy of an initial approximation.
One potential approach is to utilize the iteration potential in the fundamental relation-
ship for the Lambert W function as specified by Equation 116. An alternative approach is
to utilized the Newton-Raphson method. These two approaches are detailed below.

6.1. Inherent lteration. The basis for an iterative relationship for the Lambert W function
is Equation 116, i.e.

W(y) = In(y) - In[W(y)]. ®2)
It then follows that an approximation, w,(y), for w(y), can potentially be improved upon
according to

Wi () = In(y) - In[Wy(»)] ®3)

W) = ln(y)—ln[ln(w—ln[Wo(y)] }
(84)

Wy, () = ln(y)—ln[ln(y)—ln[Wl(y)] }

[re(y)]

0.100

order 1
0.010

0.001 m
o /-\
10° [-\ W
-6 : ':

10 .

W b
1/ Je 02 00 0.2 0.4 0.6 0.8 10 y

FIGURE 20. Graph of the relative errors in the spline based approximations,
of orders one to five, to the Lambert W function as specified in Theorem 5.1.
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Wy() = ()~ In| InG) ~ In[ nG) - n[#y00] | |

W310) = )~ In[ @)~ In[ n@) - (W, 0] | |

85)
W) = In() - ln[1n<y>—1n[ln(y>—1n[W2(y>] ] ]
Wy 1() = InG) = In| InG)~ In| InG) ~ (W, 0] | |
W) = In(y)—In 1n(y)—1n[1n(y)—ln[ln(y)—ln[WO(y)] ] } (86)

etc. The number of possible permutations for approximations to the Lambert W function is
clearly large as the iteration order increases. Representative relative error bounds, for
the interval [0,%), are tabulated in Table 5 for the base approximations of
o) = Wy (), WoO) = Wy () and w,(y) = Wy () as specified in Theorem 3.1. Graphs

of the relative errors, based on the approximations w (y) = Wy,0) and w(y) = Wy ),

are shown, respectively, in Figure 21 and Figure 22.

lre(y)|
10%F

107 ¢
1078 ¢
1079 ¢
10-10 L

10—11 L

FIGURE 21. Graph of the relative errors in approximations to W(y),
based on W,(y) = WU4(y) (Equation 35).

lre()|
1013 ¢

1074 ¢
10718 ¢
10718 ¢

107 £

1018 £

011 ‘ ‘ 160 I I 1(‘)5 1(‘)3 y
FIGURE 22. Graph of the relative errors in approximations to W(y),
based on W,(y) = WUS(y) (Equation 36).
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TABLE 5. Relative error bounds, for the interval [0, «) , based on iteration
and for the specified base approximations of WU3 () (Equation 33), WU4(y)

(Equation 35) and WU5 () (Equation 36).

peration () = Wy ) Wo) = Wy () Wol) = Wy ()
0 133%x10° 723 %107 215x 10"
" 4.08x 10" 1.84 %107 495x 107"
W, 197 x 107 6.03x10° 131x10 "
LEY 1.40x 107 247 %107 3.95% 10712
s 1.40 x 10~ 247x10°° 3.95x 10
LEY 1.46x 10 123x10° 134x 10"
W3, 233x 107" 7.43 %10 5.04x 10 '
3,21 6.65x 10" 536x 10 211x107'¢
W, 1.46x 10~ 123x10° 134x 10"

6.1.1. Explicit Approximations. The approximation w,, based on w(y) = Wy, (), is

In() ~ In| In(y) = In[ In() ~ In[ Wy, ()] |

_ - 87)
1+3y+yln(l+y)

[1+In(1 er)][1 + ln[ﬁﬁ%y_)ﬂ

W3,3(y)

In(y)— In| In(y) — In| In(y) — In| In

and has a maximum relative error bound, over the interval [0, x), of 1.40 x 10" which is a
factor of 9.5 lower that the original approximation Wy, () whose relative error bound is

133x10 .
The approximation w,, based on W(y) = Wy, ), is

Wy 4 = InG)=In[ InG)~ [y, 0] | 3®)

where Wy, is specified by Equation 35. The maximum relative error bound, over the

interval [0, ), is 6.03x 10° which is a factor of 12 lower that the original approximation

W, (») whose relative error bound is 7.23 x 107",
4

The approximation W, based on W,(y) = Wy, ), is
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Ws.4) = InG)=In| InG)~In[ InG) ~ [y, 0] | |

89)

and has a maximum relative error bound, over the interval [0, x), of 2.47 x 10°% which is a
factor of 29.3 lower that the original approximation Wy, ) whose relative error bound is

723%x 10 .

6.2. Newton-Raphson Iteration. Consistent with Equation 22, the approximations stated
in Theorem 3.1, Theorem 3.2 and Theorem 3.5 can be utilized as the basis for iterative
approximations based on the Newton-Raphson method. Results are detailed in Table 6.

TABLE 6. Relative error bounds, for the interval [0, «) , based on Newton-Raphson iteration
and for the specified base approximations, W,(y), of WUZ(y), WUS(y), WU4(y) and WUS(y).

WQ(Y) = WUZ(Y)

Tteration Wo) = Wy, ) W) = Wy () Wo) = Wy ()
Order (Equation 31) (Equation 33) (Equation 35) (Equation 36)

0 5.69 x 10 133x10° 723 %10 215x 10 "

1 828 x 10 ° 512x10° 149 x 102 130x 102

2 3.48x 10 9.61 x 10711 6.98 x 1072 5.02x107°

3 9.95x 107 3.91x 10 % 1.62x 107 7.67x 10

4 821 x 10 2 7.08 x 1077 9.04x 10 1.81x 10 7°

5 5.60 x 10 > 243%10°° 2.85x 10 1.02 x 10!

As an example, the approximation arising from a first order iteration of Wy,)

(Equation 33), has a maximum relative error bound, over the interval [0, ), of 5.12x10°
which is a factor of 260 lower that the original approximation whose relative error bound

is 1.33x 10 . The approximation is:

W, 3() = In

In

1+3y+yln(l+y)

_[1+1n(1+y)]|:1+1n[

1+2y
I+ 1In(1+y)

1+3y+yln(l+y)

il

y[1+1n(1+y)][1+1n[——1ﬁl—ﬂ

1+ 1In(1+y)

_[1+ln(1+y)]|:l+ln[

1+2y
1+ In(l+y)

I1

(90)
[1+3y+yln(l+y)]

1+ 1In

1+3y+yln(l+y)

[1+1n(1+y)][1+1n[

|


https://doi.org/10.28924/ada/ma.2.14

Eur. J. Math. Anal. 2 (2022) 10.28924/ada/ma.2.14 278

7. APPLICATIONS

7.1. Approximation with Fixed Relative Error Bound. There are many applications
where the Lambert W function is used to model the physical nature/characteristics of an
entity which are positive in nature. In many of these cases the parameter values are not
known with high accuracy. For such cases, highly accurate computation of the Lambert W
function is not required and a fixed approximation, with a set relative error bound, is
useful rather than relying on, for example, iterative approximations where the relative
error achieved depends on the initial approximate used. The relatively simple
approximation for the Lambert W function, as specified by Equation 33, i.e.

1+3y+yln(1l+y)

[1+1n(1+y)][1+1n[1—+11—n+(—fy17)ﬂ ’

WU3(J’) = In 91)

with a relative error bound of 1.33x10 over the interval [0.«), is likely to be useful.
One application, for example, is in the evaluation of the collector current in a common
emitter circuit, e.g. [2], eqn. 21.

For the interval [-1/¢,0], the approximation Ww(2,y) detailed in Equation 79, is of
modest complexity, is sharp at the points ~1/¢ and 0 and has a relative error bound of

-4
9.68 x10 .
For highly accurate approximations over the interval [0,»), an explicit analytical approx-

imation, with a relative error bound of 7.98x 107", can be specified by utilizing the fifth
order iterative approximation, denoted Wy, arising from the iteration specified by

Equation 47 and with z; = 1 +ky, k = 0.4 (see Table 2).

An alternative analytical expression, with a relative error bound of 1.30x 10> over
the interval [0, ), is

n [ds (y)} _yns(»)

ds(y) ns(y)] ds(»)
w — % B 5 sV
1,50 n{ns(y)} 1+ln{ ds(y)J ©2)
’750’)

where ng and d; are defined, respectively, in Equation 37 and Equation 38. This expres-
sion arises from a first iteration of the Newton-Raphson method (Equation 22) utilizing
the fifth order approximation Wy ) specified in Equation 36. The relative error bound is

specified in Table 6.

7.2. Upper/Lower Bounds for Lambert W. There is interest in upper/lower bounds for
the Lambert W function, e.g. [15] and [24]. Alzahrani and Salem, [1], detail bounds for
w_,. The following bounds were proposed by Hoorfar (see, [17], eqn. 21)

y In[In(y)] Yy e In[ln(y)]
ln[ln(y)}Jr 2In() <W(y)<ln[ln(y)J+e—1 nG) o9

For the interval [e, ), the relative error bound associated with the lower bounded func-
tion is 0.0568; the relative error bound for the upper bounded function is 0.207.
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The bounds proposed in [17], eqn. 25, 27, have modest relative errors for y>e and are:

ln[ v J_ mh{a)J -ln[l—M}<W(y)<
RO ] In(»)

94)
[~ L]
In(y)

1+ m[ln)(}y)J

The relative error bounds in the lower and upper bounded functions, over the interval

h{lnL(y)}_ln [l—%] 1-

[e,0), respectively, are 5.96x 10~ and 4.10x 10 . The relative errors decrease for y» 10.
By construction, W, (), ie{1,2,...}, as defined in Theorem 3.1, are a sequence of

increasingly accurate lower bounds for w(y). Similarly, W, (), ie{l,2,...}, is a
sequence of increasingly accurate upper bounds for w(y). For example:

yn+m0+ﬂﬂ*”ﬂTff£%ﬁﬂ

1+3y+yln(1+y)

W, )= <)<

95
1+3y+yln(l+y)

[1+1n(1+y)][1+1n[ﬁ§(%—&5ﬂ ’

WU3(y) = In y>0,

with relative error bounds for the interval [0,%) of, respectively 8.32 x 10° and 133x107°
(see Table 1). Higher order approximations lead to lower relative bounds and these can
be made arbitrarily small. The relative error bounds associated with Wy )< W) < Wy ()

over the interval [0,%) are, respectively, 3.88x 10% and 723x10". The relative error
bounds associated with W, () <W(y)<Wy (y) over the interval [0,%) are, respectively,

1.08x 102 and 2.15x 10 2

One potential application for the upper bound is a bound for the prime counting func-
tion, e.qg. [27]

7.3. Spline Approximations Based on Upper/Lower Bounds. Consider the ith upper,
w, , and lower, W, , bounded functions for the Lambert W function as illustrated in

Figure 23 and as defined in Theorem 3.1. For » fixed at y,, a spline approximation, as
specified by Equation 70 and based on the points (ujexp(u,),u,), u, = W,(v,) and
(v exp(v,),v,), v, = W, (v,), can readily be determined. From such an approximation, an

approximation to x, = W(y,) can then be specified.

Theorem 7.1. Spline Approximations Based on Upper/Lower Bounds. Consider the ith
lower and upper bounded approximations, W, and W, , defined in Theorem 3.1. The zero
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order spline approximation for the Lambert W function, based on the ith approximations
w, and W, is

WL 00Wy,0) - [ exp Wy ()= expl W, 0] [+ 300y (0 = W, ()]

v = .
0,i{(») Wy 0explWy ()1= W, (v)exp[W, ()] o

The nth order spline approximation for the Lambert W function, based on the ith approx-
imations w, and W, is

v exp(v,)—y]" "

Wn, ) = Py
[v,exp(v,) — u,exp(u,)]
(n+r)'u, N
n r!n![voexp(vo)—uoexp(uo)]r
-
z [y—u,exp(u,)] - o —~(r—u)u, +
r=0 prfu(uo)e (ntu)! 1

2(r—u) -1 T
ior— [T +u, PO exp(v)) — u exp(u,)]"

7
n+1

[y —u,exp(u,)]

[VoeXp(Vo) - uoexp(u())]n o |

(n+nr)lv, .
n . r!n![voexp(vo)fuoexp(uo)]r
Z [voexp(vo)iy] ’ 1 reu —(r—u)v,
r=0 D p_,(v,)e (ntu)! 1
2(r-u)-1 u'n!

u-0 (r—u)![1+v,] [v,exp(v,) —u,exp(u,)]"

where u, = W, (v), v, = W, (v) and p, is defined by Equation 120.

Proof. The proof is detailed in Appendix H.

7.3.1. Results. Results are detailed in Table 7 and clearly show the high accuracy of the
approximations. For example, the zero order spline approximations, as specified by

Equation 96, yields relative error bounds, for the interval [0, ), of 3.84 x 10_5, 8.56 x 102

and 6.80 x 10>, respectively, based on third, fourth and fifth order approximations for the

X

Vo = WUi(yg)
x, = W(y,)

U, = WL’,()’O) “““““““““““““

\

FIGURE 23. TIllustration of upper and lower bounded approximations to the Lambert W
function and the points (u,exp(u,),u,), (v,exp(v,), v,), which are the basis for spline

based approximations.

|

|
4 L 4

,exp(u,) Yo ,exp(v,)


https://doi.org/10.28924/ada/ma.2.14

Eur. J. Math. Anal. 2 (2022) 10.28924/ada/ma.2.14 ol

Lambert W function detailed in Equation 3.1 Such convergence is approximately
quadratic.

7.3.2. Application. The Omega constant, defined as w(1), can be evaluated by using
Equation 96 with relative errors, respectively, of 1.94x107, 471x10 ", 2.76x 10>* and

9.48 x 10 for the case of upper and lower bounded approximations of orders two to five,
Le. Wy 5(1), Wy 5(1), Wy 4(1) and W 5(1).

TABLE 7. Relative error bounds, over the interval [0, «) , for spline approximations to the
Lambert W function based on upper and lower bounded functions.

Upper/lower bounded Spline Relative error
functions order Approximation bound
WLz(y) , WUz(y) 1 Wy, increasing re as y — o
(Equation 31) 2 Wy.o increasing re as y — o0
W) Wy ) 0 Wo,3 384x 107
(Equation 32, Equation 33) 1 Wl, 3 1.92 x 10—8
2 "3 1.46x 107!
3 s 3 131 x 10
4 Wy 3 127 x 107"
Wy, Wy () 0 Wo,4 8.56x 10 "2
(Equation 34, Equation 35) 1 Wl, 4 560 x 10722
2 W24 5.05 x 102
3 W3 4 518 x 102
4 Wy 4 5.68 x 1072
W, ). Wy () 0 Wo,s 6.80x 10>
(Equation 36) 1 Wl, 5 301 x 10*48

7.4. Asymptotic Approximations. As is evident in the results shown in Figure 11, apart
from the results for Wy ) and W), the relative errors in the approximations defined in

Theorem 3.1, for a set order, decrease as their argument increases, i.e. for a set order, the
approximations asymptotically approach the Lambert W function as their arguments
become unbounded. Thus:

W )~ W), i€ {3 . )

. 98)
Wy )~ W), ie{l,2,3,...}.

7.41. Lambert W Function and Prime Counting Function. The prime number theorem
states that the relative error between the prime counting function =(y) and y/In(y)
decreases to zero as y >, Le.

n(y)~y/In(y). 99)
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FIGURE 24. Graph of W(y) and | W(y) .

As W[zIn(z)] = In(z) (Equation 115), an equivalent statement for the prime number theo-
rem is

n(y) ~y/Wlyh(y)]. (100)
With the manipulation of

Wiyln(»)] = In(y) = In(xe’) = x+1In(x) = W(y)+ In[W()], aon)

and with w(y)» In[W(y)] for y large, it follows that

n(y)~y/W(y), (102)
which has been proposed by Visser [27] and briefly discussed by lacono and Boyd, [17],
section 4.4. Visser has proved that y/W(y) is an upper bound for the prime counting func-
tion whilst y/In(y) is a lower bound for y large. The magnitude of the relative error in the
approximation of n(y)~y/W(y) is lower than the magnitude of the relative error in the
approximation n(y)~y/W[yIn(y)] for y greater than around 5000 with the relative error
decreasing as y increases. However, the magnitude of the relative error in the approxi-

mation n(y)~y/W(y) is of the order of 0.05 for y = 10°.

7.5. Floor and Integral of Floor of Lambert W. It is possible to specify approximations
for the Lambert W function, with a set accuracy bound, if an explicit expression for the
floor of the Lambert function can be specified. The graph of [ W(y)] is shown in
Figure 24.

Theorem 7.2. Floor of Lambert W. The floor of the Lambert W function can be ascertained,
without knowledge of the function itself, according to

" 1+ LWU;(Y)J

LW0)) = Y u-kéy = Y up-k), oy, (103)
k=1 k=1

where, i€ {1,2,...} is fixed, u is the unit step function and W (y) is an upper bound for

the Lambert W function as specified in Theorem 3.1.
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L+ Wy ) |- W)
4 i

) .o
ARA'R \A'E

0.1 10 1000 10° 107 y

FIGURE 25. Graphof 1+ LWUU)J -W(y) foriel,2,3.

Proof. This result follows from the fact that W[kek] =k and W, (»), ie{l,2,...}, i fixed, is
an upper bound for w(y), i.e. LW(Y)JSLWU.(J’)J- It then follows that the upper limit of the

summation can be specified as 1+ LWU,»(y)J'

7.5.1. Notes. The simplest upper bound, specified in Theorem 3.1, for the Lambert W
function is Wy () = In(1+y) and, thus:

1+[In(1+y)] i
Lw(y)] = > u(y—ke'), y=0. (104)
k=1

The graphs of 1+LWUU)J*WU’)' for ie {1,2,3}, are shown in Figure 25 and it follows
that the use of 1+ Wy ) = 1+ In(1+y)| as the upper limit for the summation results in

an increasing small number of additional zero terms in the summation defining [ W(y)| as
y increases. The use of 1+ LWUz(y)J results, depending on the value of y, in an additional

zero term in the summation defining [ W(y)].

7.5.2. Integral of Floor of Lambert W. Using the result for the floor of the Lambert W
function, as specified in Theorem 7.2, it is possible to explicitly specify the integral of the
floor of the Lambert W function.

Theorem 7.3. Integral of Floor of Lambert W. The integral of the floor of the Lambert W
function can be explicitly specified according to

Lw()] 2
ILW&)m - {He [1+ L)) -2l w1 +

+
e—1>2 L) =1+ Lo et HT O Ly 2l 0 ‘} (1os)
L) Iy - L) Jet O]
where | W(y)| is specified in Theorem 7.2.

Proof. The required result follows, consistent with the graph of [Ww(y)] shown in
Figure 24, according to
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y max {0, | W(y)]-1}
JLW) Jd. = S K+ DT kT L) Sy - Lo 1T
0 k=0
e {— L+ MO Ly -2l 1P+ } . (106
(= 1° Lwo) i1+ Lwon e O L 0

L) Iy~ L) Jet ")
where the following result has been used:

1
3 K(k+ 1) —kef) = —¢ 2-|}1+en[1+n72n2]+nel+n[71+n]+n2e71+n J 107)
k=1 (e-1)

7.6. Set Accuracy Approximation for Lambert W. Consider a set accuracy limit of A
required for the evaluation of w(y). This can be achieved by a step approximation, with a
resolution of A, and such an approximation is:

1+ H - WUl_(y)J

W) =AY uly—kae™, 1>0. (108)
k=1

where W, , ie{1,2,...}, i fixed, is a set function defined in Theorem 3.1. As an example,

the error in the approximation to w(y), with a resolution of A =1/10, is shown in
Figure 26.

7.6.1.  Computationally Efficient Implementation. The direct approximation detailed in
Equation 108, for a set error level of A = 10, requires, approximately, a summation of

107L w(y)| terms. The approach detailed below requires, approximately, the summation of
LW(y)]+11g—1 terms which represents a significant reduction for ¢ modest to large. For
example, for [W(y)] =10 and ¢ = 6, the direct approach requires a summation of

approximately 10’ terms whilst the approach detailed below requires close to 75 terms.

W) —W(y)
ot .,

0.02

0.00

2 4 6 8 10 y
FIGURE 26. Graph in the error in W,(y) for the case of A = 0.1.
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Theorem 7.4. Direct Evaluation of Lambert W with Specified Resolution. The Lambert W

function can be evaluated, with a maximum error of A = 107, according to

W) = Lwp)l+dio)+ ... +d (), (109)

where | W(y)| is defined in Theorem 7.2 and quq(y) is the gth digit in the decimal
expansion of W(y):

10

d, () = ﬁ)kz u[y (L0 + £ Jexp L)+ ] ]

=1

10
) = 155 3 uly=[LFO) ]+ dy0) + s exp LI I+ )+ o5 | ] a1
k=1

1

o ! k - k
d,(y)=— > u y—{LW(y)JJr > di(y)+—}eXp{LW(y)J+ > di(y)+—ﬂ-
107> L P 10 =1 107

Proof. The floor of the Lambert W function has been defined in Theorem 7.2. Consider
the illustration shown in Figure 27. With

W) = LWy l+d,()+d,(»)+ ... a1

and with d,(») being the gth digit to the right of the decimal point, it follows that

10

d\(v) = %’El uly=[Lwor ]+ & lexp[ Lo J+ ). an2)

Iteration with finer resolution, and from the point defined by [ W(y)]+d,(»), yields d,(»)

etc.

w(y)

'* | (k+2A) y
@ A @ o—b
ket (ke Tt k1A T !
FIGURE 27. Illustration of demarcation that underpins determination of W(y), to

a set resolution of A, between ke* and (k+ l)ek o
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The number of terms in the summation defined by Equation 109 comprises approxi-
mately [ W(y)] terms for the evaluation of | W(y)], plus 104 terms for the summations
comprising d,(»),dy(»),....d,(y) and g-1 terms for the summation of 4,(»)+d,(»), ...,

di)+dy(y)+...+d,(y).

7.6.2. Note. Theorem 7.4 defines a series for the Lambert W function, which, by
construction is convergent, L.e.

W) = Lwy)l+d,(y)+d,(»)+ ... y>0, (113)

and is such that

<104, (114)

‘W(y)[LW(y)J+d1(y)+-~+dq(y) ]

8. CONCLUSION

A geometric based approach for iteratively specifying approximations to the Lambert
W function, which can achieve any set relative error bound over the interval [0,%), was
detailed. The approximations are also valid for the interval (-1/¢,0] but are not sharp at
the point ~1/e. Convergence was proved. For the interval [-1/¢,0], arbitrarily accurate
approximations, based on a two point spline approximation, were specified. Iteration,
either by using the iteration structure inherent in the definition of the Lambert W func-
tion, or via the Newton-Raphson method, leads to significantly improved approximations
albeit with increasing complex functional forms.

Applications of the approximations were detailed and include, first, analytical expres-
sions for the Lambert W function that achieve set relative error bounds over the interval
[0,%). Second, based on the geometry inherent in the approximations, upper and lower
bounds for the Lambert W function that can be made arbitrary accurate. Third, higher
accuracy spline based approximations for the Lambert W function based on the defined
upper and lower bounded functions. Fourth, analytical expressions for the evaluation of
Lw(y)], and the integral of | w(y)], without knowledge of w(y) for y € [0,»). Finally, a
direct approach for evaluating the Lambert W function to achieve a prior defined error.

Acknowledgement: The author is pleased to acknowledge the support of Prof. A. Zoubir,
SPG, Technische Universitat Darmstadt, Darmstadt, Germany, who hosted a visit where
the research, underpinning this paper, was completed.

APPENDIX A. PROPERTIES OF LAMBERT W FUNCTION

The following are useful properties of the Lambert W function:

WizIn(z)] = In(z2), z>0, 115)
W) = ln[W{y)] = @)~ W[FML. >0 116)

The latter formula underpins the iteration:
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W) = In(y) - In[ln(y) - In[W(»)]],
W(y) = In(y) - In[In(y) - In[In(y) - In[W(»)]1]], (117)

To prove that W[zIn(z)] = In(z), consider f(x) = x¢' which implies f[In(z)] = zIn(z) and,
thus, In(z) = /' [zIn(z)] = W[zIn(z)].

The relationship w(y) = In(y)—In[W(y)] follows from the definitions y = xe*, x = W(y)
which implies In(y) = x+ In(x) and, thus, x = In(y) - In[W(y)].

A1. Differentiation. The derivatives of the Lambert W function are defined according to

W)
S 1)
"0 = 5 e o

kW ()

O W W01 W)l

i 2k—1 2k - (119)
Y1+ WOl [1+ W)l

19

where the second inequalities follow from the relationship y = w()e”?) and the polyno-
mial p, is defined according to
pi(r) = ¢ gt e e 2r2+...+ckk71rk_l. 120)

The coefficients in this expression are defined according to (https://oeis.org/A042977; [7],
eqn 3.4; [23], p. 1370):

0 k<0
(_1)n+1nn—l k=0
Cok = *(n*1)5;171,k71*[3(n*1)*(k+1)]‘7;171,k+(k+1)cn71,k+1 1<k<n-3 121
_(”_l)cnfl,kfl_[3(”_l)_(k+l)]cnfl,k k=n-2
f(nfl)cn_l’k_1=(n71)! k=mn-1

Explicit expressions are:

pi(r) = 1, Ppy(r) = —(2+7), py(r) = 9+8r+2/°,
pa(r) = —[64+ 797+ 367" + 6], ps(r) = 625+ 974r+622/7 + 192/ +24r%, (122)

Pe(r) = —[7776+ 145437+ 11758/" + 51267° + 12007 + 1205 ].

APPENDIX B. PROOF of Theorem 3.2

The iteration formula, as specified in Theorem 3.1, yields the first order approxima-
tions as stated in Equation 30:
Y n](y)
Ity diy

WL](J/) =
(123)

Wy (¥) = In(1+y)-In(1) = ln[dl(y)]ln[’#}
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where n,(y) =y and d,(y) = 1+y. The second order approximations, as specified by

Equation 31, can be written in the form

_ [+ In(1+y)] _ m0)

WLz(y)

1+2y dy(y) e
_ _ ”20’)
Wy () = In[1+2y]~In[1+1In(1+)] = ln[dz(y)]fln[TJ,
where
ny(y) = y[1+In(l+y)] = ny(M[1+In[d,(]], 129

dy(y) = 1+2y = n(»)+d;(»).

The third order approximations, as specified by Equation 32 and Equation 33, can be
written in the form:

J’[1+1n(1+y)][1+ln[l+2y]_1n[l+ln(l+y)] } n3(y)

WL3(y) - 1+3y+yln(l+y) B d3(y)’ (126)
Wy () = In[1+3y+yIn(1+)]-1n [1+ln(l+y)][l+1n[1+2y]—ln[l+ln(1+y)] J
127
- ln[d3(y)]—ln[w}
y
where
ny(y) = y[l+ln(1+y)]|:l+1n[1+2y]—ln[1+1n(l+y)] J
n,(y) (128)
= )] 1+ Inldy 0] - In | 2=,
dy(y) = 1+3y+yln(l +y) = ny(y) +dy(»).
Thus, iteration yields the general formulas:
n,(y) nl(y)
W, = 707 Wy = ()]~ 11{7], (129)
where
n;_ o)
ny(y) = n,-,1<y)[1 T ln[diq(y)]fln[———yl-—ﬂ, no() =, do(») = 1, o

d;v) = n; () +d; ()

APPENDIX C. PROOF of Theorem 3.5
Consider the geometry illustrated in Figure 15 and an initial approximation for x,,

based on the intersection of the second order Taylor series for ye ™ at the origin, ie.
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y[1-x+x°/2], and x which is Wy, = l[leriA/lJrzyfyz] The problem with such an
y

approximation is that it only yields a real solution for 1-.2<y<1+./2.

A practical approach is to utilize an affine approximation at the origin of y(1-x) lead-
ing to the first approximation of Wy =y/(1+y). To establish a further approximation,

consider the point where the level 7, ~intersects ye * which is

= 2| =
WU1 ln[WL } In(1 +y). 131)
1

A second level approximation follows by finding the intersection of a second order Taylor
series at the point #,, , which is

2
w wow + o) M
L, =Wy W ———, 132)
with x to yield
w =L[1+W[1+W ]lefW2 W, [1+W ]} 133)
L, WL L, U, L, L, U,
1
and
= 2
WU2 ln[W J (134)
L2
Iteration in this manner leads to the general iteration formulas:
w, = 1 [1+W [1+W ]—Jl—Wz oW, [1+W, ] }
L; w Ly Uiy Ly Ly U4 P
L.
i1 (135)
W, = In LJ.
Ui [WLA

Simulation results (see Figure 16) indicate that the approximations also have good con-
vergence for the interval (-1/¢,0) but the approximations are not sharp at y = ~17e.

APPENDIX D. PROOF of Theorem 4.1

Consider the case of y fixed, y>0, and the illustration shown in Figure 18. By con-
struction, ¢, >0, ¢, >0 and w, >w, for ie{1,2,...}. Further, (see Equation 25)

=W, - L (136)

and it follows that w, , i< {1,2,...}, is a monotonically increasing sequence.

Using Equation 136 it follows that
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-] wplt+wyll W Wy—W]
g —¢ =[x, — —|x, —— —| = - - - 137
Ly "Ly, 0 L; 0 1+ WL; 1+ WL; 7
As Wy —W; =&, +ey, and g, >0, it follows that
WLA WLA

R Ty AN A L a7 B 2 (13%)
where r, = 1+1W . Thus, as w, monotonically increases with i, it follows that », mono-

L, '

tonically decreases with i, i.e. 0<r;, <r <1. It then follows that

i

0<8Li+|<8LI H rk<8Llr§. (139)
k=1
Hence, convergence is guaranteed as 0<r1=+<1. Thus: lime, =0 and
1+y/(1+y) i—>o0 i
Wi, .

limw, =x,. The result ¢, =¢, - L. [g, +&,] implies that lime, = 0 and, thus,
PN o i+l i 1+WL. i i i i
lim W, = x,.
i—> 0 !

APPENDIX E. ALTERNATIVE FORM FOR SPLINE APPROXIMATION

The general form for a nth order, two point, spline approximation for a function f, over
the interval [a, ], has been detailed in Howard, [16], eqn. 40. The assumption is that the
function f is at least nth order differentiable over the interval [a, B]. The approximation,
denoted f,, can be written in the modified form:

n+1

) = (B_x)n+l, i {nzkf(k)(ot)_(n*‘i)!'(x—oc)k+i:|+

B-o"" Sl S B o o
o) 5 ["k(l)kf(k)(ﬁ) NUES)Y (Bx)"f‘}
B-o)"" Sl Te o)

In this equation, the double summation can be rewritten by utilizing the transformations
r=i+k and u =i, ke {0,1,...,n}, ie{0,1,...,n—k}. The possible values of » = i+k are
detailed in Table 8 and for » fixed, the valid values for i are from the set {0,1,...,7}.

TABLE 8. Valid values of r=i+k for ke{0,1,...,n},
ie{0,1,...,n—k}.

k 0 1 2 3 n-2 n-1 n
0 0 1 2 3 n-2 n-1 n
1 1 2 3 4 n-1 n

2 2 3 4 5 n

3 3 4 5 6
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TABLE 8. Valid values of r=i+k for ke{0,1,...,n},
ie{0,1,....n—k}.

k 0 1 2 3 n-2 n-1 n
n-2 n-2 n-1 n

n-1 n-1 n

n n

With re {0,1,..,n}, ue {0,1,...,r} and i = u, k = r—u, Equation 140 can be written as

f(x)f_(ﬁ__nj_l_ é(xa){ L) w1 }r

B-a)" (rmwh ol g qy"
(141)
n+1 n r r—u fr—u)
G- I I D AR ( W U N
(B_a)n+l rle(B K {ME:O (r=u) utn! (B_Oﬁ)u:|.
Thus:
£ =B-0""" S a, o) +@-a0)" Y b, (B0 (142)
r=0 r=0
where
s = zf’ V@) (rw!
n,r n+1 (r u)' uln! _ w
(B ) B-a) (143)
1 (D AR () B R I
n, n+1 Z r—u)! . uln! . u'
6w (r-u) (B-a)
APPENDIX F. PROOF of Lemma 1
First, the definitions of f, g, and x = x, -1 with x>-1, imply:
v =g (x) = —+(x1—1)e 1, x,20. (144)

It then follows that y,—1/e =f(x,-1) which implies ffl[yl —1/e] = x,—1. With
x, = g]l(yl) and y = y,—1/¢, the required result of ) = g]l[er 1/e]-1 then follows.
Second, the transformation of y, = g(x;) = ,/g,(x)) = A/)71 x,; 20, results in

-1 -1
g () =x =g LMl (145)

As x, = g;l(yl) it then follows that g;l(yl) = g_l[,\/yT] and the final result follows:

o) = g[{wﬂ—l = g_luyTﬂ—l- (146)
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APPENDIX G. PROOF of Theorem 5.1

With D denoting the differentiation operator, the following well known results apply
for an arbitrary function f:

2)
DIf ()] _f(—l) p? ()] = ——_fl() (x)3 (147)
@] o1
x=f(2)
2
PO ) = L) ) (148)
4 5
Mo er|
x=f (2
3
P (2] = L) 100w 152w (149
5 6 7
Meor er 1w e

etc.
Consider g, as defined by Equation 75, over the interval [0,1]. A spline approxima-

tion (see Equation 70) for g ', of order », requires derivatives, of orders zero to » at the

points 0 and 1/.e, to be determined. Using the above formulas, such values can be
determined from the derivatives of g at the points 0 and 1 and values of these deriva-
tives are tabulated in Table 9. To determine the derivative values at zero, the standard
Taylor series expansion for the exponential function can be used to yield the alternative
form for g of

x| * l)x1
glx)) = Jz_e Z (l+2)' (150)

Using Equation 70, and the derivative values given in Table 9, the spline approximations

for gﬁl(yz), based on the points 0 and 1/./e and for orders one to four, are:

gIl(Yz) = A/Z—eyz[l_zA/éyz[l [Lz_ﬁJ+ey2[l—ﬁ+fﬂ (=
e
I_J.z_;yh[w(ﬁ_l)_L_&}y;_
_ e
&' (,) = A2ey, ” =

[ 8] oo RERA[[5R 5] 2 2]
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TABLE 9. Values of the derivatives of g(x,) at the points zero and one.

order g(i)(o) g(i)(l)
0 0 1
Je
! L Je
J2e 2
2
A2 Jé[l_é}
3./e 4
3 5 - 2
?M/é e
12./2¢ e g
4 11 - 3
9¢” 15e
45./2¢ 2ef 13+ 2 - |
5 _
29 Se[| gp420e _15e3+21e4}
432.2¢ 2 L 2 2 16
2
ey, Neyy 63/2[21_725_}4_25«/; 8,2 , 6,2
3 36 o 3pl TR e A2
_62[2@_,146ﬁ]+32ﬁe+22ﬁ+_—18“/§}y‘2‘7
-1 L 6 3 e
g5 (v5) = 2ey, (153)
5/2[335 40J§} 55¢" ¢ 20./5.ex 18,2, S+
i A Je |
GE= 34f2]+gfe # 620+ 6.2
«/Z_ey2 N lley§ 4383/2)/; . |
3 36 135ﬁ
i [4075 _§_9_§]_9_1_e__6_1_27ﬁ_64[2 s
o2 20 2 e 3207
[ 52766582 21267 315¢° 7 1022 256.2
e IR ~110./2¢ - 7 2 v+
-1 2 e
g4 (1) = J2ey,| - 3 (154)
3 [8467ﬁ 1 175} 128 fzy B
L 27 e 2
7/2[4904[_@2}_24% 90./3%% — 00 f5e - 256f2
27 3 NG 3o [
M 3 2
64[10843 71315}55e 4le 721[676”2 5
1352 361 2 L 3 |
In general:
-1 2 3 4 2k
g, (7)) = N2ey,[1+ 0Ly yy + 0pyy +0gyy T oy + oo+ 0y 05 (155)
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for appropriately defined constants and, thus:

-1 1
o) =g | ]
3/2 k
~ J2e /y+£|:l+oc1 [y+é+a2[y+ﬂ+a3[y+ﬂ +...+a2k[y+ﬂ}71.

APPENDIX H.  PROOF of Theorem 7.1

(156)

A zero order spline approximation is simply an affine approximation between the two
specified points. Consistent with Figure 23, the zero order spline approximation to w(y),
denoted f,, is an affine approximation between the points (u exp(u,),u,) and

(v,exp(v,),v,). Thus:

)

v,exp(v,)—u,exp(u,)

foO) = u, +[y—u,exp(u,)]- v € [u,exp(u,), v exp(v,)]. (57)

With the approximation x, = W(y,) ~f,(»,) it follows that

Vo~ Uy

v, exp(v,)—u,exp(u,)

x,=u,+ [y, —u,exp(uy)]- (158)

Simplification yields

L toVlexp() —exp(u,)] 4y [v, —,]

0 159)
v exp(v,) —u,exp(u,)

Substitution of u, = W, (v,) and v, = W, (y,) yields the required result.

H.1. General Result. The general result arises from the spline approximation, specified
by Equation 70 with f(y) = W(y), based on the points (u exp(u,),u,) and
(v exp(v,),v,) where u, = W, (y,)), v, = W, (»,), and with

-W(y) —kW(y)

Dy = ¢ , 00 = plW(y)]e ,
L+ W) [+t

ke {l,2,...}. 160)

Here p, is defined by Equation 120. The nth order spline approximation, for

y € [uyexp(u,), v, exp(v,)], 1S
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n+1
fo) = —e Rl

[v,exp(v,)—u, exp(u,)]

n

I o T T exp(u)] (4t ) )
O(y—uoexp(uo)) LZ T .(”u!nli) . }—&-

e —0 [voexp(vo)fuoexp(uo)]”

(161)

[y —uyexp(u,)]" "'

[v,exp(v,) —uoexp(uo)]n+ !

" & ED T T e )] (ks !
z%fvoexp(v0)7)0 { 2z (r—u)! .(tﬂ’g) ' ]u}

r= u=0

[v,exp(v,)—u, exp(u,)

The results W(u, exp(u,)) = u,, W(v, exp(v,)) = v, imply that

—(r—u)u,

pr_,(u,)e
[1+ uo]Z(r—u)— 1

" exp(u,)] =

(162)
—(r—u)v,
Pr_u(v,)e
2(r—u)—1"

7y exp(v,)] =

[1+v,]

assuming r>u. Hence:

[v,exp(v)—y]" "'

f,00) =

[voexp(vo) - uoexp(uo)]n+ !

n+r)u
(n+ ), .

rinl[v exp(v,) - uoexp(uo)]r

n
-

Z [y—u,exp(u,)] - . —(r—u)u,

r=0 Pr_u(ty)e C(ntu)! 1

2(r—u)—1 In!
Wor—w [ +u U exp(v)) —uexp(u,)]"

(163)

[y—uoexp(uo)]”Jrl .
[v,exp(v,)—u exp(u,)] o

n+r)v
(n+ 1), .

rinl[v exp(v,) - uoexp(uo)]r

_ _ —(r—u)v,
o D, vp)e (n+u)! 1

2(r—u)—1 'n!
Wm0 = [1+v POy e (v) —uexp ()]

3 [v,exp(v,)-y1 -
r=0

The required result follows: the approximation for w(y,), denoted W, ,(v,), arises for the
case of y = y,. Thus, W, ,(v,) = /,(,) -
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