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ABSTRACT. We study the quasi-likelihood estimator of the drift parameter in the stochastic partial
differential equations driven by a cylindrical fractional Levy process when the process is observed at
the arrival times of a Poisson process. We use a two stage estimation procedure. We first estimate
the intensity of the Poisson process. Then we plug-in this estimate in the quasi-likelihood to estimate

the drift parameter. We obtain the strong consistency and the asymptotic normality of the estimators.

1. Introduction

Parameter estimation in infinite dimensional stochastic differential equations was first studied by
Loges [20]. When the length of the observation time becomes large, he obtained consistency and
asymptotic normality of the maximum likelihood estimator (MLE) of a real valued drift parameter
in a Hilbert space valued SDE. Koski and Loges [18] extended the work of Loges [20] to minimum
contrast estimators. Koski and Loges [17] applied the work to a stochastic heat flow problem. See
the monograph Bishwal [5] for asymptotic results on likelihood inference and Bayesian inference
for drift estimation of finite and infinite dimensional stochastic differential equations.

Huebner, Khasminskii and Rozovskii [12] started statistical investigation in SPDEs. They gave
two contrast examples of parabolic SPDEs in one of which they obtained consistency, asymptotic
normality and asymptotic efficiency of the MLE as noise intensity decreases to zero under the
condition of absolute continuity of measures generated by the process for different parameters (the
situation is similar to the classical finite dimensional case) and in the other they obtained these
properties as the finite dimensional projection becomes large under the condition of singularity of
the measures generated by the process for different parameters. The second example was extended
by Huebner and Rozovskii [13] and the first example was extended by Huebner [11] to MLE for
general parabolic SPDEs where the partial differential operators commute and satisfy different

order conditions in the two cases.

Received: 19 Feb 2022.
Key words and phrases. Cylindrical fractional Levy process, stochastic partial differential equations, space-time color

noise, convoluted Levy field, infinite divisibility, Poisson sampling, quasi maximum likelihood estimator, consistency,

asymptotic normality.


https://adac.ee
https://doi.org/10.28924/ada/ma.2.15

Eur. J. Math. Anal.

Huebner [10] extended the problem to the ML estimation of multidimensional parameter. Lototsky
and Rozovskii [21] studied the same problem without the commutativity condition. Small noise
asymptotics of the nonparmetric estimation of the drift coefficient was studies by Ibragimov and
Khasminskit [14].

Bishwal [3] proved the Bernstein-von Mises theorem (BVT) and obtained asymptotic properties of
regular Bayes estimator of the drift parameter in a Hilbert space valued SDE when the correspond-
ing ergodic diffusion process is observed continuously over a time interval [0, T]. The asymptotics
are studied as T — oo under the condition of absolute continuity of measures generated by the
process. Results are illustrated for the example of an SPDE.

Bishwal [4] obtained BVT and spectral asymptotics of Bayes estimators for parabolic SPDEs
when the number of Fourier coefficients becomes large. In that case, the measures generated
by the process for different parameters are singular. Here we treat the case when the measures
generated by the process for different parameters are absolutely continuous under some conditions
on the order of the partial differential operators. Bishwal [9] studied the asymptotic properties of
the posterior distributions and Bayes estimators when one has either fully observed process or
finite-dimensional projections. The asymptotic parameter is only the intensity of noise. In this
paper we treat the more general model with non-Gaussian noise with long memory.

On the other hand, recently long memory processes, i.e. processes with slowly decaying auto-
correlation and processes with jumps have received attention in finance, engineering and physics.
The simplest continuous time long memory process is the fractional Brownian motion discovered by
Kolmogorov [15] and later on studied by Levy [19] and Mandelbrot and van Ness [27]. Continuous
time long memory jump process is fractional Levy process. Hence fractional Levy process can also
be called the Kolmogorov-Levy process.

We generalize fractional SPDE process to include non-normal innovations. We consider Hurst
parameter greater than half. This model is interesting as it preserves both jumps and long memory.

A normalized fractional Brownian motion {W/?, t > 0} with Hurst parameter H € (0,1) is a

centered Gaussian process with continuous sample paths whose covariance kernel is given by
1
EWHwH)Y = E(szH + 27—t =52, s, t>0.

The process is self similar (scale invariant) and it can be represented as a stochastic integral
with respect to standard Brownian motion. For H = % the process is a standard Brownian motion.
For H # % the fBm is not a semimartingale and not a Markov process, but a Dirichlet process.

The increments of the fBm are negatively correlated for H < % and positively correlated for for

H < % and in this case they display long-range dependence. The parameter H which is also
called the self similarity parameter, measures the intensity of the long range dependence. The
ARIMA(p, d, q) with autoregressive part of order p, moving average part of order g and fractional
difference parameter d € (0, 0.5) process converge in Donsker sense to fBm. See Mishura [22].
The fractional Levy Ornstein-Uhlenbeck (fOU) process, is an extension of fractional Ornstein-

Uhlenbeck process with fractional Levy motion (fLM) driving term. In finance, it could be useful
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as a generalization of fractional Vasicek model, as one-factor short-term interest rate model which
could take into account the long memory effect and jump of the interest rate. The model parameter
is usually unknown and must be estimated from data.

Fractional Levy Process (FLP) is defined as
M t— )Y 2 (=) Pam, teR
= T T

where {M;, t € R} is a Levy process on R with E(M;) =0, E(M2) < oo and without Brownian
component.
Here are some properties of the fractional Levy process:

1) the covariance of the process is given by

cov(Mi, Migs) = ———EMD 2k | g _ | _ g2t
s 2 (2H + 1) sin(TH)

2) My is not a martingale. For a large class of Lewy processes My is neither a semimartingale.

3)My is Holder continuous of any order 3 less than H — 5

4) My has stationary increments.

5) My is symmetric.

6) M is self-similar, but My is not self-similar.

7) My has infinite total variation on compacts.

Thus FLP is a generalization and a natural counterpart of FBM. Fractional stable motion is a
special case of FLP. First we discuss estimation in partially observed models and then we discuss
estimation in directly observed model in finite dimensional set up. In finance, the log-volatility
process can be modeled as a fractionally integrated moving average (FIMA) process which is
defined as

Yi(t) = /t gt — 1)dM,, t € R

[e.e]

where

1 t 3
gH(t) = / g(t—s)s"2ds, teR
r(H-=3)Jo

which is the Riemann-Liouville fractional integral of order H and the kernel g is the kernel of a
short memory moving average process. The log-volatility process will have slow (hyperbolic rate)
decay of the auto-correlation function (acf).

The process Yy(t) can be written as
t
YH(t)Z/ g(t —u)dMy,, t€R.

We assume the following conditions on the kernel g : R — R, namely 1) g(t) = 0 for all t < 0
(causality), 2) |g(t)| < Ce™¢t for some constants C > 0 and ¢ > 0 (short memory).
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The FIMA process is stationary and is infinite divisible. It has long memory and jumps which
agree empirically with stochastic volatility models. The asset return can be modeled as a COGA-

RCH process
dX(t) = Ver®dL,
where (Lt, t € R is another Levy process and the initial value Yy(0) is independent of L.
Consider the kernel
g(t —s)=oe 9y (t—5),0>0
then
gu(t) = 7%) /OOO S PN G s)sH=2ds, teR.

Note that
ytoo — [ gu(t—u)dM,, teR
R

is the fractional Levy Ornstein-Uhlenbeck (FLOU) process satisfying the fractional Langevin equa-
tion

dUs = —0Usdt +0dMp+, t € R.

The process has long memory. Levy driven processes of Ornstein-Uhlenbeck type have been
extensively studied over the last few years and widely used in finance, see Barndorff-Neilsen
and Shephard [1]. FLOU process generalizes FOU process to include jumps. Maximum quasi-
likelihood estimation in fractional Levy stochastic volatility model was studied in Bishwal [6].
Berry-Esseen inequalities for the discretely observed Ornstein-Uhlenbeck-Gamma process was
studied in Bishwal [7]. Minimum contrast estimation in fractional Ornstein-Uhlenbeck process
based on both continuous and discrete observations was studied in Bishwal [8].

Consider the asset return driven by fractional Levy process
dSpt =0r—dLys, £t>0, So =0,

with log-volatility
Iogaf =u+Xs, t>0

where the Levy driven OU process X satisfies

d)(t_L == —QXtdt+ th, t> 0

with € R and the driving compound Poisson process M is a Levy process with Levy symbol

2 .
(o) = =% + [ (€= 1)001/5(a0)

where @ 1/ being a normal distribution with mean 0 and variance 1/X. This means that M is the
sum of a standard Brownian motion W and a compound Poisson process J; = LV;l Lk, J_¢=

;Lvl*t Z_k, t >0 where (N, t € R) is an independent Poisson process with intensity A > 0 and
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jump times (tx)kez, i.e., My = Wi + Ji. The Poisson process N is also independent from the i.i.d.
sequence of jump sizes (Zx)kez with Z1 ~ N(0,1/X). The Levy process M in this case is given by

Nt
2
My = Z(aZk +9/Zk]) —Ct, t>0 and C _’Y[|X|>\<D01/>\(dx) \/77'

k=1

{M_¢,t > 0} is defined analogously. The stationary log-volatility is given by

t
|oga§:u+/ e 0= g, .

— o
We observe S at n consecutive jump times 0 =ty < t; < ... < t; < T < tp41, n € Z over the time

interval [0, T]. The state process X has then the following autoregressive representation

t; ti
Xoy = e+ ) e Wz +v|Z] —/ e %= Cds
k=N, ; +1 ti-1

. C ,
= e_eAt’XtF1 +al; + (|Z,‘| — 5(1 — e_eAt’))

where At; =t —ti_1, 1=1,2,..., nand Ny, |, +1=N¢ = 1.

We do the parameter estimation in two steps. The rate A of the Poisson process N can be
estimated given the jump times t;, therefore it is done at a first step. Since we observe total
number of jumps n of the Poisson process N over the T intervals of length one, the MLE of A is
given by A, = 2

To estimate the remaining parameters (o, 6, i), we use the quasi maximum likelihood estimation
procedure in conditionally heteroscedastic time series models developed by Straumann [25].

Assuming that SHt given SAt’ L Sfﬁl,Xo is conditionally normally distributed with mean
zero and variance O'tl,_/>\, the conditional log-likelihood given the initial value Xp has the repre-

sentation

1y (Sp)?
L(BISh. 2) == =3 log(2m) — ;Iog(ai/k)—; e

where 5,%/ = SHt, — SHt, , is the return at time t;. Since the volatility is unobservable, this log-
likelihood can not be evaluated numerically. The quasi log-likelihood function for ¥ = (6, a, 7y, u)
given the data SA (Sﬁ,ttl1 Sﬁté ..... Sﬁ'tt”n) and the MLE ), is defined as

“ 1 < < 1 (S Ht)2
LS5 X)) = ==Y log(6% (0, An) — = _ '
Shi PR LR R D % WY

where the estimates of the volatility 02Hvt,, i=1,2,..., n are given by
67,1 (0 An) = exp(u+ e T Xy, (0,0) — CAL),B=1,2,..., n

and given the parameters 9% and X the estimates of the state process X are given by the recursion

SH n SHt
61, (9,N) G(9, )

A~

Xue, = e PPXy | +ax —CAt ), i=1,2,..., n
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Note that E(W|) =/, W ~ N(0,1/X).

Here the approximation (1—e™%) ~ z for small z is used and % approximates the innovation

Z;. The recursion needs a starting value Xy o which will be set equal to the mean value of the
stationary distribution of x which is zero. the mean value zero of the stationary distribution of X.
QMLE of ¢ is defined as
By = L(B]SH. An).
n = argmax L(9]Sp, An)

Let (2, F, {Ft}t>0, P) be the stochastic basis on which is defined the Ornstein-Uhlenbeck process

Xt satisfying the 1t6 stochastic differential equation
dX¢ = —0Xedt +dMf, t >0,

where {M}'} is a fractional Levy motion with H > 1/2 with the filtration {F;};>0 and 8 € R* is
the unknown parameter to be estimated on the basis of completely directly observed continuous
observation of the process {X;} on the time interval [0, T]. Observe that
Xi = / t e 0= gm!t,
— 0o
This process is stationary and is a process with long memory. It can be shown that X; is a
stationary discrete time AR(1) process with autoregression coefficient ¢ € (0, 1) with the following

representation
Xy = @Xe, + €ty
where

ti
¢=e% and et,._l:/ e = gpmH.
ti—1

Then the problem is a AR(1) estimation with non-Gaussian non-martingale error. For equidistant
sampling, one can study the least squares estimator which boils down to the study of error distribu-
tion for non-semimartingales. One can specialize to the case when M is a either a gamma process
or an inverse Gaussian process in order to have infinite number of jumps in a finite time inter-
val unlike the compound Poissoan case which have finite number of jumps in a finite time interval.
These fractional Gamma and fractional inverse Gaussian Ornstein-Uhlenbeck (FLOU) processes are
LOU processes which include long memory. In the next section we deal with completely observed
process.

The rest of the paper is organized as follows : Section 2 contains model, assumptions and

preliminaries. Section 3 contains the asymptotic properties of quasi likelthood estimator.

2. FLSPDE Model and Preliminaries

In order to introduce fractional Levy stochastic partial differential equation (FLSODE) we proceed

as follows. Let us fix 6y, the unknown true value of the parameter 6. Let (2, F, P) be a complete
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probability space and W(t, x) be a process on this space with values in the Schwarz space of
distributions D’(G) such that for ¢, 9 € C5°(G), ||¢||221(G) (W(t,-), ¢(-)) is a one dimensional

Wiener process and

E(W(s,-), o()W(t, ). 9()) = (s A 1) (. ¥)12(6)-

This process is usually referred to as the cylindrical Brownian motion (C.B.M.).

We assume that there exists a complete orthonormal system {h;}?°; in L2(G)) such that for
every i =1,2,.. ., hi € W2(G) N C=(G) and

/\Qh,‘ :ﬁ,'(g)h,', and [,Qh,‘ = M,’(@)h,’ forall 0 € ©

where Lg is a closed self adjoint extension of A?, Ag 1= (k(8)] — Lg)*/?™, k(6) is a constant and
and the spectrum of the operator Ag consists of eigen values {3;(0)}7°; of finite multiplicities and
wi = —B7™ + k(6).

CFLP My(t) can be expanded in the series

My(t, x) = Z Mp,i(t)hi(x)
p

where {My;(t)}?°; are independent one dimensional FLPs, see Peszat and Zabczyk [24]. The

latter series converges P-a.s. in H™" for v > d/2. Indeed
oo oo
IMH(DI2, = 3 ME(DIIAI2, = 3 ME (1)
i=1 i=1

and the later series converges P-a.s.
Consider the parabolic SPDE

du®(t,x) = 0u8(t, x) + ;jzue(t,x)dt + dMy(t,x), t >0, x€[0,1] (2.1)
u(0,x) = uo(x) € L2([0,1]) (2.2)
Wf(t,0) =8t 1), te [0,T], (2.3)

Here 8 € © C R is the unknown parameter to be estimated on the basis of the observations
of the field v®(t,x),t > 0, x € [0,1]. For x € [0, 1], we observe the process {u;, t > 0} at
times {to, t1, to,....}. We assume that the sampling instants {t;,i = 0,1,2...} are generated by
a Poisson process on [0, ), e, tp = 0,t = ti_1 +&;, i = 1,2,... where & are i.i.d. positive
random variables with a common exponential distribution F(x) = 1—exp(—Xx). Note that intensity
parameter A > 0 is the average sampling rate which is assumed to be known. It is also assumed
that the sampling process t;,i =0, 1,2, ... is independent of the observation process {X;, t > 0}.
We note that the probability density function of t,; — tx is independent of k and is given by the
gamma density

fi(t) = A(O\t) " Lexp(=At)l;/(i— 1)1, i=0,1,2,.... (2.4)

where [y =1ift>0and I; =0if t <O.
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Consider the Fourier expansion of the process
[e.e]
u(t, x) = Z ui(t)di(x) (2.5)
t=1

corresponding to some orthogonal basis {¢;(x)}2;. Note that the Fourier coefficients {u?(t), i >

1} are independent one dimensional Ornstein-Uhlenbeck processes
duf(t) = plub(t)dt + B dMpy,(t) (2.6)
uf(0) = ug;,
Recall that u;(60) = k(0) — B?™. Thus
duj(t) = (k(0) = B (t)dt + B dMp, (1) (2.7)

The random field u(t, x) is observed at discrete times t and discrete positions x. Equivalently, the
Fourier coefficients u,-e(t) are observed at discrete time points.

Now we focus on the fundamental semimartingale behind the O-U model. Define

ky = 2HI(3/2—H)(H+1/2),
ku(t,s) = Kgl(s(t—s))%*H,
_ 2HI(3—2H)I(H+3)
o r(3/2— H)
Ve = vt_f" = n;1t2*2H,
ME = /OtkH(t,s)dI\/lf.

For using Girsanov theorem for Brownian motion, since a Radon-Nikodym derivative process is al-
ways a martingale, a central problem is how to construct an appropriate martingale which generates
the same filtration, up to sets of measure zero, as the non-semimartingale called the fundamental
martingale.

Extending Norros et al. [23] it can be shown that M} is a martingale, called the fundamen-
tal martingale whose quadratic variation (M"); is v{’. Moreover, the natural filtration of the
martingale M coincides with the natural filtration of the FLP M" since

t
MH ::/ K(t,s)dMY
0
holds for H € (1/2,1) where
t
Ky(t,s) .= HQ2H — 1)/ rH_%(r - S)H_%dl’, 0<s<t
S

and for H = 1/2, the convention Ky, =1 is used.
Define

t
Qi(t) := dth/o ky(t, s)ui(s)ds, i > 1.
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It is easy to see that
MH 2H-1 ' 2H-1
Define the process Z; = (Zi(t),t € [0, T]) by

Zi(t) :—/O ky(t, s)du;i(s).

Extending Kleptsyna and Le Breton [16], we have:
(i) Z; is the fundamental semimartingale associated with the process u;.

(it) Z;j is a (F¢) -semimartingale with the decomposition

t
2,(6) = w(6) [ Quls)dvs+ ;MY
0

(iit) u; admits the representation

ui(t) = /O Ku(t,s)dZi(s).

(iv) The natural filtration (Z(t)) of Z; and (U;(t)) of u; coincide.

We focus on our obserbations now. Note that for equally spaced data (homoscedastic case)

T\ 2-2H
Ve — Ve, = N (n) k220 —(k—1)272H], k=1,2,--- ,n. (2.8)
For H=10.5,
Ve, — Vi, = Ny (77-)22’4 [k22H — (k —1)?721) = % k=1,2,..., n.
We have
Qi(t) = / k(t, s)ui(s)d

— K’HldV/ 1/2— H(t 5)1/27HU/(S)C/S

d t
= ky'nut?” ldt/ sY2=H(t — s)/2=Hy(s)ds
t
_ _ d _
_ KlHlnHt2H 1/0 dt 1/2 H(t )1/2 HU,‘(S)dS

= nﬁlnHtZH_I/ sY2H(t — s)7H2 Hy(s)ds. (2.9)
0

The process Q; depends continuously on u; and therefore, the discrete observations of u; does
not allow one to obtain the discrete observations of Q;. The process Q; can be approximated by

n—1

Qi(n) = kytnun? =Y j127H(n — j)=HEHy (). (2.10)
j=0
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It is easy to show that Q;(n) — Q;(t) almost surely as n — oo, see Tudor and Viens [26].

Define a new partition 0 <n <n<n <-- <y =t k=12---,n Define
my
Qi(ty) = kyy'nut 1 Z Ql/QiH(fmk — )R () (= r-a), (2.11)
j=1
k=1,2,---,n.
It is easy to show that Qv;(tk) — Q;(t) almost surely as myx — oo for each k =1,2,--- , n.

We use this approximate observation in the calculation of our estimators. Thus our observations

are

t _ _ t
ui(t) ~ / Ki(t,s)dZi(s) where Zi(t) = 9/ Oi(s)dvs + M. (2.12)

0 0
observed at Poisson arrivals tq, to, . . ., t,. We observe just one such approximate Fourier coefficient
ui(t) which we denote by u(t) and the corresponding observations are denoted by uy,, ug,, . . ., Ut,

and let n — oco. Ideally we are in a large time asymptotic framework.

Now we focus on the estimation methodology. Define

A

=p(N,0) = . 2.13
P P( ) A — K,(G) _|_5i2m ( )

The quasi likelihood estimator is the solution of the estimating equation:
G:(8) =0 (2.14)

where
ccqy _ BN 0))? < 2 )t
Gn(0) = W Z Uty ((Utf_le,o()\: 0))” + )\) (uy, = p(X O)uy, ) (2.15)
' i=1

We call the solution of the estimating equation the quasi likelihood estimator. There is no explicit
solution for this equation.

The optimal estimating function for estimation of the unknown parameter 6 is

Gn(e) :6/2UZ Ut‘,,l[ut,' - ,0()\,9)Ut/71]. (216)
i=1

The martingale estimation function (MEF) estimator of p is the solution of G,(6) = 0 and is

given by
n
PO Zi:l Utlfluti

on = (2.17)
! > Ug,-,l

3. Main Results

We do the parameter estimation in two steps: The rate A\ of the Poisson process can be estimated
given the arrival times t;, therefore it is done at a first step. Since we observe total number of

arrivals n of the Poisson process over the T intervals of length one, the MLE of X is given by

o= = (3.1)
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Theorem 3.1 We have

5\,,—>>\a.s. as n— oo,
Vi(hn =) =P N, X1 —-e?)) as n— .
Proof. Let V; be the number of arrivals in the interval (/i — 1,/]. Then V;, i =1,2,..., n are i.i.d.

Poisson distributed with parameter A. Since ® is continuous, we have /103 (V) = I{0y(u(t))) a.s. | =
1,2,..., n. Note that

1 n
- > loy(ug) =7 E(lipVh) = P(h =0) = e as n — co.
=1

LLN and CLT and delta method applied to the sequence /o (uy), 1 =1,2,..., n give the results.

The CLT result above allows us to construct confidence interval for the jump rate A.
Corollary 3.1 A 100(1 — )% confidence interval for A is given by

(=

where Z;_a is the (1 — 5)-quantile of the standard normal distribution.
We obtain the strong consistency and asymptotic normality of the MEF estimator.

Theorem 3.2 We have
Oon — pas. as n— oo,
Vn(pn —p) =P N0, X7'(1 —eP)) as n— oo.

Proof: By using the fact that every stationary mixing process is ergodic, it is easy to show that
if ur is a stationary ergodic O-U process and t; is a process with nonnegative i.i.d. increments
which is independent of v, then {ut,, i > 1} is a stationary ergodic process. Hence {us, 7 > 1} is
a stationary ergodic process.

Observe that u?(t) := v; is stationary ergodic and v; ~ N(0,02) where o2 is the variance of

tp. Thus by SLLN for zero mean square integrable martingales, we have as n — oo,

1 n
. Z U g, =7 E(ugyuy) = pE(ug,)
i=1

1 n
2 a.s. 2
n Z Uy = E(Ufo)
i=1

Thus ,
ZI:l Ut;_y U _yas.
> uf
i=1"tj_4
Further,
71 2
/ Zz 1 Ut 1(Uf Quti—l)

ﬁ(ﬁn - p) _1 Z LI
l:]. t,;l
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Since
E(Uh UtQ‘Utl) = 9”%

it follows by Lemma 3.1 in Bibby and Srensen [2]

n
-1/2 Z
n / Ut,-,l(ut,' - Gutlfl)
i=1
converges in distribution to normal distribution with mean zero and variance equal to

El(utug,) — E(ugug|ug)]? =1 — 2P0 28, — 0)(B + 1)} .

Applying delta method the result follows. 0

In the next step, we use the estimator of A to estimate 6.

Note that
1 > U%_l
Pn B Z?:l Uti—lutl-
Hence
LB R0) | TR,
A Z?:l Ut;_, Uy
Thus
%m — k(0) _ Z?zl U%il 1= _Z/n:l uti—l[uti — uti—l]
A D _ily Uty Ug YLyt Uy

Now replace X by its estimator MLE X,,.

Z?:l uti—l[uti — Utf—1]

T n
n Z/:l Uty Ut

B — K(6) = —

Thus
Z7:1 Uy [ug, — u, |

T n
F Z/Zl Utlfl Ut/

Since the function k~!(-) is a continuous function, by application of delta method, the following

b=k |8+

result is a consequence of Theorem 3.2.

Theorem 3.3

0, =35 0 as n— oo,
Vn(B, — 0) =P N(0, (K(0))72A2(1 — e~ W(O-FI")) as n — co.

In the second stage, we plug-in X by its estimator \,.

Remark Sub-fractional Brownian motion, which has main properties of the fractional Brownian

motion, excluding the stationarity of increments, has the covariance function

1
Ch(s, t) =s2H 4 21 — 5 [(s+ )" +]s—tP"], s, t>0.
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One can gereneralize this to sub-fractional Levy process by plug-in method which would have
nonstationary increments and corresponding SPDE models could be used for modeling in finance

and biology.
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