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ABSTRACT. In this note, we introduce a new approximate Birkhoff orthogonality type and give a char-
acterization for inner product spaces using the approximate orthogonality. We show some general
properties of the approximate Birkhoff orthogonality type as well as applications. In particular, we
study the relationship between the new approximate Birkhoff orthogonality type and other approx-
imate orthogonality types that have been defined before. Furthermore we study the approximate

preserving mapping and give some properties.

1. INTRODUCTION

One of the important ideas playing a fundamental role in geometry of normed spaces is the con-
cept of orthogonality. Many mathematicians have introduced different types of orthogonality for the
normed linear spaces, cf. [2,20,24]. In 1934 [23], the first orthogonality type:Roberts orthogonality
was introduced by Roberts. After that in 1935 [5], Birkhoff introduced one of the most important
orthogonality types: x is said to be Birhoff orthogonal to y (x Lg y) if || x+ty| > ||x| forall t € R.
Then James in 1945 [15] introduced the Pythagorean orthogonality and isosceles orthogonality:
X is said to be isosceles orthogonal to y (x L, y) if |[x + y|| = |[x — y||. There are also other
orthognality types related to norm limit such as p-orthogonality and g-orthogonality [10,18].

Let X be inner product spaces (X, (:|-)), all the orthogonality types are equivalent to x L y or
equivalently, (x|y) = 0. In inner product spaces a natural way to generalize orthogonality is to
define the approximate orthogonality by: x L€ y if and only if [(x|y)| < e€||x||lly]l, x,y € X [9,26].
Inspired by the approximate orthogonality, Dragomir [13] gave the definition of the approximate
Birkhoff orthogonality x¢ Lg y : [[x + ty| > (1 — €)||x]|| for all t € R. It is easy to see that
this type of approximate orthogonality is equivalent to L€ in inner product spaces [13]. After that
Jacek Chmielinski [21] introduced the approximate Birkhoff orthogonality x L& y @ [[x + ty|? >
[ x|I? = 2¢||x]l|| ty]| for all t € R, the approximate isosceles orthogonality [11] x LSy : [[|Ix + y||* —
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Ix = yIP| < 4ellx|lllyll for all t € R, and x* L y : [[Ix + yl| — Ix = ylll < ellx + ylllx = y] for
all t € R. Many meaningful results have been found about approximate orthogonality through the
tireless efforts of mathematicians, see [12,14].

In this paper we will introduce a new approximate Birkhoff othogonality type and investigate
its properties and its relationship with other approximate orthogonality types. Moreover we give a
characterization of inner product spaces by approximate orthogonality types and some properties
about approximately orthogonality preserving mapping.

Throughout the paper we will only consider normed spaces with dimX > 2, we use (-|-) denoting

the inner product and (:|-) denoting the angle between x and y, ie, in inner product spaces

P P 12
X = .
(x.y) STy

2. APPROXIMATE BIRKHOFF ORTHOGONALITY L g,

Let € € [0,1) and x, y be elements of inner product spaces X, we have the vertical relationship:
x Ly < |(x|ly)| = 0. To generalize the orthogonality, it is natural to consider the approximate

orthogonality (e-orthogonality: x L€ y) defined by:
x Loy = [xIy)| <ellxllllyll <= [cos(x,y)l <e.

Now we consider normed spaces, many mathematicians have introduced different types of orthogo-
nality to represent orthogonality such as Birkhoff orthogonality [5] and Isosceles orthogonality [15].
As an extension for the orthogonality, approximately orthogonality such as approximate Birkhoff
orthogonalty [13,21]:
xlpy = lIx+ty[ =21 -¢lx]| teR.
x 1y <= lIx+tyll> > [IxI” = 2¢lix]llityll teR,
and approximate isosceles orthogonality [11]:

x Liy = [lIx+yl? = Ix = yIP| < 4ellxlllyll teR.

Ly = lix+yl=lIx=yll <elx+ylllx -yl teR,
have been defined and studied. Notice that the definition of ¢ 1 5 is quadratic while the definition
of L% is of first order, we give a new approximate Birkhoff orthogonality type:

X Lpey < lIx+tyl = [IxI]| —elltyl.

which is also of first order but different from ¢ Lg. It is easy to see that the inequality is always

Il
ellyll

correct if t >

Example 2.1. Let X = (R?,|| - |l1), assume that x = (1,0), y = (z,1 —z), z € [0,1). If we
want x¢ L g y, then the inequality ||x + ty|| > (1 — €)||x|| should hold for all t € R, thus we have:

I(1+tz, t(1—2))[>1—€ teR.
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If t > 0, the inequality is always correct. Fort <0, if 1 + tz > 0, we have:
l1+tz—t+tz>1—¢€.

thus z < %— 5;- Byl+tz >0, wegetz< ﬁ If1+tz <0, similarly we need t < e—2. Since
zgﬁ, from1+tz <0, wegett<e—2. ThustJ_Byiffzgﬁ.

On the other hand, if we want x L. y, the inequality ||x + ty|| > ||x|| — €l|lty| should hold for
all t € R, thus we have:

I(1+tz, t(1—2)|>1—€|t| teR.

If t > 0, the inequality is also always correct. Fort <0, if 1 + tz > 0, we have:
l+tz—t+tz>1+¢t.

Thus z < €. Similarly we can get ||(1 + tz,t(1 — 2))|| > 1 —¢€|t| for L + tz < 0 if z < 1E€.

Thus x Lge y iff z < % We have the result that L g¢ is not always equivalent to ¢ Lg in X.

Since the definition of approximate Birkhoff orthogonality comes from the notion of approximate
orthogonality L€ in inner product spaces, it is natural to require the equivalence: x Lg. y
x L€ y in inner product spaces. Now we give some basic properties about L g before prove the

equivalence.
Proposition 2.2. Let X be normed spaces, then L g, is homogeneous., this is
X Lpey implies ax 1g. By (x,y € X,a,B € R).

Proof. Since x Lg. y, we have ||x + ty| > ||x|| — €l[ty|| forany t e R. If o« = 0 ,ax Lge By is

always correct; if a # 0, we have
_ s B —
llox + 8yl = lelllx + —tyll = latlixll — el tyll} = llax]| - elltByll.
Thus ax Lge By. O

Recall that the limits [16] :

. o lx Ayl =i
im flnx -yl = x| = lim, p :

Ni(x;y) =

exist and satisfy the weakened linearity condition [4]. x, y are said to be Gateaux differentiable [1]

at 0 ifN_(x,y) = Ni(x,y). Moreover we have [16]:
Ni(x;rx+sy) =rl|x|]|+s-Nx(x;y), fors>0and allr.

We then give a characterization of x L g, y using the definition of Ni(x,y).
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Proposition 2.3. Let X be normed spaces, then
X Lpey if and only if Ny(x,y) +€llyll =2 0 = N_(x, y) —€lly]].

Proof. Let x Lg. y and t € R\{0} then

[Ix + tyll — (1]l
|¢]

> ellyll.

Let t — 0T, we have N (x,y) > —¢l|ly||. Similarly, let t — 0~, we have N_(x,y) < €l|ly||. To sum
up, Ny (x,y) +ellyll > 0> N_(x,y) —ellyl.
Conversely, if Ny (x,y) > —e€lly||, for Vn > 0, there 36 such that if 0 < t <0, we have:

[Ix + tyll =[]l
t

> —(e+nlyll

or equivalently
Ix + tyll =[xl = =t(e +n)llyll for t €(0,4].

Because of the convexity of ||x + ty||, we have

Ix + tyll = [Ix|| = =t(e +m)llyll for t > 0.

Let 6 — 0, we have

Ix + tyll = lIxll = —elltyll for t > 0.

Similarly, using N_(x,y) < €||y|l, we have:||x + ty| — ||x]| > t(e)|ly|| for t <O.

Ift=0,|

x + ty|| — ||x|| > €||ty]| is obvious. To conclude, we have:
[x + tyll = lIxI| > elltyll forteR.

Thus x Lge y. O

To verify the validity of the new approximate Birkhoff orthogonality, we have the following

proposition:
Proposition 2.4. Let X be normed spaces, we have:

x Lgey ifand only if x 1¢y.

lIxl

we have
ellyll

Proof. Since x Lg. y, for0 <t <

Ix + tyll = [[x]] — elltyl].
Square both sides we get
IXI17 + [y 12 +2t(x, ¥) > [IxI? + 2 (ly [ — 2¢]| x| [ty
Thus (1 —€2)t|ly|l > —2|Ix||(e+ cos(x,y)) When t tends to 0, (1 —€?)t||y|| tends to 0, so we have
e+ cos(x,y) >0 <= cos(x,y) > —e.

Similarly for 0 > t > —%, we have cos(x,y) <¢, thus x L€ y.
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Conversely, if |cos(x,y)| <€, we have
[x + tyll = lIxll > elltyll for [t] € [0

x|| > €l|ty|| is always correct for |t| > ” I 7o conclude,
Y 175

Ix + tyll = lIxIl = elityll fort €R.
Thus x Lge y. |
From Ny(x;rx+sy) =r||x|| +s- Ne(x;y), for s> 0 and all r, we have the following:

Proposition 2.5. In the normed space X, if x Lge y, then we have x Lg. rx+ sy fors >0, r
satisfying

(irx + syl = sllyll) = rllxll = e(sllyll — [[rx + syl)).

Proof. Since x Lge y, we have Ny (x,y) > —e€|ly|| and N_(x,y) < €|ly|l, so
Ni(x, rx +sy) = rllx|| + (=sellyll) = —¢llrx + sy].
Similarly we have N_(x, rx + sy) < €|lrx + sy||, thus x L rx+sy. O

Let X be normed spaces, it is known that [16] for any x,y € X there exists a real number a
such that x 1 g ax + y, moreover, such a number satisfies |a| < HyH On this basis, Chmielinski [9]

discovered that x L% y if and only if there exists a real number |a| < ”y”e such that x Lg ax+y.

In fact, in inner product spaces, it is easy to see that x L€ y if and only if there exists |a| < Hi”e

such that x L g ax + y by taking a = —?ﬁ(‘ﬁ’gx +y for x #0.

In the following we will prove that it is also true for L g, that is, in normed spaces,

Iyl
[ x|

x Lpgey if and only if there exists |a|] < ——€ such that x Lg ax +y.
Before the proof, we need some lemma.
Lemma 2.6. [16] Let X be normed spaces,
N_(x,y) < Ni(x,y).
Lemma 2.7. [16] Let X be normed spaces, a< b, a, be X, ifx Lg ax+y,x Lg bx+y, then
x lgcx+y forcela bl

Lemma 2.8. [76] Let X be normed spaces,

xlgax+y <= N_(x,y) < —=a|x|]| < Ni(x,y).
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Theorem 2.9. Let X be normed spaces, x Lgc y if and only if there exists |a| < %e such that

X lgax—+y.
Proof. If x L. y, first we have

N-(x,y) <elyll . Ny(x,y) = —ellyll.

On the other hand, from Lemma 2.8, we have if

then x L g ax + y. If there exists no |a|] < He such that x L g ax + y, then

CNoy) N_(y)

[l [l I [

Thus
Ny(x, y) <llyll or Nex,y) > llylle.

Contradict to x 1 g y, so there must exists |a] < e such that x lgax+y.

X1l
ellyll

Conversely, if there exists |a| < T

such that x L g ax + y, we have:

xlpax+y = —Nie(x,y) < alx|| < =N_(x,y)
= Ni(x,y) +elyll 20 = N_(x,y) —ellyl
= X lpey.

To conclude, in normed spaces, x 1 g, y if and only if there exists |a| < |“y—|i6 such thatx 1Lg ax+y.

Ix]
(]

Since both x 1 g¢ y and x L, y are equivalent to there exists |a| < He such that x Lg ax+y.

we have x L g y if and only if x L% y in normed spaces. Now we give a direct proof for this.

Theorem 2.10. Let X be normed spaces,

X Lgey ifandonly ifx L5 y.

[l

Proof.We can assume that |t| < Il

and x # 0. If x Lge y, we have:
[x + tyll > [Ix|| — €llty]l > 0.
Take square on both sides, we get

I+ tyll? > lIxI1? = [ty = 2¢lixllity .

Thus ||x + ty||? > ||x||* — 2€||x]|l||ty|l, which means that x L% y.

Conversely, if x L% y, we have

I + ty 12 > [IxII” = 2¢l|x[llI ty || > 0.
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Let both sides be divided by ||x + ty|| + ||x||, we get:

—2€l|x]| || ty]]
X+ tyll + || x|

Ix + tyll = Ix]| = ||
Since ||x + ty|| tends to ||x|| when t — 0, for every 2||x|| > § > 0, we can find n > 0, such that
x4+ tyll + lIx[ = 2[Ix[| =& if [t] <.

We then have

=2|Ix][lItyl
Ix +tyll = x|l > —5or
2lx[l =6
Let & — 0 we have
=2||x]|||t
IIx + ty|| — [Ix]| > —2lllleyll when t — 0.

2]Ix]|
Thus

Ni(x.y) +ellyl 20> N_(x,y) —elyll = x Lgey.

Recall that Dragomir gave the following definition about approximate Birkhoff orthogonality:
x*Llpy <= [Ix+tyl = (1-¢)lx].

It is known that [19] in normed spaces, x LGB y implies X0 1g, whered =1 —+/1— 4e. Now we

give a more accurate estimate of § as an application of the above Proposition.
Proposition 2.11. Let X be normed spaces, let x,y € X, then:
x1lgy = x% 15y where § = 2e.
Proof. Let f(t) = ||x + ty| and assume that f(t) attains its minimum at to, hence
Ix + toy + ty|| > ||x + toy|| forall teR.

Choose t = —ty we have

X[l = {1x + toyll = [lIx]| = [tolll¥]Il.

thus we get |ty| < 2||H;”H, then

x4+ tyll = lIx + toyll = lIx|| — eltolllyll = (1 = 2e)[Ix|| for all t € R.

Thus x® Lg y, where § = 2¢. By the equivalence between L g, and L&, we have the result that

x L% y implies x% Lgy. Since 2¢ < 1 — /1 — 4¢, 2¢ can be seen as a more accurate estimate. O]
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3. APPROXIMATE |SOSCELES ORTHOGONALITY AND APPROXIMATE BIRKHOFF ORTHOGONALITY

In the following we will use the notion of approximate isosceles orthogonality [11], recall that

the approximate isosceles orthogonality is defined by:
x Lfy o llx +yIP = lIx = yI?| < 4elixllyll
X< Liyllix+yl = lix = ylll < ellix + yll + [Ix = yl)-
It is easy to see that in inner product spaces we have:
x 15y <= Jcos(x,y)| <€ <= x Lg.y,

and [11]
(X2 + 1),

In the following we give some simple properties about approxiamte isosceles orthogonality.

x¢ Ly < |cos(x,y)| <

Proposition 3.1. Let X be normed spaces, if there exists |a| < H}X’—He such that x L, ax +y, then
x€ 1, y.
Proof. Since x 1) ax +y we have ||x + ax + y| = ||x — ax — y||, then
X +yll =[x = ylll = llIx + ax + y — ax|[ — |Ix — ax — y + ax]||.

On the other hand, by trigonometric inequality we have:
[Ix + ax + vl = [lax|| = ([[x = ax — y[| + [lax]])

<|x+ax+y—ax| —||x —ax—y+ax|,

and
Ix +ax +y—ax| — |[[x —ax —y + ax]||

< x4+ ax +yll + llax|] = (Ix — ax = y[l — [lax]}).
Thus

llIx +ax +y —ax| — ||x —ax — y + ax]|| < 2|lax||,
then

[lIx +yll =[x = ylll < 2[lax|] < e(llx + yll + [Ix = yI]).
thus x¢ 1, y.
Proposition 3.2. Let X be normed spaces, if for every ||x|| = ||ly|| =1, there isno 0 <e <1

such that x L§ y, then X is a strictly convex space.

x4yl _
> =1

Proof. For any ||x|| = |ly|l = if x # y ,we have

I+ yI2 = lIx = yl?| = 14 = [Ix = ylll < 4,
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thus there must exist a 0 < € < 1 such that |4 — ||x — y||?| < 4e which means that x L€ y,
contradict to the condition. so there must be x = y. From the equivalent characterization of strictly

convex space [23] we get the result that X must be a strictly convex space.

It is known that in inner product spaces, different orthogonality types such as isosceles,
pythagorean, and Birkhoff orthogonality is equivalent [3]. Using the notions of orthogonality in
normed linear spaces it is possible to give different characterizations for inner product spaces. For
instance [17], if x L; y = x Lg y in a normed space X, then X must be inner product spaces.
Inspired by this, now we give a characterization for inner product spaces using approximate or-

thogonality.

Theorem 3.3. Let X be normed spaces, then X is inner product spaces iff the following two
conditions are satisfied.
(1) If there exists |a| < HyHG such that x 1, ax +y, then x L] y.
(2) x L§ y impliesx Lpc y.

Proof. If X is an inner product space, we have
x1ljy <= x1lgy and xL1jy < x Llpcy.

Thus (2) is satisfied. If there exists |a| < HyHe such that x 1, ax + y, we have:

Lyl

€.

[l

Thus x Lge y which implies x L§ y. Thus both (1) and (2) are satisfied.

Conversely, assume that both (1) and (2) are satisfied, let x L, y, x # 0. If |a|] < €||a|>|<+“yH’ let

b= —a, then |b| < e”‘—"mlyl‘ and x L; bx+ ax+y, thus form (1) we have x LS ax+y. To conclude

xlgax+y, |a <

we have:
. ax +
x Ljax+yif |a| geu
X1
Now define: f(t) = Htm'y”e, we have
tx + tx|| +
N L L 17 B 1
X1 [ IxIl
Since 0 < € < 1, when |t]| tends to infinite, f(t) < |t|.
When t =0, f(0) = HyHe > 0. By the convexity of f(t) we have
tix +
x LS tix+y, t< O'H1IIXHyH =—t.
tox +
X LS tox+y, th> 0'H2HXHy| = t.

From (2) we have x Lge tix +y and x L. tox + y. from proposition 2.9,there must exist

lltox + vl
X

= —t; and |32| < =1
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suchthatx Llgai+ti+y, x Lga+tr+y.
Byai+t <0, ax+t> >0 and lemma 2.7, we have x L g y. Thus we have

xl,y = x1lgy,

which means that X is inner product spaces.

Example 3.4. Let X = (R?, | - lloo), that is, ||(x1, x2)|| = max(|x1|, |x2|), assume that x =
(1,0),y = (2,1),|z| < 1. In order to satisfy x L. y or equivalently ||x + tyl|| > ||x||

following inequality shuold hold for all t € R:
(1 +te, )] > 1 —eft].

Since ||(1 + tc, t)]| > ||t|| we know the above inequality is always correct if |t| > then we

1+e’
may assume that |t| < 1Tre <1

whenl >t >0, If 1+ tc >t which means that t < 1o we have

C’

l1+tc>1—¢€t

which implies that ¢ > —e. If 1+ tc < t or equivalently t > 1TIC we have t > 1 — et that is
t> ﬁe so there must be
1 1
>
l—c ™ 1+c€
which implies that ¢ > —e. Similarly when —1 < t < 0, we can get ¢ < €. To conclude we have:

(1,0) Lge (c,1) if|c| <e.

In order to satisfy x 1 ¢ y or equivalently ||| x+y||>—|x—yl|?| < 4€l|x|||ly|l, the following inequality
shuold hold:
@+ DIZ = (1=, —DI?| < 4e.
Ifc>0, we have (1+¢)?—1<4e = 0<c<—-1++1+4e
Ifc <0, wehave (1-¢c)>—1<4e = 1—+/1+4e<c<0O.
To conclude we have (1,0) L¢ (¢, 1) if |c| < =14 1+ 4e. Since € < —1 + /1 + 4e, it can be

seen as an example that x 1§ y does not imply x Lg. y.

Example 3.5. Let X = (R?, || - |loo), we assume that x = (1,1),y = (=1 — ge, 1-— %e)
z=1(-1,1). We have x 1, z, and

€ <l
Z=——"F72=X+Yy, €
V2 =Tl

Thus | — %| < Hi”e which implies that there exists |a| < ”yHe such that x 1 ax+y.

On the other hand, since

x4yl = (- e 2= oy —2 - e
=yl = 2+ e, Lo =2+ L2

e


https://doi.org/10.28924/ada/ma.2.16

Eur. J. Math. Anal.

we have |||x + y||2 — ||x — y||?| = 4v2e > 4v/2. so x LSy, thus it can be seen as an example that

condition (1) is not satisfied.

A mapping T : H — K which satisfies the condtion
xly = T(x)LT(y).

is called orthogonality preserving(o.p.) [7,8], and T is said to be an isometry maping [22] if || T x| =
||x]|. To promote the concept, Jacek Chmielinski [6] introduced the notion of approximately orthogo-
nality preserving (a.0.p.) mapping and have studied the properties of mapping that is approximarely
isosceles orthogonality preserving(T: x L; y = T(x) L§ T(y)). After that many mathematicians
have show great interest in the a.o.p mapping [25], and Aleksej Turnsek [19] studied the mapping
that is approximately Birkhoff orthogonality preserving(T : x Lg y = T(x) Lg T(x))in

normed spaces. Now we try to study the approximarely orthogonality preserving mapping types:
T:xliy = Tx1lgTy,

and

T: x1ly = Tx*x1lgTy.
Proposition 3.6. Let T : X — Y be a nontrivial linear mapping satisfying

xliy = Tx1lgTy, xyeX

(1-¢)

Then T is a bounded and bounded from below, || T x|| > E Y

Proof. Take two arbitrary unit vectors x and y and note that % 1y % it follows that

Tx+y) g T(x—y),
hence for all A € R we have
IT(x +y) = AT (x = y)IIP 2 [IT(x+ )17 = 2e| T(x + VAT (x = ),
by the triangle inequality and the linearity of T it follows that
IT O+ )17 < @+ N)Tx + (1= NTyl? + 2elA[[ITx + Tyl
On the other hand we have
ITC AP = (T = 1Tyl
thus we get:
ITxIPHIT =20 T Tyl < (LHXIT XA Ty IP+2L I T XN Ty I +-2e M Tx+Ty |12,
If Tx =0, then let y € X such that Ty # 0, substitute x, y into the above formula,we have

0 < A2 —2X+2¢A\| for all X €R.
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It is impossible cause 0 < ¢ < 0, so we can divide both sides of the inequality by ||Tx||?> and

— 17¥l .
denote z = x| We get.

(z— 12X+ (2—-222+2¢(1+2)*)A+4z>0 for all X\ > 0.
the inequality is satisfied when —Q—ba <0or A=b>—4ac<0.

A=4((1- 222+ (1 +2)* +2e(1 + 2)%(1 — 22) — (42)(z — 1)?).

(1-222+1+2)*+2e(14+2)%(1-2°) - (42)(z+1)><0 = A<O.

Thus we get z < % 322_62 which implies | Ty| < 3_62% 322_62HTX||. Since x,y are arbitrary,

T is bounded and
(1—¢)?
3—e24+2v2—¢2

Theorem 3.7. Let T : X =Y be a nontrivial linear mapping satisfying

ITx]| = ITIHx1]-
xLl;y = Tx®1gTy, x,yeX

Then T is a scalar mutiple of a isometric mapping, i.e., for some vy > 0, ||Tx|| = y|x||.

Proof. Take two arbitrary unit vectors x and y and note that % 1, % it follows that
Tx+y) LlgT(x—y).
Hence for all A € R we have
ITx+y) +AT(x = y)ll = A =T (x+ ¥l
thus
(I +NTxl+ 1 =N Tyl)* > @ = Tx+ Tyl > (1= )>(ITx] = | Ty[)>
If Tx =0, then let y € X such that Ty # 0, substitute x, y into the above formula, we have

(1 =NTy[?>1—-e)?Tyl?> = (1-X)?>(1—-¢€)? forall \e€R,

it is impossible, then we can divide both sides by | Tx||? like before and denote z = . we get
(1-2°X4+20 -2+ (z+1)2-(1—-€)3(1—-2)>>0 forall \eR.

Ifz#1, then A =4 - (1 — 2)*(1 — €)? > 0. Thus the inequality is satisfied only when z = 1, so

z = 1 which means that ||Tx| = ||Tyl||, thus T must be a scalar mutiple of a isometric mapping.
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