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ABSTRACT. The objective of this paper is to investigate the existence and stability results of second-
order neutral stochastic functional differential equations (NSFDEs) in Hilbert space. Initially, we
establish the existence results of mild solutions of the aforementioned system using the Banach
contraction principle. The results are formulated using stochastic analysis techniques. In the later
part, we investigate the stability results through the continuous dependence of solutions on initial

conditions.

1. INTRODUCTION

Stochastic differential equations (SDEs) captures disturbances from random factors. Mathe-
matical models obtained by integrating stochastic process provide a better understanding of the
real-world system [12]. For elementary study of stochastic differential equations, the reader may
refer to [7,12,14,24]

Impulsive differential equations also attracted the attention of researchers (see [4,11,13,21,22]
etc.). Impulse in general occurs as deterministic or random models. Nevertheless by natural
phenomena, the impulses often occur at random time points. Many researches have been undergone
solving various differential equations with fixed time impulses [1,9,16,23]. Random impulsive
differential equations involving fractional derivative are also studied see [20,25].

It is known that impulsive stochastic differential equations play a vital role in modelling practical
processes. Not only from Guassian white noise there are certain other factors that results in the

rise of random effects. Random impulsive stochastic differential equations (ISDEs) are widely used
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in the fields of medicine, biology, economy, finance and so on. For example, the classical stock

price model [28].

d&(t)] = §8(t)dt+ oS(t)dw(t), t >0, t + T,
S(t) = ad(ry), k=1,2,..,
6(0) = 6o,

is described using an ISDEs. Here w; is a Brownian motion or Wiener process, G(t) represents
the price of the stock at time t, and {tx} represents the release time of the important information
relating to the stock. &(1;) = limi,—0S(t) and &g € R. In reality, {74} is a sequence of
random variables, which satisfies 0 < 7, < 73 < ---. Recently, in [10] the authors have contributed
the existence and Hyers-Ulam stability of mild solutions for random impulsive stochastic functional
ordinary differential equations which are studied using Krasnoselskii's fixed point theorem.
Solving second-order differential equations has been observed by many scholars. Many authors
solved second-order stochastic differential equations see [5,6,8,19]. However, there are not many
papers considering the existence and stability results on stochastic differential equations with
random impulse. Anguraj et.al [3], considered the SDEs with random impulses and Poisson jumps

of the form

die(t)] = §(t.z0) + ot z)dw(t) + /u b(t, tr, W)N(dt, du), t > to, t 4 10,

1(Ck) = bi(m)x(¢y) k=1,2,..,
ry, = (={{6):—1<0<0}.

The authors studied the existence, uniqueness, and stability through continuous dependence on
initial conditions for SDEs with random impulses and Poisson jumps by using Banach fixed point
theorem. Very recently, Anguraj et.al [2] investigated the Existence and Hyers Ulam stability of
random impulsive stochastic functional integrodifferential equations with finite delays.

Motivated by the above discussion, here we consider the following second-order NSFDEs with

random impulses and Poisson jumps.

d[X'(t) = b(t, x/)] [le(t)+f(t,xt)]dt+g(t,xt)dw(t)+/Lla(t,x,,u)N(dt, du),, t>ty, t# &,

x(&) = b(a)x (&), X' (&) = b(a)X' (&), k=1,2,..., (1.1)
Xo = ¢ X(to) =g,

where 20 : D(2() C H — H is the infinitesimal generator of a strongly continuous cosine family
{C(t),t > 0}. W(t) is a given Q-Wiener process with a finite trace nuclear covariance operator
Q > 0. o is a random variable defined from Q to D = (0, di) for k =1,2---. Suppose that o; and
0; are independent of each otheras i # j, (i,j=1,2,---). The impulsive moments ¢ are random
variables and satisfy & = &1 + 0, k=1,2,---. Obviously, {&} is a process with independent
increments. 0 < tp=&H < HL < &H < <L kl_t)rgo & = oo, and x(&) = t_l)'lggox(t). b : Dk — H,
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for each k =1,2,---. The time history x¢(0) = {x(t + 0) : —0 < 6 < 0} with some given 0 > 0.
Moreover, b, §, g, 0, and ¢, ¢ will be specified later.

To the best of authors knowledge, up to now, no work has been reported to derive the second-
order NSFDEs with random impulses and Poisson jumps. The main contributions are summarized
as follows:

(1) second-order NSFDEs with random impulses and Poisson jumps is formulated.

(2) Initially, we establish the existence results of mild solutions of the aforementioned system using
Banach contraction principle.

(3) Next, we investigate the stability results through continuous dependence of solutions on initial
conditions.

(4) An example is provided to illustrate the obtained theoretical results.

The rest of the paper is organised as follows. Section 2 is devoted to basic definitions, notions and
lemma. In section 3, existence of mild solutions of the aforementioned system (1.1) is investigated
using Banach contraction principle. Eventually in section 4, the stability of mild solution is obtained

through continuous dependence of solutions on initial conditions.

2. PRELIMINARIES

Let (Q, %, P) be a complete probability space equipped with the normal filtration {S};>¢. I,
containing all P-null sets. H and K be two real Hilbert spaces. £(H, K) denotes the space of all
bounded linear operators from K to H.

We may assume that, {N (), t > to} be a counting process generated by {&,k > 0}. ‘9t1 denote
the minimal ¢ algebra denoted by {N(r),r < t} and denote & (”( the o-algebra generated by
{w(s), s < t}. We assume that \9(‘)0),\9530 and & are mutually independent and &; = “(1) stz).

We assume that there exist a complete orthonormal system {e,}°°, in K, a bounded sequence

of non-negative real numbers A, such that, Qe, = A,e,, n =1,2,---. Let {Ba(t)}(n =1,2,3...) be

a sequence of real valued one dimensional standard Brownlan motion mutually independent over

(Q, %, P). A Q-Wiener process can be defined by w(t Z\/ nBn(t)en, (t > 0). Set ® € L(K, H)

we define,

ol = Tre0e) = Y |[Vinve
n=1

If HCDHZQ < o0, then @ is called a Q-Hilbert-Schmidt operator. Let Lo(K, H) denote the space of
all Q-Hilbert-Schmidt operator ® : K — H. The completion Lo(K, H) of £(K, H) with respect to
the topology induced by the norm I.11p, where HdD”Q (P, ®) is a Hilbert space.

Let T € (to, +00),) := [to, T] )k = [& &) . k=0,1,--- ,J={t:tel t+&k=1,2,---}.
L>(€Q, H) be the collection of square integrable &;-measurable, H-valued random variables defined
by the norm lixllz, = (E ||X||2)%, the expectation being expressed by the form I |1x11% = fao X112 dP.
Let PC(J,L2(Q,H)) = {x : ] = L£2(Q,H)}, x is continuous on every Ji, and the left limits

x(&) x'(&) exist k =1,2,--- be a piecewise continuous space.
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We may define the space C = C([—0, 0], H) which contains all piecewise continuous functions

mapping from [—9, 0] to H with the norm lixIl; = sup Hx(s)“ for each t > to. B be the Banach
t—o0<s<t
space, B([to— 0, T], £2(Q, H)) consists of continuous, ¥¢-measurable, C-valued processes. The norm

is defined by

J\ 2
lxlip = (supEllxllt) .
te)

In (1.1), N(dt, du) = N(dt, du) — dtv(du) denotes the compensated Poisson measure independent
of w(t) and N(dt, du) represents the Poisson counting measure associated with a characteristic
measure v. For a basic study on the Poisson jumps we refer to the book by [27].

Subsequently, we introduce certain definitions of sine and cosine operators.
A bounded linear operators family {C(t),t € R} is called a strongly continuous cosine family if
and only if
(i) C(0) =1 (I is the identity operator in H);
(i) C(t)x is continuous in t, for all x € H;
(iii) C(t + s) + C(t — s) = 2C(t)C(s) for all t,s € R.
The corresponding strongly continuous sine family {S(t), t € R} is defined by

t
S(t)x = / C(s)xds, x e H, te R
0

Then the following property holds:
t
Ql/ S(s)xds = [C(t) — C(to)] x
to

Lemma 2.1. [78]Let {C(t), t € R} be a strongly continuous cosine family in H, then for all s, t € R,
the following results are true:

() C(t) = C(=1);

(ii) S(s + t) + S(s — t) = 25(s)C(t);

(iii) S(s + t) = S(s)C(t) + S(t)C(s),

(iv) S(t) = =S(—1);

(v) C(t + s) + C(s — t) = 2C(s)C(t),

(vi) C(t + s) — C(t — s) = 2AS(t)S(s).

Before investigating mild solution (1.1), we consider the second-order neutral functional differ-

ential equation, which is given by

diu’(t) — g(t, u(t))] = Au,dt + (t, us)dt, t >0,
upy=¢eCu0)=¢pecH, te(-r0,

(2.1)

where 2 is the infinitesimal generator of a strongly continuous cosine family {C(t),t € R*} and
the functions g,f € £1(0, T; H).
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Lemma 2.2. [75] A continuously differentiable function u(t) : [0, T] — H is called the mild solution
for the Cauchy problem (2.1), if it satisfies,

u(t) = C()$(0) + S(t)lg — a0, )] + [0 Clt — s)als, us)ds + /0 S(t = s)j(s, xs)ds, t >0,

1 Moy 2. .
Sl = 5 | RUS A
_ At 2.
et = 2m./re AR(A%; 2A)dA,

and I is a suitable path.

Consider the linear second-order linear differential equation with impulse conditions,

u”(t) = Au(t) +f(t), t >0, t+ ty,
u(0) = wp, u’(0) = w, (2.2)
u(ty) = bru(t), u'(t) = beu'(t), k=1,2,---,

where 0 = fh < H < b < -+ < t < -+, {tx, k > 1} is a sequence of fixed impulsive points,
f(t) : [0, T) — H is an integrable function.

Lemma 2.3. The piecewise continuous differentiable function u(t) : [0, T| — H is a mild solution of

(2.2), if and only if x(t) satisfies the integral equation

k k k k ;
u(t) = |_|biC(t)uo+|_|b[8(t)vo+Z|_|b,~/tt S(t — s)j(s)ds
i=1 i=1 i—1

= j=i It
X /ttS(t—s)f(s)ds, t €[t fis1), k=0,1,--- . (2.3)
Proof. (i)For t €0, 1), the mild solution is studied in [17],
u(t) = C(t)uo + S(t)vo + /OtS(t — s)f(s)ds, t €[0, tr).
(ii) For t € [t1, 1), we set
u(t) = C(t — t1)u(tr) + S(t — t)u'(t1) + /ﬁtS(t— s)f(s)ds, t €[t1, t). (2.4)

Since,
u(ﬁ) = b1u(t1_), u'(t1) = b1ul(t1_),

and from (i) we know
3]
u(ty) =C(t1)ug + S(t1)vo + /() S(ty — s)f(s)ds; (2.5)

u'(£5) = AS(ty)ug + C(t1)vo + /0 "t — s)f(s)ds. (2.6)
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Thus,
U(t) = b1C(l’— t1)C(t1)U0+b1S(f—t1)QlS(t1)Uo+b1C(t— t1)8(t1)V0+b18(t—t1)C(t1)VQ

+ biC(t—t1) /t1 S(t1 — s)f(s)ds + b1S(t — t1) /t1 S(t1 — s)f(s)ds
0 0
S(t— ds, , B).

+ /t1 (t —s)f(s)ds, t €[t1, t2)

Applying Lemma 2.1, we get
u(t) = b1C(t)uo + b1S(t)vo + by /t1 S(t1 — s)f(s)ds + [tS(t — s)f(s)ds, t € [t1, to).
0 t

(iit) For t € [t2, t3),

u(t) = C(t— t)u(ty) +S(t — t)u' (k) + tS(t—s)f(s)ds
L)
= C(t — t)bou(ty) + S(t — t)bou'(£5) + /tS(t — 5)i(s)ds. (2.7)

t

From the conclusions of (ii), it is known that,
ty t
u(ty) = biC(t)ug + b1S(t2)vo + by / S(tr — s)f(s)ds + / S(t2 — s)f(s)ds; (2.8)
0 t
t t
u'(tz_) = b1/UAS(t)ug + b1C(t2)vo + b1 / C(ta — s)f(s)ds + / C(ta — s)f(s)ds (2.9)
0 t
Along with (2.7) and using Lemma 2.1, we have

u(t) = babyC(t)ug + b2b1S(t)vo + b2by /()t1 S(t — s)f(s)ds

+ by S(t — s)f(s)ds + /fz S(t — s)f(s)ds, t € [t2, t3)

t

Similarly, for all t € [t, tk—1).

k k k t ‘
x(t) = []ocuo+][ oS+ [] b,[ S(t — s)f(s)ds + | S(t — s)f(s)ds.
: i=1 tiq Sk

i=1 j=i i
O

By Lemma 2.2, Lemma 2.3 the mild solution of the system (1.1) applying index function for t € J.

Definition 2.1. For a given T € (to, +o0), a S-adapted process function {x € B,tp — 0 <t < T}
is called a mild solution of system (1.1), if (i) x4,(s) = ¢(s) € [,(Z)(Q, B) for 0 <s<0;
(ii) x(to) = ¢(t) € LI(Q,H) for t € J;

(iii) The functions f(s, x¢), 9(s, x¢), b(s, xt) and a(s, xs, u) are integrable, and for a.e. t € |, the
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following integral equation is satisfied.

+00 k k k k
x(t) = erhmwu—mwm+ﬂm@wu—mw—mam+Z:ﬂm@)
k=0 L i=1 i=1 i=1 j=i
i t k kK Si
x C(t — s)h(s, xs)ds + | C(t—s)h(s,xs)ds+> [ ]b;(8) [ S(t—s)
Ei—1 Sk i=1 j=i 5[—1

x f(s,xs)d$+/8(t—s 5x5d$+Z|_|b(6)/ S(t — s)g(s, xs)dw(s)

Sk i=1 j=i

k k &
+/ S(t = s)a(s, xo)dw(s) + Y [ ]0;(8)) L/ (t — s)a(s, xs, u)N(ds, du)

i=1 j=i
+ / /S (t —s)o(s, xs, u)N(ds, du)]l[gk,5k+1)(t), t elto, T] (2.10)
Sk
where,
k
|_| k(0k)bi—1(0k=1) - - - bi(03),

and la)(.) is the index functlon, ie,

1, if teA,

In(t) =

0, if t&A.

Lemma 2.4. For any p > 1, and for Lo(K, H)-valued predictable process u(.) such that,
s 2p t 1/ P
2 p

[ wmautn| < e -1 ( [ (Elaslg) " as) e

3. ExisTENCE RESuLTS oF MiLb SoLuTioN

sup E ‘
s€[0,T]

To prove the existence of mild solutions of random impulsive stochastic differential equations,

the following assumptions are to be made.

(H1) C(t), S(t)(t € )) are equicontinuous and there exist positive constants M, M such that
sup [|IC(1)|| < M, sup||S(t)]| < M. (3.1)
te) te)

(H2) The functions f: J xC—-H; h: ] xC—-H; g: ] xC—- Lo(K,H)ando: ] xCx U —H

E |[f(t, %) — (¢, go)|* < L5 ||x =y
E |la(t, x0) — alt, yo)||* < Lo ||x — v
EMuma—mnwmzsLMV—ymr

/IEHG(t, X¢, U) — U(tyt,u)”2 v(du)dsv/ (EHU(t x¢, u) — a(t, ys, u H v( du)ds) < Lo|x-— y”f
1

1
/ (IE”U(t,xt, u)—oa(t,ye u H v( du)ds) <L, X117 .
s
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(H3) For all t € J, there exist constants kj, kg, Ky, kg € L'(), R*) such that,

E (1.0 < &, Ela(t.0)]” < &g,
E|[b(t, 0)||° < xo, E||o(t,0, u)||* < «o.

k
(H4) E {mix{l_l ||bj(6j)||}]> is uniformly bounded then there exist constant A for all 6; € D;
ko

such that

k
E {"}fzx{l_l ||b1-<5,-)||}} <N
j=i

Theorem 3.1. If assumptions (H1)-(H4) gets satisfied then there exist a unique continuous mild

solution of the system (1.1).

Proof. We define an operator ¢ : B — B by ¢x such that,

(1), t €[ty — 0, to),
+ k

(o) k k k
Y [|‘| bi(8)C(t — 10)(0) + [ ] bilB)S(t — to)lo — B0, $)] + Y[ ]0:(6))

k=0 %= i=1 i=1 i=1 j=i

§i
x C(t—s)h(s,xs)ds—l—/C(t—s sxsds—l—Zl—lb 5)/ (t—s)

i1 Sk l1jl

x f(s, xs)ds + [; S(t— s)f(s, xs)ds + Z|_|b - S (t — s)g(s, xs)dw(s)
i=1 j=i =

/(t—s)gsxsdws)+Z|_|b // (t — s)a(s, xs, u)N(ds, du)

=1 j=i

\+/Ek/L[S(t—S)U(S,XS,u)/\/(ds, du)]/[gk,5k+1)(t), t ety T]

We need to prove that ¢ maps B into itself.

+00 k k
El[(ex)(1)]]° < E Z[l_lbiwi)cu—to)¢(0)+|_|b,-<6i>8(t—to)[so—mo,qb)l
k=0 * i=1 i=1

k k Si
+ > [ ]ei8) | ct—s)bis, xs)ds + tC(t—s)b(s,xs)ds

i=1 j=i i1 Sk
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+ Zﬂb/ S (t — s)f(s, xs)ds + tS(t—s)f(s,Xs)ds
i=1 j=i -1 S

+ Z|_|b St—s) (s, xs)dw(s) + tS(t—s)g(s,xs)dw(s)
i=1 j=i S

+ bj( S(t —s)a(s, xs, u)N(ds, du)
> Tt A 1/

2

+ / [S (t —s)o(s, xs, u)N(ds, du)]l[gk &)1
Sk

2 +0o0 k
6E[Z [ 1llea@)] llet — t)]| [|¢(0 H]/[sksm t>] +6E[ [r|||b[ ) ISt = to)]]
k=0

k=0 Li=1 i=1

2 400 k ;
< Jlo=00.0) Jts.q.00] +62[ [Tl [ et =il s, o s

IN

k=0 L j=i
t 2 Si
C(t — Xs)|| ds | 6 S(t—
e [ llete ==l ots ol ds fe 0] + E[g[ﬂub I st
t 2
Xs)|| d S(t— Xs)|| ds | 6 %)
< il s+ [ fste = sl st + E[g[lr}ub(

i ‘
[ st =l ats s ot + [t ot )] ot | e .0

+00 k & N
+ 61E[Z[I_IIIBMH x L /u 15(t = 5)|| |l o(s. xs., u)|| Ni(ds, du)

k=0 L j=i

' - 2
+ [Ek/ilHS(t_s)H |o(s, xs, u)|| N(ds, d”)]/[ék,5k+1)(t)] ,
6
= 6261
i—1

where,
+00 k 2
& < E[Z [ Tle:(@)]] llc(t — w)]] H¢(0)H]/[ek,w(t>]
k=0 Li=1
K 2
< MZE{H}%X{H“’/(@)}} E|(0)]*
j=i
< MNE[90)]°,
+00 k 2
6, < E[Z [l_l ||bi(5i)H HS(t - tO)H H‘P —h(0, C]»’))H ]/[5k,5k+1)(t)]

k=0 * i=1
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IN

2
k
M’E {nﬁx{l—l }b;(é,')“}} E ||<P —b(0, ¢)H2
]:l

< MPNZE || - b0, )|,
+00 k & t 2
o < E| 3|1l [ llete ==l s il ds-+ [ et ots, )] ds] 0]
k=0 L j=i i1 &
k 2 t
< MZE{@2X{1,H||5,(5,)||}} (T—to)/t E|[b(s, )| ds
j=i 0
< 2MZmax{1, N2}(T — t) [/t]E [B(s, x5) = b(s, 0)||* ds + /t [h(s, 0)]|” ds]
< 2M2max{1,N2}(T—to)/t [LbIEllx||§+K|,]ds
< 2M?Zmax{1, N2}(T — to) /IE,,JE X112 ds 4 2M? max{1, N2 (T — to)ky,
+00 k & 0 t 2
o < B[ 3| TTs@l [ st = s sl s+ [ lste= )] s, )] s 0]
k=0 L j=i Si1 Sk
k 2 t
< MZJE{WX{LHHEJ,(&,)H}} (T—to)/ E |[f(s, x)||” ds
j=i fo
< 20 max{1 T 1) [ Bt s — s, 0 s+ [t o) os]
< ZMZmax{1,N2}(T—to)/t [[,f]E”XHg-i-Kf] ds
< 2MZmax{1, N2}(T — to) [tﬁ,cE X112 ds + 2M2 max{1, N2 (T — to)’«;,
+00 k & 0 t 2
& < 8| Y[ [Tl [ llste= =)l ote, )] dots)+ [ (e ots, )] dots e,

k=0 * j=i

IN

2
k t
SE {nﬁx{t |_| ||b,-(6,—)||}]» / E ||a(s. x5)||2 ds
j=i o

IA

2M2 max{1, N2} Tr(Q) [[E la(s, x;) — (s, 0)[|* ds + /tt llg(s, 0)]|” ds]

IN

t
2M? max{1,./\f2}Tr(Q)/ [LoE X112 + kq] ds
to

IN

t
2M? max{1 ,NZ}Tr(Q)/ LGElix112 ds + 2M? max{1, N?}(T — to) Tr(Q)«,.
to
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+oo  k a N
G < E[%[DH@(B,)H x/{”/uHS(t—s)” o (s, xs, u)|| N(ds, du)

t _ 2

¥ L?LH&t—QMM@J$MHNwsdmh&@muq
t

< M? max{1,./\/'2}/t0 L[E”U(s,xs,u)—a(s,o, u)||2—|-H0(5,0, u)HZ] ds
+ 2M?max{1,N?} (/t:/uIE||c7(5,x5,u)H4 v(du)ds);
< AMZmax{1,N?} /ttEUEIIXIIE ds + 2M? max{1, N°HT — to)k,,

Thus we would obtain,

El[(¢x)0)]° < 6MPNZE|$(0 \}2+6M2N2E|\<p—ho¢H2+12M2max{1,1\/2}(r—t0)

X

/L‘hEllxll ds + 12M% max{1, N2 (T — to)’ky + 12M? max{1, N°}(T

to

X

t
/ LiENIxN12 ds + 12M% max{1, N2 H(T — to)*k; + 12M2 max{1, N*} Tr(Q)

to

X

t
/ LR 11x112 ds + 12M% max{1, N*}(T — to) Tr(Q)«,

to

t
+ 24M2max{1,]\/2}/ LoE X112 ds + 12M? max{1, N?}(T — to)x
fo
Taking supremum over t,

sup E||(¢)(0)]|7

to<t<T

6M2NZE[|$(0)||* + 6M*N2E ||o — h(0, ¢)||* + 12M% max{1, N2 }(T — to)
t

X Ly sup ElixiiZds +12M? max{1, N?}(T — to)*ky + 12M?*max{1,N?}

to to<t<T
t
x (T—to) [ L; sup Eixi2ds+12M%max{1, N?}T — to)*k; + 12M>

to to<t<T

IN

t
X max{1,N2}Tr(Q)/ Ly sup Elixii?ds + 12M%max{1, N?}(T — to) Tr(Q)k,

fo to<t<T

t
+ 24M2max{1,N2}/ Ly sup Elxii2ds +12M% max{1, N?}T —

to to<t<T



Eur. J. Math. Anal. 1 (2021)

6MZNZE||$(0)||* + 6M>N2E || — H(0, ¢)|* + 12M% max{1, N2 }(T — t)?
x Ly sup ElixlIZ +12M? max{1, N?HT — to)*ky + 12M? max{1, N'*}

to<t<T

IA

x (T —to)2L; sup Eiixi? +12M2 max{1, N?}T — to)’«;

to<t<T

+ 12M%max{1, N2} Tr(Q)(T — to)Lq sup Elixii?

to<t<T
12M2 max{1, N?HT — t0) Tr(Q)kg
24 M2 max{1, N?}T — to)Ly sup ElixiiZ ds +12M% max{1, N?H(T — to)«s

to<t<T

IA

6[/\/2 [VEE [ 60)] + 542 | — b0, MzH T 2ma(LAPNT —
X [MZ(T — to)Ky + MZ(T — o)k + MZTr(Q)Kg + MZKU] +12 max{1,N2}

x (T = to) [M(T = to)Cy + ST — o)1 + NMPTHQ)L + 20%L, | 1x1?

lox]lz < o +cixig.

where,
o = 6[N2[M2E||¢(0)||2+M2E||¢—h(o,¢)\\z]]+12max{1,/\/2}(7—t0)
X [Mz(T — to)kyy + M2(T — to)k; + M2 Tr(Q)k + /WKU],
¢ = 12max{1,N?HT - to) [MZ(T—to)£h+M2(T—t0)£f+/\~/l2Tr(Q)£g+2J\~/12£g].

where ¢1 and ¢y are constants.
Hence ¢ is bounded.
Now we need to prove that ¢ is a contraction mapping. For any x, y € B we have,

[(ex)(1) = (Dy)(1)

I

fo k Si t
< X [Zl_lb,-w,-) C(t —s)h(s, xs)ds + | C(t — s)b(s, xs)ds
k=0 = i=1 j=i i1 &
kK Si t k  k
+ > [ ei(e) | St —9)i(s.xs)ds + | S(t —s)i(s, xs)ds + Z|_|
i=1 j=i Si1 & = =i

t

&i k  k
X / S(t —s)g(s, xs)dw(s) + [ S(t —s)g(s, xs)dw(s Zl_l

i dk

x /‘:1/uS(t—s) a(s, xs, u)N(ds, dt) + Lk/St—s (s, x5, u)N(ds, dt):l/[gkgk+1)()

k
|_| b;(9;) C(f —s)b(s, ys)ds + C(f —s)b(s, ys)ds
k=0 L i=1 j=i Si- Sk

2
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k k
+ Z|_|
=1 =i

&

St—s)f(s ys)ds—i-/ S(t — s)f(s, ys ds+Z|—|b,

-1 i=1 j=i

: ¢ k  k
x ), Slt=shals,ys)duls) + | St =s)als, ys)dw(s)+ ) [ ]e;(9))
i—1 k i=1 j=i

&i _ t N
X [E,-1 LS(t —s)o(s, ys, u)N(ds, dt) + /{k LS(t —s)o(s, ys, u)N(ds, dt)] hee (1)

4max{1, N2} M?(T — to) /t [|b(t, x5) — b2, yS)H2 ds + 4max{1, N?}
to

2

IA

x  M(T — t) /t 15, x5) — (¢, yS)HZ ds + 4 max{1, N2} M?
to

t
/ lla(t, xs) — glt, gs)H2 ds + 4max{1, N2} M?
to

[ ] t /u lo(t, xs, u) — a(t, ys, u)||* vidu)ds
(/t/Ha(t,Xs,U)—a(t, ys,u)H4v(du)d5)2]
tg JU

Moreover,
sup_E||(x)(1) — (¢y)(1)]|”
to<t<T
2 2 2 2 2
< Amax{1, N7 IM*(T — to)°Ly sup E||x —yl|; ds + 4 max{1, N"*}
to<t<T
x  MXT —t)’Ls sup E |x — yHi ds + 4 max{1, N2} M?Tr(Q)
to<t<T
x (T —t)Lg sup E|x— y”i ds + 4 max{1, N2} M?
to<t<T
x (T —1t)Lys sup E ||X — gHi ds
to<t<T
< [4 max{1, N2} MA(T — to)?Ly, + 4 max{1, N2} M*(T — to)
x (T —to)lr+ Tr(Q)Ly+ ﬁg]] sup E|[x — g||f
to<t<T
Hence,
(%) = @9l < T |x = g5
where,

y(T) = 3max{1, N2} M?(T — t0)2 Ly, + 3max{1, N2 }M*(T — to) (T — to)Ls + Tr(Q)Lq + Lo].
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By taking suitable 0 < Ty < T sufficiently small such that, y(T7) < 1.

Hence ¢ is a contraction on B. By Banach contraction principle, a unique fixed point x € B is
obtained for the operator ¢ and therefore ¢x = x is a mild solution of the system.

The solution can be extended to the entire interval (—9, T]in finitely many steps. Thus the existence

and uniqueness of the mild solution on (—0, T] is proved.

0

4. STABILITY

The stability through continuous dependence of solutions on initial conditions are established.

Definition 4.1. A mild solution x5*(t) of the system (1.1) with the initial value (&, x) is said to be

stable in mean square if for all € > 0 such that

2
( sup || o “I'X(t)H ) < e, when IE”E— (HZ +IE||X— sz <o,
0<s<T

where x%Y(t) is another solution of the system (1.1) with initial value (, y).

Theorem 4.1. Let x(t) and X(t) be mild solution of the system (1.1) with the initial condition ¢
and ¢» respectively. If the assumptions of Theorem 3.1 gets satisfied, the mean solution of the

system (1.1) is stable in the mean square.

Proof. We may assume that x(t) and x(t) be the mild solutions of the system (1.1) with initial

values ¢1 and ¢, respectively.
+00 k

x(t) =x(t) = Z[l‘lb(é (t = to)lp1 — d2] + [ ] 0i(6)S(t — to)l(1 — 2) = [(H(0, 1) — (b(0, $2))]]
=0 i=1

‘ C t—s)[b(s, xs) — b(s, x(s))] ds + /,5 C(t — s)[b(s, xs) — b(s, Xs)] ds

t

k_ k di
+ 2[5 [ S(t = 5)[f(s, %) = (s, %s)] ds + / S(t = s)[j(s. x:) = (s %s)] ds

i— Sk

k t
+ [ ] . " S(t = s)lals %) — g(s. %) dals) + St =s)lalsx) = als X)) duls)
i=1 j=i i- k
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E||x(t) — x(t)||°
< BNZMPE||¢1 — ¢o||” + 12NV KCE || @1 — @27 + 12V 28%E |[5(0, ¢1) — H(0, ¢o) ||

t
+ 6M2max{1,N2}/ E|[b(s, x5) — b(s, Xs)|| ds + 6% max{1, N2}
to
t t
X /EHf(s,xs)—f(s,xs)sz5+6M2max{1,N2}/ E||g(s, xs) — a(s. %o)||* ds
to to
t
+ 6max{1, N?}M? x [/ [Hcr(l‘,xs,u)—U(t,xs,u)H2 v(du)ds
to JU

’ (/fot/uHU(t'Xs' o(t,%s, u)||* v(du)ds )}]

< ONEMIE |61 = gof| + 1ONEME o1 — o * +12VZMPLGE | 61— |

t t
b oM man(1. A7} [ L8 = x| ds + 600 man{1, A7) [ 458 [~ ds
to to
t
+ 6M2max{1,N2}Tr(Q)/ LoE||x — x| ds
to
t
+ 6M2max{1,N2}/ LoE |x —%|2ds
to

Furthermore,

swp Elle—xlf < ONZME |61 - dol]* + 1INALE g1 — ol + 1IN ALLE |61 — ool

to<t<T

+ 6MZmax{1, N?HT — to Eb sup E”X—th + 6 M2 max{1, N?}(T
x Ls sup ]EHX—X”t +6M? max{1 NZ} —t0) Tr(Q)Ly sup E”x—x”t
to<t<T to<t<T
+ 6MZmax{1, N?}T — t9)Ly sup EHx—x”t
to<t<T
, 6N [ M2 4 S22, | ,
sup EHX—Y”t < - EH¢” _¢’2H
to<t<T 1 —6max{1, N2}HT — to) MZL‘h + M2 [L;+ Tr(Q)L, +L‘U]]
2042
+ 12NEME E o1 — ¢al|*
1 — 6max{1, N2}(T — to) Mzc,, + M2[L; + Tr(Q)L, +£,,]]
< pE[¢1— o] + YE o1 — 2]

where,

SN2 [ M2 4 KL |

B 1 = 5max{1, N2HT — to) -Mzﬁh + M2[L; + Tr(Q)Lq + EU]]

10N 2 M2

Y = _
1—5max{1, N2}(T — to) [ M2, + M2[C; + TrHO)L, + EU]]
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Given € > 0,y > 0 choose, A = %,u = % such that,

E||¢1 — ¢al|” < A and B ||g1 — o|* <
Therefore,
Ix—yllz<e.

Thus the proof is complete.

5. ILLUSTRATION

In this section, the results obtained are applied to a stochastic partial differential equations with
random impulses. Let us consider a space H = £%([0, xr]). The infinitesimal generator 2l is defined
to be 2 : D(A) € H — H by A = 2, with the domain,

W!
dz . 0%z
DR)={ze€H|zand o e absolutely continuous, a2 € H, z(0) = z(m) = 0}
For z € D),z = —an < z,zp > z,, where {z, : n € Z} is an orthonormal basis
n=1
of H, z,(x) := \/Lz—ﬂe"”x,n € Z*,x € [0, 7]. It is known that 2 generates strongly continuous

operators C(t) and S(t) in a Hilbert space H, such that C(t)z = Zcos(nt) < z,zy > z,, and

n=1
o

S(t)z = Z sin(nt)/n < z,z, > z,, for t € R. And we assume that S(t) is not a compact semigroup

n=1

and J(S(t)D) < (D), where D € H denotes a bounded set, ¥ is the Hausdroff measure of non-
compactness.
In the sequel, we may consider second-order neutral stochastic functional differential equation of

the form,

P 0

m3 0

G £3(s)z(t + s)dw(t)

0
+ T?//ﬂdeH&WWtW%tZWt#a“XEMM'
UJ—r

2080 x) = oKdz(&, x),k=1,2,3.., (5.2)
d d
SEN = eMd izl )
z(to,x) = ¢(6,x),0€[-r,0], x<€]0,x],r>0,
d
az(to,x) = ¢Kx), x €10, ],

z(t,0) = z(t,n)=0.
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Let 0k be a random variable defined on Dy = (0, di) where, 0 < dy < 400, fork=1,2,--- . & =
to > 0and & = &-—1 + 0k for k=1,2,---. w(t) denotes a standard cylindrical Weiner process in
H. Furthermore, let o be a function of k. & : [—r,0] — R are positive functions and m; > 0 for
i=1,2,3,4.][c(t)]|, |S()]| are bounded on R. [|C(t)]| < e~ and ||S(t)|| < (¢ > 0).

We may assume that,
0

() The function £(6) > 0 is continuous on [—r,0], [ €2(6)d6 < oo(i =1,2,3,4.)

k —r
(imax = {H El|lo(j)o;]|/I} < .
j:l

Using above assumptlons and functions €1, €2, €3, 0 we can show that Ly = r"” f 51 6)deo L =
my [ £7(0)d0, Ly = 58 f £7(0)d0 and L, = 5 ffr €2(0)d0. Hence stabtlttg in mean square

of mild solution (5.1) is obtained.

O

6. CoNCLUSION

In this paper, the existence and stability results of second-order neutral stochastic functional
systems with random impulse is presented. The existence results of aforementioned system is estab-
lished using Banach contraction principle. Then the stability of mild solutions through continuous

dependence of solutions on initial conditions are calculated.
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