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ABSTRACT. We consider infinite dimensional extension of affine models with heavy tails in finance. We
study several estimators of the drift parameter in the stochastic partial differential equation driven
by cylindrical stable processes. We consider several sampling schemes. We also consider random
sampling scheme, e.g, when the solution process is observed at the arrival times of a Poisson process.

We obtain the consistency and the asymptotic normality of the estimators.

1. Introduction

Parameter estimation in stochastic partial differential equations is a very young area of research
in view of its applications in finance, physics, biology and oceanography. Loges [32] initiated the
study of parameter estimation in infinite dimensional stochastic differential equations. When the
length of the observation time becomes large, he obtained consistency and asymptotic normality of
the maximum likelihood estimator (MLE) of a real valued drift parameter in a Hilbert space valued
SDE. Koski and Loges [28] extended the work of Loges [32] to minimum contrast estimators. Koski
and Loges [27] applied the work to a stochastic heat flow problem. Martingale estimation function
for discretely observed diffusions was studied in Bibby and Srensen [2]. Bishwal [6] studied a new
estimating function for discretely sampled diffusions by removing the stochastic integral in Girsanov
likelihood. Bishwal [7] contains asymptotic theory on likelihood method and Bayesian method for
drift estimation of finite and infinite dimensional stochastic differential equations. Bishwal [12]
studied applications of Levy processes in stochastic volatility models in finance.

Huebner, Khasminskii and Rozovskii [23] started statistical investigation in SPDEs. They gave
two contrast examples of parabolic SPDEs in one of which they obtained consistency, asymptotic
normality and asymptotic efficiency of the MLE as noise intensity decreases to zero under the

condition of absolute continuity of measures generated by the process for different parameters (the
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situation is similar to the classical finite dimensional case) and in the other they obtained these
properties as the finite dimensional projection becomes large under the condition of singularity of
the measures generated by the process for different parameters. The second example was extended
by Huebner and Rozovskii [24] and the first example was extended by Huebner [22] to MLE for
general parabolic SPDEs where the partial differential operators commute and satisfy different
order conditions in the two cases.

Huebner [21] extended the problem to the ML estimation of multidimensional parameter. Lototsky
and Rozovskii [33] studied the same problem without the commutativity condition. Small noise
asymptotics of the nonparmetric estimation of the drift coefficient was studies by Ibragimov and
Khasminskit [29].

Based on continuous observations, usually there can be two asymptotic settings in SPDE: 1)
T — 00 2) n — oo where T is the length of the observations and n is the number of Fourier
coefficients of the SPDE solution.

In a Bayesian approach, using the first setting, Bishwal [3] proved the Bernstein-von Mises
theorem and asymptotic properties of reqular Bayes estimator of the drift parameter in a Hilbert
space valued SDE when the corresponding ergodic diffusion process is observed continuously over
a time interval [0, T]. The asymptotics are studied as T — oo under the condition of absolute
continuity of measures generated by the process. Results are illustrated for the example of an
SPDE.

Using the second setting, Bishwal [5] proved the Bernstein-von Mises theorem and spectral
asymptotics of Bayes estimators for parabolic SPDEs when the number of Fourier coefficients
becomes large. In this case, the measures generated by the process for different parameters are
singular.

Bishwal [10] studied Bernstein-von Mises theorem and small noise Bayesian asymptotics for par-
abolic stochastic partial differential equations. Bishwal [9] studied hypothesis testing for fractional
stochastic partial differential equations with applications to neurophysiology and finance.

In this paper we study the asymptotic properties of the quasi maximum likelihood estimator
when we have observations of finite-dimensional projections at Poisson arrival time points. The
asymptotic setting is only the large number of observations at random time points which are the
arrivals of a Poisson process.

The rest of the paper is organized as follows: Section 2 contains model, assumptions and
preliminaries. In Section 3 we prove estimation results with additive noise. Section 4 and 5, we

provide estimation results with multiplicative noise. In section 6, we give several examples.

2. Model and Preliminaries

Let H be a real separable Hilbert space with inner product (-) and norm | - |. By £(H) we denote

the Banach space of bounded linear operators from H into H endowded with the operator norm
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|- lz(H)- We fix an orthonormal basis (e,) in H. Through the basis (e;) we will often identify H
in /2. More generally, for a given sequence p = (p,) of real numbers we set
12 ={(xn) ER®: Zxﬁp% < oo}
n>1

where R® = RN, The space /3 becomes a separable Hilbert space with the inner product: (x,y) =
anlx,,ynp% for x = (xn),¥ = (yn) € 5. Let us fix 6, the unknown true value of the parameter 6.
Let (Q,F, P) be a complete probability space and Z(t, x) be a process on this space with values
in the Schwarz space of distributions D’(G) such that for ¢, 9 € C5°(G), ||¢||221(G) (W(t,-), o(-))
is a one dimensional stable process.

This process is usually referred to as the cylindrical ac-stable process (C.S.P.), a € (0, 2).

We assume that there exists a complete orthonormal system {h;}?°; in L2(G)) such that for
every i =1,2,..., hi € Zy3(G) N C>=(G) and

Nohj = Bi(0)h;, and Lgh; = wij(6)h; for all 6 € ©

where Lg is a closed self adjoint extension of A?, Ag := (k(8)] — Lg)*/?™, k(6) is a constant and
and the spectrum of the operator Ay consists of eigenvalues {5;(6)}7°, of finite multiplicities and
pi = =B + k(6).

A Levy process (Z¢) with values in H is an H-valued process defined on some stochastic basis
(2, F, (Ft)t>0. P) having stationary independent increments, cadlag trajectories such that Zg = 0,
P-a.s. One has that

E[e/?t9)] = exp(—t4(s)), s€ H
where ¥ : H — C is Sazonov continuous, negative definite function such that 1(0) = 0. The

function 1 is called the exponent of (Z;).

The exponent ¢ can be expressed by the infinite dimensional Levy-Khintchine formula

W(s) = 5(@s.5) ~ ilas) - [

(e"<5'y> -1 i(s.y) v(dy), se H
H

1+
where Q is the non-negative trace class operator on H, a € H and v is the Levy measure or the
jump intensity measure associated to (Z;).
Cylindrical a-stable process (C.S.P.) is a Levy process taking values in the Hilbert space U = /3,
with a properly chosen weight p.
Consider the linear SPDE
dXy = 0AXidt +dZy, x € H

C.S.P. Z(t) is a cylindrical a-stable process, a € (0, 2) which can be expanded in the series
Z(t) =) wZi(t)h
i=1

where {Z;(t)}?2, are independent, real valued, one dimensional, normalized, symmetric, a-stable

processes and (7;) is a given sequence of, possibly unbounded, positive numbers, and h; is a fixed
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orthonormal basis in H. The latter series converges P-a.s. in H=® for o > d/2. Indeed
oo o
1ZOIF=3_WZEOInPa=)_ZF (16>
i=1 i=1

and the later series converges P-a.s.
Forany,j €N, t >0,
EleiZ(h) — gt
Stable one-dimensional density :
A one-dimensional, normalized, symmetric a-stable distribution pq, a € (0, 2] has characteristic
function
fa(s) =e " s eR.
The density of uy with respect to Lebesque measure will be denoted by p,. This even function
is known in closed form only if & = 1 or 2. The precise asymptotic behavior of the density
Pa, @ € (0,2) is as follows:
For any a € (0, 2), there exists C4 such that

Ca
Po(X) ~ Yatl A8 X oo

Stable measures on Hilbert space :

A random variable £ on H is called a-stable (a € (0,2]) if for any n there exists a
vector a, € H such that for any independent copies &1,&2, ..., &, of & the random variable
nfl/o‘(ﬁl + &, ... +&,) — ap has the same distribution as £. A Borel probability measure & on H

is said to be a-stable if it is the distribution of a stable random variable with vales in H.

Stable OU Process:
dXt = *QXtdt‘F O'dZt, XO = X0
The solution is .
X = e 9x —|—/ e t=S)gdz..
0
The stochastic integral can be defined as the limit in probability of Riemann sums.

Let .
Y = [ e 0 t=5)gdz,.
0

Then .
Ele'™] = exp [—ao‘hlo‘/ e“"esds] = e 1M*c(®)
0
where

c*(t)=o0 (159_(1“) )

We show that the process X is stochastically continuous.

First we show that Y is stochastically continuous, i.e.,

l P(|Yisp —Ye| >€) =0
hgg;;g (IYen — Yi| > €)
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Note that for any t > 0, h >0,

t+h t t
%+h _ »/t _ / e(t+h—S)AdZs + ehA/ e(t—S)AdZS _ / e(t—S)AdZs
t 0 0

t+h
— ehAYt _ \/1_' +/ e(l’-i-h—S)AdZS
t

Let us choose p € (0, ). We have
t+h c
/ e(t-‘rh—S)AdZS‘ > )
t 2

= Ih(t, h) + I(h).

P(Vern = Vil > €) < P (1e"Ye - vi| > £ +P(

P Ele™Y: - Vil” + 2P E| fy e¥AdZs|?
eP eP

But

> 1— e—a@t p/e

EViP <Y o

n=1

and so [I2(h)]*/P — 0 as h — 0. Concerning /1, by Khintchine inequality
1/2 p\ 1/p
€Y —Vi| =D (e - NZE <SG | EY (e —1)yy
n>1 n>1

where E denotes expectation w.rt. to the measure P P(r, = 1) = P(r, = 1) = 1/2 where a
Rademacher sequence (r,) with r, : Q — {—1,1} is defined on the probability space (Q, F, P).

Hence

1/2
Ele"Y, — Vil < CREE | Y |(e " — 1)
n>1
p/o p/o
—Oht —6ht @
—6ht a(l—e ) Cp ‘(1_6 ),8,7|
<G Z‘(l_e ).Bn| a0 Sap/a Z 0
n>1 n>1
Since
. |(1 - e—Ght)5n|a
| 0,
hi[g“r Z 0
we get
E|eMY; — Y|P
lim sup 2pu = 0.
h—0+ >0 eP
Since
p/a
, a( —Ght)
E < A —
Vil < o | 2_IBal" 15
n>1

hence

p/c

_ ~—0ht
im (gt —o

n>1
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hence h
E e**dZs|P

0.
h—0+ €P

Thus

l I1(t,h) =0
5 R e )

This proves stochastic continuity of Y;.

Using the stochastic continuity and F;-adaptedness of X, we conclude that the process X has

a predictable version.
Time Change:

Let L be a one dimensional a-stable process, a € (0,2). Then there exists an a-stable process,
a €(0,2) Z=(Z¢) such that
t 1— e—a@t
/ =951, = Z(u(t)) where u(t)= 1S
0 ab
Recall that u € C*([0, o0]) with /(t) #0, t > 0.

In the limiting Gaussian case of o = 2, it becomes time change for Brownian motion.
Infinite Dimensional Stable OU Process

dX] = —0X{dt+ocdZ}, X§ =xp,,neN
with x = (x,) € L? = H. The solution is a stochastic process X = X} with values in R> with

components

t
XX =e 0, + / e 9t=S)gqzn
0
(The stochastic integral can be defined as the limit in probability of Riemann sums.)

X = ZXfen = ex + Za(t)

n=1

t oo t
Za(t) = [ =z, =% ( / e‘e(t_s)ang) en.
0 0

n=1

where

The process X{ is an Fi-adapted irreducible Markov process and its transition semigroup is
strong Feller.
Let .
Y, = Z3(t) = / e %t=S)gdz" neN, t > 0.
Then ’ .
E[e™] = exp [—O’a|h|a/0 eo‘esds] = g 1% (D)
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where

1 — g—abt /o
o[

It follows that
E[e"?] = E[e"(En], heR
where (L) are independent a-stable random variables having the same law pq. Thus X7 is

Fi-adapted.
The Markov property easily follows from the identity

t+h
Za(t+h) —eMAza(t) = / eltth=s)Aqz . t h>0.
t

If the cylindrical Levy process Z takes values in Hilbert space H, the by the Kotelenez reqularity

results trajectories of the process X are cadlag with values in H.
Moments of the process

The OU process is stochastically continuous and trajectories in LP([0, T]; H) for any 0 < p <
a.s. Set Y; := Za(t). Then we have

0 1— e—a@t p/a
EIVi|P < &0 [ > —

n=1

where ¢, depends on p.
Moments of the stochastic integral

Suppose (Z¢) is an a-stable Levy process with 0 < a < 2 and y(t) is a predictable process
satisfying fOT ly(t)|*dt < oo. Then for any 0 < r < a, there exists a constant C such that

/ty(s)dzs ] <E [(/0 |y<t>|“dt)r/a] |

E [sup
0

t<T

Equivalence of Transition Probabilities

Assume
p/2

;
= (¢ < 00, E/ AR dt < oc.
0 n>1

ety
sup
n>1 ﬁn

Let py be the density of the one dimensional stable measure. Then the laws uf and u} of X} and

X{ respectively are equivalent for any t > 0, x,y € H,a € (0,2). Moreover, the density Zﬁ§ of
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wy with respect to u) is given by

_ A0t
duyf P (Zk C?t) Xk)
du” - n||—>moo Z—e ot '

Kt k=1 Pa (kCT)yk)

The corresponding MLE is denoted as 6.

Priola et al. [38] obtained exponential convergence to the invariant measure, in the total variation
norm, for solutions to SDEs driven by a-stable noises in finite and infinite dimensions using two
approaches: Lyapounov's function approach by Harris and Doeblin’'s coupling argument. In both
approaches irreducibility and uniform strong Feller property play crucial role.

First we consider the method of moments estimation in modified tempered stable-Ornstein-
Uhlenbeck model. Masuda and Uehara [36] studied two-step estimation in ergodic Levy driven
SDE

dX: = a0, X¢)dt + b(B, X¢—)dZ:, Xo = Xo.

Masuda [35] studied multi-step estimation in stable OU Model:
dXt = —0Xdt +0dZs, Xo = Xo.

For the least squares estimator (LSE) 8, of 8, Hu and Long [20] obtained

T )”a . p Sl
— (On — 60) =7 <
(Iog n Seo

where S, is stable distribution of order S.
While in Gaussian OU case, for different parts 8 > 0, 8 < 0 and 8 = 0, LAN, LAMN and LABF
hold respectively (see Bishwal [11]), in stable case entirely different phenomena occur.

The solution of the SDE is given by
t
Xe=e 99X, 4o / e =) gz, t > 0.
S

Due to the stable integral property,

c ( /[ t e—9<f-s>dzu) — Su(ka(6)

where

1 =60 1/a
K,A(Q) = {90{} ~ Al/a.

For each j < n, the transition probability is given by
L(Xg| Xty = X) = Oxexp(—60) * Sa(kn(0)).
LAMN holds for 8 € R when T is fixed.
/27120, — 0) =P MN(0, Io(T)™1).

where lg(T) is the Fisher information of the process.
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We study estimation in MTS-OU SV model. The Inverse Gaussian-OU and Gamma-OU models
are special cases.

An infinitely divisible distribution is said to be a-modified tampered stable distribution (a-MTS)
distribution if its Levy triplet is given by

02 =0,
1 1
A K1 hax A 2K Ax
v(dx)=C ey Ixso + " Iv<o | dx,
X 2 X 2
rt_o _1 _1
y=u+C (2*9(&“—1 — A2y TR, i) AT 2K, ()
2OL+2 2 2

where C > 0, A4, A- >0, p € R, a € (=00, 1)\{3} and Kp(x) is the modified Bessel function
of second kind. We denote the MTS random variable by X ~ MTS(a, C, Ay, A_, ). The Lewy
measure v(dx) is called the MTS Levy measure with parameter (o, C, A4, A_).

The MTS distribution is obtained by taking a symmetric a-stable distribution with o € (0,1)
and multiplying by a Levy measure with \/MX"*%KWF%(MXD on each half of the real axis. The
measure can be extended to the case o < 0. If a = % then -y may not be defined, so it is removed.
The MTS distribution was introduced by Kim, Rachev and Chung [25].

The tails of the a-MTS distribution are thinner than those of the 2a-stable and fatter (heavier)
than those of the 2a-TS distribution. At the zero neighborhood, all three have the same asymptotic
behavior.

If A > A_, then the distribution is skewed to the left. If A < X_, then the distribution is
skewed to the right. If A = A_, then the distribution is symmetric.

C controls the kurtosis of the distribution. If C increases, the peakedness of the distribution
increases.

As o decreases, the distribution has fatter tails and increased peakedness. The Levy process
corresponding to the MTS distribution has finite activity if o < 0 and infinite activity if oo > 0. It
has finite variation if o < % and infinite variation if o > %

With proper choice of C and u, MTS distribution has zero mean and unit variance, and the
distribution is called standard MTS distribution and denoted X ~ stdMTS(a, Ay, A_).

CGMY process proposed in Carr et al. [14] is a tempered stable process. In order to obtain a
closed form solution of the European option price, CGMY used the generalised Fourier transform
of the distribution of the stock price under the assumption of Markov property.

The stochastic volatility model is given by
dYy = (W+BXe) dt+ VXe dWr +p dZ;
dXt - —9 Xt dt + dZt

where w is the drift parameter, 3 is the risk premium, 8 > 0 is the drift of the volatility and Z: is
a MTS process.
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We estimate 6 from the observations of {Y;} at the time points ty = kA, k=0,1,2,..., n,
A > 0.

dm
cm(Z) = g 09 ¢7s(u)lu=0
For the tempered stable distribution TS(b, §, ) where 0 < b < 1,8 > 0, > 0, the m-th cumulant
is given by
cm(Z2) = =6(=2)"yb=m/Pp(p —1) ... (b— (m—1))

for v > 0. When «y = 0, it is positive b-stable distribution for which the moments of only order
k < b exist. For b= 1/2, TS distribution reduces to Inverse Gaussian (IG) distribution.

The infinite divisibility of this distribution allows one to construct the corresponding Levy process.
A Levy process Z = (Z¢)r>0 is said to be a tempered stable process if Z; follows a tempered
stable distribution. The tempered stable process is of finite activity if @ < 0 and infinite activity if
0 < a < 2. The tempered stable process is of finite variation if 0 < o« < 1 and infinite variation if
l<a<2

The MTS-GARCH model is given by

S

log Sit =1t —de + Mot — g(0r; 0, A, A2) + o€y
t—1

o7 = (a0 + @107 _1€6;_1 +B107_1) Ap, €0 =0

ag, 1,81 >0, a1 +01 <1, 0<p< Ai, €t ~ StdMT S(a, Ay, A=), rt is the risk-free rate, d;
is the dividend rate, X\; is the market price of risk, g is the characteristic exponent of the Laplace
transform for the distribution stdMT S(o, A, M), e, g(x;a, Ay, A=) = log(E(exp(xet)).

The characteristic function of Z is given by
dz(u) =exp(iup + Gr(u; o, C, A, M) + Gy(u; 0, Co A, A2))
where for u € R,

Gr(u:a, C Ay, A_) = 2~ 8 /mCT (1 - %) [(Ai )% A%+ (A2 +1?)E — AE] ,

Gi(u;a, C, Ay, A0)

e [1—a\ .4 l—a 3 2 a1 l—a 3  u?
= juC2 zr( 5 )[A+ F(l, > 3T AT L 55

where F is the hyper-geometric function. The value of G, for symmetric MTS distribution is always
zero.
The m-th cumulant is given by
Cm(Z):/.L if m=1,

m—auo

o ~1
cm(Z) = 2™ 2 (”72)!0( )(Aim—xam) if m=3,517,...

. ! -
cm(Z):2§3\/%(r,Zl) cr (m2 o‘) (A M4 XY f m=2,4,6, ..
7|
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The mean, variance, skewness and excess kurtosis are given by

E(Z)=ci(2) = u+2cr( 5 )(Ao‘l e b,

V(Z)=c(Z2) = 27%1\/%(]’ (1 _ g) (>\°"2 + )\372)’

- 2% (3532) (A2 - a0 ?)
c(Z2)3/2 7r3/4C1/2(I'(1—a)(>\°‘ 2 _|_>\gf2))3/2’
a(Z)  3-2%Cr(2-2) A4+
w(2) = Cz(Z)2 B VTC(T(A52)(AE 2 4+ A272))2
If a € (0,2)\{1}, the Levy measure of a-stable, a-TS and a-MTS have the same asymptotic behav-
ior at the zero neighborhood. However, the tails of the Levy measures for the a-MTS distribution

are thinner than those of a-stable and heavier than those of a-TS distribution.

When Z is a IG process, the moment estimators of p and 6 are given by

5 - (s — LY
n-— Aép\nv ,On T 2-)7
where
ZyJ yj =Yja = Yj-1a

= EZ(YJ -y = - ZYJ'Z - (7).
j=1 j=1
When Z is a Gamma process, the moment estimators are given by
2
6 — 2 [ (Vin = Yiicva)] 2a%(a+1)
=
LY L Via = Yimna)? = [ (Yia — Yii—na)] DA
5 Ly (Yia— Y1) -4 [Z," 1(Yia = Yi—a)]  b2A
’ 2 [Z7 (i = Yiona)] 24%(a+1)

n2

For the MTS-OU model, the estimating functions are given by
a(n) = rpha(2),

() = Aa(Z) +2x0°Aa(2),

c(1) = Aci(Z2) + 220" Aca(2),

() = Aci(Z) +2xp°Ac3(2)

~

which give

E(yi)=a()=p+2" 2 CI >

V(1) = ca(yn) = 2% V/aCr (1 _ 7) (AT 1 A%2),
This gives the moment estimators for the SOU model

1 [Z 1(YA / lA)]
% Z/n:l(Y/A - Y(/fl)A)z ) [ZI 1(YA / 1 A)]

a+l (1—0[) (Ai_l_kg_l)'

b, =


https://doi.org/10.28924/ada/ma.3.4

Eur. J. Math. Anal.

X [27 2 CT

a 1 - &
a1 ( a) (A2t — a2 L)t /T (1 — %) (AT2+ 22 )2a "t
_ 2 ia = Yimna)® = 5 [ (Via = Yimna)]
L[ (Yia = Yi—a)]

e
B

l—«
2

Let 9 = (p,6) and ¥, = (. 8,). By using Theorem 2.2 in Masuda [34] (see also Theorem 4.1 Van

der Vaart [41]), we obtain the strong consistency and asymptotic normality of the MM estimators:

x 275 Cr ( ) (A&t xe byt /T (1 - %) (A22 4+ A2 2)) 7127 1A,

Proposition 2.1 For fixed A > 0 as n — oo,

(a) O, — By as. asn— oo.

(b) Vn(¥n — o) =P Na(0, (J~1(D0)) as n — <.

where J(¥) is the Fisher information.

3. SPDEs with Additive Noise

Consider the parabolic SPDE

du(t, x) = 0u°(t, x) + ;;M’(t,x)dt +dZ(t,x), t>0, x€[0,1] (3.1)
u(0,x) = uo(x) € L2([0.1]), (3.2)
WO(t,0) = d%(t, 1), te [0,T] (3.3)

Here 8 € © C R is the unknown parameter to be estimated on the basis of the observations of
the field v?(t,x),t >0, x € [0, 1].

Let S3 and S, be independent stable random variables, S3 is positive a/2-stable with distri-
bution Sa/2(01, 1,0) and Sy is symmetric a-stable random variable with distribution Sy (0>, 0, 0),
o1 = C;/22/a, 0r = Cat/® Cy= (Joo x*sinxdx)™! = [[(1 — a) cos(ma/2)] L.

In this case, in the limiting distribution, S3 and S4 are independent stable random variables with
a rate faster than the cylindrical Brownian motion case.

For x € [0,1], we observe the process {u;, t > 0} at times {tp, t1, to,...}. We assume that
the sampling instants {t;,i = 0,1,2,...} are generated by a Poisson process on [0, ), i.e.,
to =0,t; = ti_1 +a;, 1 =1,2,... where a; are i.id. positive random variables with a common
exponential distribution F(x) = 1 — exp(—Xx). Note that intensity parameter A > 0 is the

average sampling rate which is assumed to be known. It is also assumed that the sampling process
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ti,i =0,1,2,...is independent of the observation process {X¢, t > 0}. We note that the probability

density function of tx4; — tx is independent of k and is given by the gamma density
fi(t) = A(O\t) "Lexp(=At)l;/(i— 1)1, i=0,1,2,.... (3.4)

where [y =1ift>0and I; =0if t <O.

Consider the Fourier expansion of the process

oo

Wt x) =)l (D)¢i(x) (3.5)

t=1
corresponding to some orthogonal basis {¢;(x)}2;. Note that uf(t),/ > 1 are independent one

dimensional stable Ornstein-Uhlenbeck processes
duf(t) = pll(t)dt + B *dZ(t) (3.6)
uf(0) = ug;,
Recall that u;(6) = k(0) — B?™. Thus
dul(t) = (k(0) —BZ™)ul(t)dt + B *dZi(t) (3.7)
The random field u(t, x) is observed at discrete times t and discrete positions x. Equivalently, the

Fourier coefficients u,-e(t) are observed at discrete time points.

Define
A

X —K(0) + B2
The quasi-likelihood estimator is the solution of the estimating equation:

p:=p(A0)=

G:(6) =0 (3.8)

where

BN (X, 6))* ¢

Go0) == o) ;ut,.1((ut,.lepu.e)fﬂ)‘l(ut,.—p(x,e)ut,1>. (3.9)

We call the solution of the estimating equation the quasi-likelihood estimator. There is no explicit
solution for this equation.

The optimal estimating function for estimation of the unknown parameter 6 is
n
Gn(0) = B )ty luy, = P, O)ug . (3.10)
i=1
The martingale estimation function (MEF) estimator of p is the solution of

Gn(8) =0 (3.11)

and is given by
n
5, 2_im1 Uty Uy
n--— n 2
2 i1 Uy,
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We do the parameter estimation in two steps: The rate A of the Poisson process can be estimated
given the arrival times t;, therefore it is done at a first step. Since we observe total number of

arrivals n of the Poisson process over the T intervals of length one, the MLE of X is given by

< n
An ==

Theorem 3.1 We have

5\n—>>\a.s. as n — oo.

Vi(Rn = 2) =P A0, (1 —e ™)) as n— oo

Proof. Let V; be the number of arrivals in the interval (/i — 1,/]. Then V;, i=1,2,..., n are ii.d.
Poisson distributed with parameter A. Since @ is continuous, we have /10y (V) = I{0y(u(t))) a.s. | =
1,2,..., n. Note that

1 ¢ -
- Zl lioy(ug) =25 E(lggyVh) = P(V4 =0) = e > as n — .
=
LLN and CLT and delta method applied to the sequence /oy (uy), 1 =1,2,..., n give the results. 5
The CLT result above allows us to construct confidence interval for the jump rate A.

Corollary 3.1 A 100(1 — o)% confidence interval for X is given by

1 n
[‘Zl— P z‘V‘]

where Z;_q is the (1 — 3)-quantile of the standard normal distribution.

We obtain the strong consistency and asymptotic normality of the MEF estimator.

Theorem 3.2 When o = 2, we have

on—%° pas n— oo

Vn(pn—p) =P N0, X(1—eP)) as n— oo.

Proof: By using the fact that every stationary mixing process is ergodic, it is easy to show that if u;
is a stationary ergodic O-U Markov process and t; is a process with nonnegative i.i.d. increments
which is independent of wu;, then {u:,/ > 1} is a stationary ergodic Markov process. Hence

{ug,, i > 1} is a stationary ergodic Markov process.
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Observe that u?(t) := v is a stationary ergodic Markov chain and v; ~ N(0, 02) where o2 is

the variance of ug. Thus by SLLN for zero mean square integrable martingales, we have

1 n
. Z ug_ Uy, = E(ugyuy, ) = pE(uj)
i=1

1 n
2 a.s. 2
- > i = E(u])
=1

Thus
LU,y s
Zf:l U?/—l
Further,
1(pn — p) = n—1/2 Z,n:ll Ut;l(u;’ — GUtf_l)-
n- Z,’:l Ut[—l
Since

E(Uh Utzluh) = 9“%

it follows by Lemma 3.1 in Bibby and Srensen [2]

n
~1/2
n~t/ E ug, (ug —6uy, )
i=1
converges in distribution to normal distribution with mean zero and variance equal to

El(utug,) — E(ugug|ug)]? = 1 — 2P0 2(8 — 0)(8; + 1)} L.

Applying delta method the result follows. 0

In the next step, we use the estimator of A to estimate 6.

Note that
1 > “g,,l
Pn B Z/r'?:l Uty Ut,v.
Thus
- GO B W
A D_ily Uty U,
which gives
2m_k(0)  Xiaup, - XUy oy — g ]
A YUy il Uty U,
Now replace \ by its estimator MLE X,,.
2m _ (0 = Xt gy [ug — ug ]

T <n
n Zi:l Uty Uy
Thus

é _ K,_l 62177 + Z;-,:]_ UI‘,’,l [ul‘,‘ - Ut,,l]
e ' Tyon
n Z/:l Utlfl Ut/
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Since the function k~%(-) is a continuous function, by application of delta method, the following

result is a consequence of Theorem 3.2.

Theorem 3.3 When o = 2,
a) 6, —~0as. as n— oo
b) (B, —8) =P N(0, (k'(8))2A2(1 — e~} "R(O)=LI™)) as n — co.

In the second stage, we substitute \ by its estimator \,.

Theorem 3.4 When 0 < o < 2,

a) 6, =¥ 0 as n— oo
b) n@=D/e*(@G, — ) =P (K'(G))_zkz(l — e ATWO-AIM )T 2 as s o0,

where S4 and Ss are independent stable random variables.

In the second stage, we substitute \ by its estimator A,. The limit distribution is normal only

in the Gaussian case o = 2.

4. SPDEs with Linear Multiplicative Noise

Consider the SPDE with multiplicative noise:
du(t, x) = (Ao + 0A1) P (t, x)dt + MuP(t, x)dZ(t,x), t >0, x € [0,1] (4.1)

where M is a known linear operator.

Equation (4.1) is called diagonalizable if Ap, A1 and M have point spectrum and a common
system of eigenfunction {h;,j > 1}. Denote by pk, vx and g, the eigenvalues of the operators
Ao, A1 and M respectively.

Then

WOt x) = Z ujch;.
Jj=1
The Fourier coefficients have the dynamics
du(t) = (Ovk + pi)uk(t)dt + oxu(t)dZi(t), k =1
which is the Stable Black-Scholes Model whose solution is geometric stable process.
Let
Ovi + ok = 1k(0), Vi, T == In(uk, 7/ Uk 0)-
Conditional characteristic function (CCF) estimator is given by

= \7va O'i

i6) = ety ¥ p 7 v
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Since uk(0) is strictly monotone function of 6, by invariance principle of CCFE, under invertible

transformations, we can find the CCFE of the parameter 6

2
O Pk

by T (=1 +1)/a® 1y

A Vie, T
0T = v T2la-1)/a? +

which can be represented as
UkMT
UkTQ(afl)/oﬂ

where Mt is a square-integrable martingale. Due to the LLN for martingales, we have strong

ék,T =6y +

consistency.
Note that in the standard Black-Scholes case where oo = 2, o, = o, the MLE of the drift

coefficient of the geometric Brownian motion is given by

~ In(ur/up) o2 Wi
by — MWT/M0) T g 4 Gt
T T + 5 b+ 0 T

Due to the law of iterated logarithm for Brownian motion, the MLE is strongly consistentas T — oo.
Theorem 4.1 When 0 < o < 2,

a) ék,T is an unbiased estimator of 6.

b)
ék'T — 0 as. as T — oo.
0)
2\ la
—1 2 A D O-k 54
T/ @, - — ) - (Uﬁ) g o T

where S4 and S3 are independent stable random variables.

d) If in addition,
Ikl — 0.
Vi

lim
k—o00

then for every fixed T > 0,

Okt —+0as. as k— o0

and ,
~ 1
Ok —0) —P (T(O‘_l)/o‘2) : % as k — oo.
3

Ok

Remark: The parabolicity condition and the MLE consistency condition in general are not
connected. In terms of operator’s order, parabolicity states that the order of operator M from the
diffusion term is smaller than half of the order of operators Ag and A; from deterministic part.
The consistency condition assumes that the order of the operator M from the diffusion part does
not exceed the order of the operator A; from the deterministic part that contains the parameter of

interest 0.
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5. SPDEs with Nonlinear Multiplicative Noise

Consider the SPDE with multiplicative noise:
dul(t, x) = (Ao + 0A WO (L, x)dt + MU (t, x)dZ(t,x), t >0, x € [0,1] (5.1)

where M is a known nonlinear operator.

Equation (5.1) is called diagonalizable if Apg, Ay and M have point spectrum and a common
system of eigenfunction {h;,j > 1}. Denote by pk, vx and uy, the eigenvalues of the operators
Ao, A1 and M respectively.

Then

00
Ue(t,X) = Z Uj,th_j-
Jj=1

We consider stable CIR model as example. Here S; and S, are dependent stable random

variables unlike the linear case where S3 and S4 are independent stable random variables.

The existence and pathwise uniqueness of solutions to the SDEs with non-Lipschitz coefficient
driven by spectrally positive Levy processes were studied in Fu and Li [17].
Consider the nonlinear SPDE

dX(t, x) = gXXX(t, x)dt +~/X(t, x)dW(t, x)

where W(t, x) is a space-time white noise. Konno and Shiga [26] studied the existence and weak
uniqueness of the above equation as a martingale problem for the associated super-Brownian mo-
tion. The pathwise uniqueness of nonnegative solution still remains open. The main difficulty
comes from the unbounded drift coefficient and non-Lipschitz diffusion coefficient. Wang et al. [42]
studied proved a comparison theorem and showed that the solution of the nonlinear SPDE is distri-
bution function valued. They also established pathwise uniqueness. As application they obtained
well-posedness of martingale problems for two classes of measure-valued diffusions: interacting
super-Brownian motions and interacting Fleming-Viot processes. He et al. [18] obtained pathwise
unique solution to nonlinear SPDE with super Levy process, which is a combination of space-
time Gaussian white noises and Poisson random measures which is a generalization of work of
Xiong [43] where the result for a super-Brownian motion with binary branching mechanism was
obtained. Using an extended Yamada-Watanabe argument, Xiong [43] established strong exis-
tence and uniqueness of the solution to the SPDE. Super-Brownian motion (SMB), also called
the Dawson-Watanabe process introduced by Sawson and Watanabe is a measure valued process
arising as the limit of empirical measure process of a branching particle system. SBM satisfies
a martingale problem. When the state space is R, SBM has a density w.r.t. Lebesgue measure

and this density valued process X(t, x) satisfies the above SPDE. When the space R is s single
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point, the SPDE becomes an SDE which is CIR diffusion dX; = +/X;dW; whose uniqueness is
established using the Yamada-Watanabe argument. Xiong and Yang (2019) studied existence and
pathwise uniqueness to an SPDE with Hélder continuous coefficient driven by a-stable colored
noise. The existence of the solution is shown by considering the weak limit of a sequence of SDE
system which is obtained by replacing the laplacian operator in the SPDE by its discrete version.
The pathwise uniqueness is shown by using a backward doubly stochastic differential equation to
take care of the Laplacian. In the case of d = 1, the pathwise uniqueness of a nonnegative solution
to the corresponding equation was established by Yang and Zhou [45] for 1 < a < v/5 — 1 and
pathwise uniqueness for v/5 — 1 < a < 2 is still open.

Consider SPDE model with multiplicative noise and mean reversion, where the j-th Fourier

coefficient is the stable Cox-Ingersoll-Ross (SCIR) model:
duje = (a—0ujr)dt +ou|%dZ;e, j>1 (5.2)

where a is the mean reverting level and 8 is mean reverting speed. Recall that for o = 2, for every
J =1, the process Z;; is a standard Brownian motion, this is the famous Cox-Ingersoll-Ross (CIR)
model used for modeling interest rate, which is also used a stochastic volatility process in Heston
model. Note that there are Brownian CIR models with additive compound Poisson type jumps.

When 1 < a <2, Z;; is stable process with Levy measure

1{Z>0}dZ

vo(dz) = al(—a)zoHT

(5.3)

The discontinuous SCIR model captures the heavy tailed property in the sense of infinite variance.
There is empirical evidence from high frequency data available in support of application of pure
jump models in financial modeling.

The SCIR model has the unique stationary distribution v with Laplace transform given by

LX) = /000 e Mu(dx) = exp {— /0A aadz} , A>0. (5.4)

af + orza-1

Applying Itd's formula, for t > r > 0, we obtain

t t
U =e 9y 4 a/ e t=s)gs 1 cr/ e_e(t_s)“jl,égdzj,sv Jj>1. (5.5)

r r

Let the process be observed at {kh, k =0,1, ..., n} from a single realization {uj ¢, t > 0} for fixed
h. For simplicity, we take h = 1. This equation can be considered as a first order autoregressive
(AR(1)) equation

Uk =P+ YUjk-1+ €k J=1 (5.6)

where y =e % p=af"1(1—+) and

K
€k = U/k 1 e’g(k’s)uﬁédejvs, k>1, j>1. (5.7)
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For B € B(R"), let

n n
S2n(B) =) tjk—rels(ujn—16kl). S1jn(B) =) i 1ls(tjn-1). j>1. (5.8)
k=1 k=1

It is easy to see that
€k = Uk — E(Ujk|Fr-1), k>1, j>1. (5.9)
is a sequence of martingale differences for every fixed J.
Let S1jp = S1,n(0,0), Sajn:= S2,n(0,00) and recall that v = e°.
Then

~ Sy
Bjn—6 =220 (5.10)
Sl,j,n
where 8, is the conditional least squares estimator (CLSE) which minimizes
n n n
Y k=2 Itk — EuulFa)P =D [t — o — Yt k-1]? (5.11)
k=1 k=1 k=1
and are given by
A= Zﬁzl Uj k-1 Zﬂzl Ujk — ”22:1 Uj k—1Uj k
,n n n )
(k1 Ujk—1)? = Ny sz,k—l

1 n 1 n
“-:fEU‘—AfE Ujk—1,
Pj.n n .k 'Ynn i k—1

k=1 k=1

éj,n = - |Og &j,nx éj,n = 1_7A
Let (S1,S2) have the characteristic function given by

Elexp{ix1S1 + iX252}]

a 00
= exp{ o-)/O E (1 _ exp{/>\1y2 + I‘>\2y(a+1)/a\/j'1})

02T (—a
F A—20A1y? je—0(atl)/ay  \ (atl)/ay, d
x E |exp e —7 + e 2y 12 4 (5.12)
1— 26 (1 _ ee(a+1))1/a ya+1
and .
Vig = o—/ e Ok=s)e=b(s—ktl/agz.  k=1,2,j>1 (5.13)
k—1

which are i.i.d. with the same distribution as
ef 1\
() 2
which is reqularly varying with index a.. The limit distribution is normal only in the Gaussian case

o= 2.

Following Li and Ma [31] it can be shown that for every fixed J, if we have 1 < a < (1+/5)/2,

then we have as n — oo

_ _ D
(dy?S1jim ' S2n) (51, S2) on R?
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where d, = n'/® and ¢, = nle+tD/e® — glatl)/a
For the stable SPDE model, we have the following result on the consistency and the limit
distribution of the CLSE:

Theorem 5.1 If we have 1 < a < (1 + +/5)/2, then for every fixed j > 1

a)
0,n—"0as n— oo
b)
1/a
_ A 02 S
ple=D/e? (g, — g) —P (Vf) S—j as N — oo.

c) If in addition, lim;_, |1/J-} = 00, then for every fixed n > 1,
éj'T—>P9 as j — oo
and
] (60— 0) HDa(n_(o‘_l)/o‘z) — as Jj — oc.

where Sy and S; are defined in (5.12).
Remarks

1) The limit distribution in the case (1 ++/5)/2 < a < 2 is still open.

2) The process (Xj) is exponentially ergodic and hence strongly mixing.

3) For the Gaussian case (o = 2), the limit results are based on ergodic theory and martingale
convergence theorem. For the non-Gaussian case (1 < a < 2), limit results are obtained by the
theory of reqular variation and convergence of point processes.

4) Let 0 < o < 2 and let Z; be a one dimensional a-stable process with Levy measure v(dz).

Then as n — oo, nP(n~Y%Z, € ) =" tu(-).

6. Examples

(a) Consider the linear stochastic heat equation with additive noise
du(t, x) = Ouxx(t, x)dt + dZ(t, x)

for 0 <t <T and x € (0,1) and 6 > 0 with periodic boundary conditions.

Here 2m = m; = 2 and p; = —072j2,v > 1/2. The eigenfunctions are hi(xa, ..., Xp) =
(+/2/m)4(sin(nix1), ..., sin(ngxq)), x = (x1,..., xp) € Ry, j = (n, ..., ng) € N9 The corre-
sponding eigenvalues are —v; where v; = (n? + ...+ n?).

As n— 0o, h— 0, nh'*%/logn — 0, nh**Llogn — oo, nh?>=*/2+tP — o for some p > 0,

n |\ /%8, — 09) —P 200(abp) /2t
log n— 6o o(@bo 3
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where S3 and S4 are independent stable random variables, S3 is positive a/2-stable with distri-
bution 5a/2(01, 1,0) and Sy is symmetric a-stable random variable with distribution S, (02,0, 0),

o1 = C;/22/°‘, 0r = Cat/® Co= (Jo" x*sinxdx)™! = [[(1 — a) cos(ma/2)] L.

Observe the rate of convergence (nh)/®(logn)~1/* = (T)/%(logn)~1/. For o = 2, this rate is
T1/2(log n)~1/2.

(b)

Consider the linear stochastic heat equation with multiplicative noise
du(t, x) = Quxx(t, x)dt + u(t, x)dZ(t, x)

for 0 <t <T and x € (0,1) and 6 > 0 with zero boundary conditions and nonzero initial value
u(0) € L»(0,1). Here A; is the Laplace operator on (0, 1) with zero boundary conditions that has
the eigenfunctions hx(x) = /2/msin(kx), k > 0 and the eigenvalues vy = —k? px = 0, o) =
1, k> 0.

1
uk(t):/O he(x)u(t, x)dx,

duk(t) = (Ovk + pi)uk(t)dt 4+ oruk(t)dZ, ().
Recall that
Vi, 7 = In(uk, 7/ Uk 0)-
The CCFE has the form

A VT —1
KT =""7

(c) Consider the following SPDE
du(t, x) = [Au(t, x) + 0u(t, x)]dt + (1 — A) u(t, x)dZ(t, x).

In this case Ag = A, A1 =1, M = (1 — A)" with the eigenvalues vy =1, px = ok, x = (1 + 0x)".
It has a unique solution for any r < 1/2.
The CCFE has the form

5 VT (1—ox)* 1
KT

T eT2en/e? T 7@/ g
(d) Stable Cox-Ingersoll-Ross Model

Xiong and Yang [44] studied existence and strong uniqueness of the following SPDE:

dug(t) = (i + pi)u(t)dt + op(u () *dZ (1), k > 1.

The existence of the solution in the case of space-time white noise is shown by considering
the weak limit of a sequence of SDE systems which is obtained by replacing the Laplacian

operator in the SPDE by its discrete version. The weak uniqueness follows from the uniqueness


https://doi.org/10.28924/ada/ma.3.4

Eur. J. Math. Anal.

of solution to the martingale problem for the associated super-Brownian motion. In the case of a-

stable noise the existence and pathwise uniqueness of the solution is studied in Xiong and Yang [44].

Concluding Remark We considered Levy process driving term in this paper. Using fractional
Levy process as the driving term, maximum quasi-likelihood estimation in fractional Levy stochastic
volatility model was studied in Bishwal [8]. Recently, sub-fractional Brownian (sub-FBM) motion

which is a centered Gaussian process with covariance function
1
Cr(s, t) =s2H 4 t2H — > [(s+ )" +]s—t?"], s,t>0

for 0 < H < 1 introduced by Bojdecki, Gorostiza and Talarczyk [13] has received some attention
recently in finite dimensional models. The interesting feature of this process is that this process
has some of the main properties of FBM, but the increments of the process are nonstationary,
more weakly correlated on non-overlapping time intervals than that of FBM, and its covariance
decays polynomially at a higher rate as the distance between the intervals tends to infinity. It
would be interesting to see extension of this paper to sub-FBM case. We generalize sub-fBM to
Sub-fractional Levy process (sub-FLP).
Sub-fractional Levy process (SFLP) is defined as

1 H-1/2 H-1/2
Swe= =1 | [(t— — (- dMs, teR
= e L 9t

where M;, t € R is a Levy process on R with E(M;) = 0, E(M?) < oo and without Brownian
component. SFLP has the following properties:
1) The covariance of the process is given by

E[L(1)?]
2[(2H + 1) sin(mH)

2) Sy is not a martingale. For a large class of Levy processes, Sy is neither a semimartingale

Cov(Sht, Shs) = 2+ t2H 4 [[t]2H 4 |s]2H — |t — 5?7).

nor a Markov process. 3) Sy is Holder continuous of any order 3 less than H — % 4) Sy has
nonstationary increments. 5) Sy is symmetric. 6) Sy is self similar. 7) Sy has infinite total
variation on compacts.

It would be interesting to investigate QML estimation in SPDE driven by subfractional Levy

processes which incorporate both jumps and long memory apart from nonstationarity.
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