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ABSTRACT. In linear mixed models the selection of fixed and random effects using a testing hypothesis
approach brings up several problems. We deal with the boundary point problem emerging when no
randomness is hypotesized and the confounding impact of randomness on the coefficients arising when
fixed effects are tested. The test statistics are defined by a ratio of two quadratic forms derived from
ordinary least squares, are simple, sufficiently general, easy to compute, with known finite sample
properties. The test statistic on randomness has a known exact distribution, the density of the statistic
on fixed effect is unknown and is approximated by a noncentral F—distribution. The goodness-of-
approximation and the selection approach is examined in-depth by simulation. The method proposed
in this paper must be seen as complementary to existing selection procedures widening and enriching

all information necessary for taking a decision.

1. INTRODUCTION

Linear mixed-effect models are widely used to analyze longitudinal and repeated measurements
data because of their flexibility and relative simplicity. In particular, they are used in the form of
random coefficient regression model for analyzing the specification of the within-unit covariance
structure. In this context, deciding which random or fixed coefficient should be included in the
model becomes a fundamental problem.

In order to address the issue of which model is more suitable, one might use standard model
selection measures based on information criteria. These approaches rely on the choice of models
that minimize (an estimate of) a specific criterion which usually involves a trade-off between the
closeness of the fit to the data and the complexity of the model; see [1] for a comprehensive
review of model selection in linear mixed models. All these methods deal with the problem of
selection working simultaneously with both fixed and random component resulting computationally
burdensome. To overcoming this computational problem the penalized likelihood methods (dating
back to [2]) are proposed. These procedures treat the selection problem via a separate selection

approach to avoid the impact of random or fixed effects from one set of coefficient in the other set.
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Often the fixed effects are selected by first keeping all the random effects in the models, then the
random effects are selected by keeping selected fixed effects from the previous step. The two steps
are implemented iteratively until the parameters in the model no longer change. [3], [4] proposed
separate penalties for the fixed and random effects that are summed together. [5], [6], [7] proposed
two-stage methods where the fixed and random effects selection are performed independently. Note
that to remove random effects from a model, entire rows and columns of the covariance matrix must
be eliminated to form the final working model. Accounting for these issues, the unknown covariance
matrix of the random effects is sometimes replaced with a suitable proxy matrix (see for example
an orthogonalization-based approach proposed by [8)).

Although the penalized likelihood methods may avoid the need to search through the entire
model space, it may remain computationally intensive. A further complication of these methods is
how to define a "good” penalty function (for a discussione see [9]) and how to perform the shrinkage
appropriately. Moreover, the results obtained can be interpreted only asymptotically, assigning to
simulations the analysis of the behaviour in small samples.

Because the selection of terms is closely related to hypothesis testing, the choice of fixed and
random coefficients to be included in the model could be conducted by assessing the significance of
appropriate test statistics. As known, this approach brings up several problems. Testing randomness
is associated to the so-called boundary point problem. Testing fixed parameters is related to
the "confounding” impact of the random effect on the coefficients which can lead to a misleading
interpretation of the significance of the statistic. This is the same problem encountered in penalty
function approaches. We agree with some authors [10] that none of the proposed procedures should
be used as the only procedure to select the fixed and random coefficients in linear mixed models.
They should be taken as complementary and the decision should be based on all information
available.

The goal of this work is to propose two additional (perhaps useful) tools for selecting terms
defining two simple statistics based on a ratio between a statistic which contains the effect and the
same statistic without the effect. The test statistic for randomness is constructed by comparing the
h—th diagonal element of the sample covariance matrix of ordinary least squares, ols, (see [11])
with the same term under the hypothesis of zero random effect. The resulting statistic is simple
and has a known exact distribution for any sample size under the null and alternative hypothesis.
The test statistic for fixed effects is a ratio between the square of the quadratic mean of h—th
element of the sample average of o/s (which contains both fixed and random effects) and the h—th
diagonal element of the sample covariance matrix of o/s (which captures random effect only). The
ratio: (random effect + fixed effects)/random effect defines a test statistic with random

effect "removed” by division. The distribution of this statistic is unknown ad is approximated by
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a noncentral F—distribution. A selection procedure is conducted through a joint analysis on the
significance of these two tests.

The approach proposed in this paper is simple as it uses o/s, allows to make inference through
point estimates and (approximate) confidence intervals and may be seen as an attempt to overcome
the "boundary” and "confounding” problems of testing procedures.

The paper is structured as follows. Section 2 introduces the two stage linear mixed model.
Section 3 defines the statistics for testing randomness (subsection 3.1) and fixed effects (subsec-
tion 3.2). Section 4 discusses the exact ( subsection 4.1) and the approximate (subsection 4.2)
density functions of the test statistics. Section 5 is divided into three subsections. Subsection
5.1 defines the settings for simulations, subsection 5.2 analyzes the goodness-of-approximation of
the noncentral F—distribution, subsection 5.3 deals with the selection of terms of the linear mixed
model based on the significance of the two test statistics proposed. Appendix A discusses the

approximated distribution.

2. Two-STAGE RANDOM EFFECTS: MODEL AND NOTATION

The linear mixed model for longitudinal data can be described as follows: y; = X/3*+Z;d" + u;,
i=1,...,nwhere y;is a t; x 1 vector of repeated measurements, X is a t; x | matrix of explanatory
variables, linked to the unknown / x 1 fixed effect 3*, Z; are the observed t; X g covariates linked
to the unknown g x 1 random effects d* ~ N (0,Qq), Q4 is a g x g positive semidefinite matrix,
Qq =0, uj ~ N (0,0°ly,). The uj's are iid so can be thought of as measurement error. We assume
that u; and d;* are independent.

Following [10] we re-express the linear mixed model as a two-stage random coefficients model
[12],

y,-:X,ﬁ,-—l—u,-, i=1,..., n (1)

where X; is a matrix with k columns obtained from the elements of X} and Z;; the columns of X;
are those common to X; and Z; plus those that are unique either to X/ or Z;. The j—th element
of B; is given by 5; + dJ*, if column j is common to X/ and Z;, by ,Bj-k if column j is unique to X7
or by dj*, if column J is unique to Z;. We can therefore write G; = 3 + d;, where null elements may
be added to the original 3* and d vectors so that they have the same dimension.

Regarding (1) as a two stage model, it follows that y;|d* ~ N(X8;;02ls) is the first stage
model and can be considered as a set of separate regression models for each unit. So in the first
stage we may be be able to obtain estimates of 3; and 02 using just the data from the i — th subject,
e, b= (X!X)" Xy, and s = LY (t; — k)s?, with (t; — k)s? = y/ (I, = Xi(X! X)) 72 X!) v
and df = Ny —nk =Y, (t; — k). The estimated parameters, b;'s, are independent and normally

distributed with mean @; and variance-covariance matrix 02(XfX,-)_1.
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The Bi's are random variables; to specify population parameters, at Stage 2 we assume that
Bi ~ N(B, ), where € consists of 2, augmented with null rows and/or columns corresponding
to the null elements in the random vectors d;. Let B; = B + dhi be the h-th component of the vector
Bi where By, is the h-th component of 8 and dp,; is the h-th element of d; such that dyj ~ N(0, wpp),
wpp the h-th diagonal element of Q. Setting wp, = 0 is equivalent to setting all the elements
in the h—th column and h—th row of the matrix {24 to zero. This means that a single parameter

controls the inclusion/exclusion of the random effects in the model.

3. TEST STATISTICS

The test statistics defined in this section are based on ols, b; ~ (6,02(X;X,')71 +Qk). Let
denote with bp; the h-th component of the vector b;. The sample average of o/s estimators, b=
L5 . bi, is normally distributed with expected value 8 and variance var(b) = U—iV%— 10, where
V =n1 Z?ZI(X;X,-)*l. Let by be the h-th component of b, and Vp;, the h-th main diagonal
element of V.

According to the assumptions of the model, (b —b) ~ N(0, o2V + =1Q,) with
Vij = £V + 222(XIX) 7L, E(by — b)(bj — B) = 02Vjj+ hyQu, Vi = £V — 5(XIX) 7L = £(X; X)) 7!

I~ n
n—1
it =y, hj= —% if i #J. Vi and Vj; are k X k matrices. Let denote with V

and h;; =
the nk x nk matrix with (i/,)-th block Vj;. V is a positive semidefinite and symmetric matrix with
rank (n — 1)k. We define two statistics, one for testing randomness "removing” the fixed effect by
a difference, the other for testing the nullity of the fixed effect “removing” randomness from Gy by

a ratio.

3.1. Test statistic Tp, Ho : wpy =0 () Br € R; Hi : wpy > 0 ) By € R. In this section we
define a statistic for testing randomness of B = B, + dh;.

Observe that wp, = 0 implies dp; = 0 with probability 1. We develop a test statistic based on
Sy, = (n— 1)t > (bh,- —Bh)2 which is the h-th diagonal element of the sample covariance
matrix of ofs proposed by [11], Sp = (n—1)"*Y_ ", (bi — b) (b —E)I. We recall that £(S,) =
02V + i which implies that E (Sp,|H1) = 0°Vph + whn and E (Sp,|Ho) = 0%Vhp. The ratio of
these two expected values is

E[-2 Y71 (bni — bp)?|Hi | _ 0%Vhy + Whp Whh

_ = T Yhh T Whh _ gy S
E (751 271 (bni — bn)?|Ho ] 02Vhn o2V

=0,

Observe that the difference, by; — by, allows us to “remove” the fixed effect. The statistic we propose
is an estimate of 8, defined by a ratio between S5, and 5%V, where s2 is the sample variance of
2. We have,

1 Y 7 (byi — bp)?

Th= —
h n—1 s2 Vhh

(2)
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The expected value of T}, is given by

n

B Sh, o2\ df , B
E(Th)—de(Uzvhh)E(dfs2 =0 with df—g(t, k)

Since E (Sp,|H1) = 02Vhn + whp, the difference Why = Sp, — S2Vap gives an unbiased estimate of

w daf — 2
ﬁh = Tp. ——— Tp is an unbiased estimator of 6.
szvhh df

The parameter 65, can be interpreded as a measure of the relative change of the "total” variability”

WhHh and é\h =1+

of the h — th coefficient, 2V, + wpp, with respect to the residual variance 02vpy,. Given finite

02 > 0 when wp, = 0, 8, = 1 and T, takes values around E(Tp) = dfd—;. If wp, > 0 then

w
o> o, 0n is greater than 1 and T}, deviates from its expected value. The farther ——=

O'2th 02 Vhh

zero, the greater 8, and T}, everything else being equal. The greater T}, the stronger the evidence

is from

against Ho. We call mpp = ———
0“Vhh
The parameter, rpp, plays the same role as the noncentrality parameter of an F-distribution. As

randomness parameter.

we shall see, if rpp increases, the shape of the distribution of T}, shifts to the right and a larger
percentage of the curve moves to the right of the critical value. 6; can be seen as the unknown
parameter of the model to be tested and estimated. Testing randomness is equivalent to testing
0p. We can restate the null and alternative hypotheses as follows: Hp : 6, = 1(Hp : 6, < 1) and

Hi : 0n > 1. Ho is rejected if the test statistic 7, is "much” greater than one.

3.2. Test statistic Fp, Ho : B =0 () wpn > 0, H1 : Br > 0 (] whp > 0. For testing the fixed
effec, we develop a test statistic based on b,. The quadratic mean under Hy, E(n Ef,|H1), is
compared with E(n Bi|Ho) = E (Sp,|H1) by a ratio. We have,

-2 _
E(nb, | H 0°Vin + Whp + 0 B2 nB?2 nB?
( 7/27| 1): hg— i Bh:]-"‘#:l-i— 2§h 0h1:1+ncph
E(n b, | Ho) O“Vhh + Whh 0%Vhp + Whh 0%V
0'2th

where ncpy, is a noncentrality parameter, 9;1 = is the reciprocal of 1+ rpp, ranges in the

02V ppt+whn
interval [0, 1] and can be interpreted as the share of "residual” variance on the "total” variability.
The numerator of 14+ ncpy, incorporates both random and fixed effect, the ratio allows us to "remove”

the random effect. The statistic we propose is an estimate of the above ratio,
-2 -2
n bh N n bh
- —\2
Son (n=1)71 X, (b — by)

When B, = 0 the test statistic F, takes values around its expected value. If B, # 0 then Fy

Fn= (3)

deviates from its expected value. As we shall see, the greater 32 the further away the peak of the
distribution from zero.The bigger the ncpp, the more the alternative sampling distribution moves to
the right and the more power we have. The null hypothesis is rejeted for large value of ;. The

test statistic (3) is similar to the one proposed in [10].
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4. DENSITY FUNCTIONS OF Tj AND Fp,

In this section we develop and define the exact and approximate distributions respectively of T

and Fp both under the null and the alternative hypotheses.

4.1. Exact density function of Tp. Let vyj, h=1,..., k be the h-th diagonal element of the block
matrix V;; and denote VD = d/ag(l/\ﬂvll) ..... 1/\f(th) ..... 1/\/(ka)) where vy, is the h-

th main diagonal element of V. Let's define W = R+ G where R = (/n ®V51/2) vV (/n ®V51/2

1/2) the

is the nk x nk covariance matrix when Q, =0, G = (/n ®V51/2) (Hn ® %) (ln ®V5
nk x nk covariance matrix of random components and H, = [h;;].

Let W, = Rp + Gp be the n x n matrix of rank n — 1 obtained from W dropping the rows
and columns that do not refer to the h-th element. According to the hypotheses of the model

(bpi — bp)/(0/Vpp), is N(O,8p) where 8 = S + ( ) wg’;h is the /-th diagonal element

th O'2

of W, and 6, = % > 71 0hi. The square (bh,- — bh) /(0%Vpp), is a gamma with shape parameter
1/2 and scale parameter 26p;. For i = 1,..., n we have a set of correlated gamma with same
shape parameter and different scale parameter. The density function of Sy, /(0%Vhp) is defined
with the gamma-series representation of [13] (see also [14]). The statistic T}, obtained by replacing
o2 with s°, can be seen as the ratio of two random variables where the numerator is a sum of
gamma, Y ! G( % , Bi) with B; = 2df¢;/(n — 1) where ¢,'s are the eigenvalues of W}, and the
denominator is a G(%, 2) (st veda [15]). It can be shown that 6 = —1- S "~ ¢ and when Hy is
true Y1) _‘ 1= 1.

The ratio of these two gamma is a generalized F-distribution denoted with GF. By expressing

the numerator as a single gamma-series representation [13], the density function of T, can be

written as

df B
fr, (x ZkaF( +k22) (4)

&7
where px = Coy, B1 = mini{B;}, C =1~} (%) = Zjn:—11 aj, aj = 1/2 V) and the coefficients

!

0k are obtained recursively by the formula
do =1
i
Ok+1 = k+1 Zkﬂ [Z(n Yo ( - %) ]5k+1/, k=0,12,...

(k. Px)k—0 12 is a discrete probability distribution. Since the gamma-series representation of
[13] is CPU-time intensive when the shape parameters are small and the scale parameters have
large variation, [16] proposed to approximate the probability distribution (k, px)y—g 10 With a
generalized negative binomial distribution.

The function (4) is uniform convergent [13]. This property justifies the interchange of the inte-

gration and summation and allows us to compute the distribution function and quantiles.
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4.2. Approximate density function of F;. Let divide and multiply expression Fj, (formula (3) ) by
0V, + Whp and, individually, discuss numerator and denominator. According to the assumptions

of the model,

n b nB2
h 2 h
—_—~ 1, ncpp=———""— for any wpp >0 5
02Vhh + Whh x Ph= 52 Vhh + Whh ) Y Whh = ©)
and )
- -1
—_ Sbh — 1 Z?:l (bh/ — bh) ~ 1 nZ TX2(1) (6)
h 02Vpp + Whh n—1 02V, + Whn n—1 pa !

where 7, = ¢;/0;. Q) is distributed as a linear combination of x?(1) the exact distribution of
which can be obtained, for example, through the gamma-series representation of [13]. However,
the knowledge of the exact distribution of Q is not useful for defining a "simple” distribution of
the statistic Fp, so following [17] we approximate the distribution of Qp by an adjusted chi-square
distribution as in Qp ~ ax?(b) where a and b are determined by matching the first two moments
of Qp, with those of ax?(b) (see Appendix A).
The ratio between the exact chi-square distribution (expression (5) ) and the approximate chi-
square distribution of Qj, each divided by their degrees of freedom gives the following approximation
Fn = ! Ei =
(n—1)"1 37y (bni — bn)

We recall (see (Appendix A) that b depends on the random component and ranges between by when

5 ~ F (1, b, ncpp) (7)

wpr = 0 and (n — 1) when wpy, is large (with respect to 02), then (7) defines a family of density
functions. According to the critical discussion of Appendix A, we propose setting b = n—1 for any

Whp > 0.

5. SIMULATION

This section is divided into three subsections. The first defines the settings for simulations
which are valid unless otherwise specified (settings by default). The second subsection analyzes
the goodness-of-approximation of the statistic F,. The test statistic Tj, is based on the works of [16]
and [18] where the power function and consistency of the test is partly analyzed and discussed. The
results are not reproposed here but are available in a supplementary material. The third subsection
discusses the selection of terms of the linear mixed model based on the significativity of the test

statistics T and Fp,.

5.1. "Base” Scenario for simulations. To allow the maximum of generality and flexibility, we define
the following scenario for all simulations unless otherwise specified.

(1) The number of parameters and units are respectively k = 6 and n = 10. The number of obser-

vations per units, t;, i = 1,...n, are drawn randomly from a uniform distribution, U(k + 4, 3 k).

(it) The vector of regression coefficients, 3, is generated randomly from a N(0, 2).
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(iii) For each units, the columns of X; are drawn from an N(mean, sqrt) where the mean is random
from a uniform distribution, U(10,20) and sqrt is random from U(2,10). All the elements in
the first column are 1.

(iv) We define first a positive definite matrix, W, by extracting elements from a standard normal
distribution then the covariance matrix €2, is obtained by selecting g columns and rows from
WV and zero elsewhere. This allows us to define (indirectly) the random and fixed parameters
of the model.

(v) The index of the tested parameter is drawn randomly from a uniform distribution, U(1, k).

(vi) The variance, 02, is fixed proportionally to the maximum entry of the main diagonal of Q.

5.2. Goodness-of-approximation. This study is based on a set of matrices, My, ..., M, ..., My
defined as follows.

Let ncp, =1, ..., h, ...k be one specific value of the noncentrality parameter in the arbitrary
set A={0,1,2,3,5,8} and consider nrep/ = 100 different values of 65, 0, j =1, ..., nrepl drawn
randomly from a uniform distribution on the interval [1, 10]. Given ncpy, for each different parameter
combination (ncpy, 0p;), we compute the test statistic £, on N = 1000 simulated samples of size
n = 10. This yields an N x nrepl matrix, M, of statistics F, computed with the same noncentrality
parameter but different parameter 6;. The matrix M, is defined for each value of ncp; € A. The
set of M, matrices, I =1, ..., k is the basis for our analysis on the goodness-of-approximation of
the test statistic Fp.

We proceed following two steps. First we extract one column from the matrix M;. We have
N = 1000 simulated samples, replicated by a model defined by the pair (ncpy, 65;). With these data
we compute different goodness-of-fit statistics and estimate the parameters of the approximating
F —distribution by maximizing the likelihood function. Subsequently we extend the analysis to all
the column of the matrix M, so that we can evaluate the impact of the randomness parameter on
the test statistic.

Given the pair (ncp; = 3,0, = 3.85), the empirical distribution function of the N simulated
value of the statistic f, is shown in Fig.: 1.a where the solid line is the noncentral F—distribution
and the dotted line is the central F—distribution. The deviation between the two curves is the
effect of the noncentrality parameter. Fig.: 1.b shows the empirical cdf of F, with the 95%
Kolmogorov-Smirnov (K.S.) confidence bands for the unknown cumulative distribution function.
Fig.: 1.c shows the Q-Q plot between the quantiles of the noncentral distribution, F(1, n—1, ncp)
and the empirical quantiles. The points of both sets of quantiles form a line that’s roughly
straight. Fig.: 1.d is a P-P plot computed as follows: on the abscissa there is the set of proba-
bilities: p = {0.025,0.05,0.075, ..., 0.975} on the vertical axis there is the empirical probability,
:Bp = % Z,Nzl 0(Fn < qp) where §(true) =1, 6(false) = 0 and g, is the quantile of the non central
F — distribution. The points close to the 0 — 1 line highlights goodness of the approximation.
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FiGure 1. - Fig.: 1.a shows simulated histogram of Fj, the central F (dotted line)
and noncentral F (solid line). The displacement of the solid line from the dotted
line is due to the ncp with 8, > 1. The parameters are: h =3, ncp =3 0, = 3.85.
- Fig.: 1.b show the graph of the empirical cdf of F, with K.S. confidence bands
at 95%. - Fig.: 1.c represents Q-Q plot plot between empirical quantiles and
quantiles of noncentral F—distribution functions. . Fig.: 1.d shows the empirical

probabilities plottted against theoretical quantiles of F(1,n— 1, ncp).

The Kolmogorov-Smirnov method is used to test the null hypothesis that the hypotesized dis-
tribution is F(1,9,ncp = 3) against the alternative that the "exact” cdf does not equal the
F(1,9,ncp = 3). The result is a statistic ks = 0.02130233 with a pvalue = 0.75. (The chi-
square goodness of fit test gives similar results).

The method of maximum likelihood is used to estimate the parameters of a noncentral

F—distribution. We expect that the estimates are "close" to the parameters (1,9, ncp = 3). The
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fitdistrplus package of R produces the result of Tab.: 1. Tab.: 2 shows the confidence intervals

obtained with the basic bootstrap procedure. All the results are quite satisfactory.

TABLE 1. Maximum likelihood estimation

Parameters Estimate. Std. Error
dfli=1 1.018527 0.05633942
df2=9 8.633183: 1.27773298
ncp=3 2.951871: 0.14260946

Loglik: -2567.894 AIC: 5141.787 BIC: 5156.51

TABLE 2. Parametric bootstrap medians and 95% percentile Cl

Median 2.5% 97.5%
dfl=1 0.9613134 0.8688267 1.074114
df2 =9 8.7609549 6.8027519 11.999008
ncp=3 3.0368 2.69518 3.08946

The above analysis is carried out on N = 1000 simulated samples. To evaluate the "stability”
of the results we keep fixed the noncentrality parameter and repeat (nrep/ = 100) the simulations
drawing randomly 6p; from a uniform distribution on the interval [0, 10]. This means that we work
on the whole matrix M.

For each column of the matrix M; we compute the empirical vigintiles of F,. Fig.: 2.a shows the
bundle of lines "close” to each others which envelop the vigintiles (black points) of the approximating
noncentral distribution. Fig.: 2.b shows the boxplots of vigintiles and the points of the approximating
distribution. The approximation which collocates points of the replicated simulation inside the box
or within the whiskers of the boxplot can be defined "good” ("excellent”). Fig.: 2.c reproposes part
of Fig.: 2.b focusing on the first and third quartiles.

Some other results concerning the "goodness-of-approximation” of the F, test statistic can be

found in [15].
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Ficure 2. - Fig.:2.a shows the bundle of lines of empirical vigintiles and the points
of the approximating noncentral distribution. - Fig.: Fig.:2.b shows the boxplots of
empirical vigintiles and the points of the approximating distribution. - Fig.: Fig.:2.c

shows the graph of Fig.:2.b limited to the quartiles.

5.3. The selection procedure. In this section we discuss a selection procedure of the h—th term
based on the significance of the test statistics T; and F, and following the decision-making scheme

of Tab.: 3.

TaBLE 3. Selection of terms in a linear mixed model

Significance of Fj
Significance of T, Yes = 1 No=0
Yes =1 Bhi = Bh + dni | Bri = dh
No=0 Bhi = Bh Bri =0
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The Table can be read by column and/or by row. Let consider the pair (yes =1, yes =1). By
row, yes = 1 means that T, is statistically significant, 8, >> 1 V . Likely, the term 3;; has a
random component. By column, yes = 1 implies that presumably B # 0 for any 8, > 1. The joint
significance (yes = 1, yes = 1) leads us to claim that Bp; could be composed of both a fixed and
a random component, Bp; = B + dp;. The "goodness” of the selection is evaluated by simulating a
table of marginal and joint empirical significance measured by the power of T, and Fj. That is we
calculate the percentage of (1, 1) that occur on 10000 replications under different settings.

We recall that the noncentrality parameter, ncpp, and the randomness parameter, rpp, are a

measure of the degree to which the null hypothesis is false and then, they tell us something about
B
0'2th
and wpp are all factors that influence the "goodness” of the selection approach. In this section we

the significance of the two test statistics. We saw that ncp, = 6;1 then, n, Bpn, 02, Vpn

assume that n, By, 02 and Vp, are given and we discuss the power of Ty and Fp by varying the

parameter 0 < 9;1 < 1. This means that the analysis is restricted to the discussion of the pairs

2
(1,0) (0,1) of Tab.: 3. Simulations based on different settings of the ratio Uggh
hh

and on 9,71 are

not considered in this paper.

TABLE 4. Simulated power of T, and Fj, for different

values of the randomness parameter

02 =327, Vpp =29, Br=23.05 n=10
Share: 9;1 ncpp | power of F, | power of Tj
0 0 0.057 1

0.016 0.15 0.0647 1
0.028 0.26 0.0689 0.996
0.1047 0.97 0.1446 0.9636
0.208 1.93 0.2477 0.7461
0.32 2.958 0.3572 0.4435
0.5138 4.762 0.5443 0.1551
0.81 7.51 0.7324 0.0652
1 9.26 0.8113 0.0545

Table 4 shows simulated power of T, and £}, for different value of 9;1.
(1) The power of T}, depends inversely on 9;1. The larger 9;1 (wpp —> 0) the lower the power
of 7. When 9,:1 =1 (wpp = 0) the power of Ty is equal to the level of significance. The

smaller 9;1 (wpn — o0) the greater the power of Tp. As 9;1 — 0 the power of T}y tends

to one.
(2) The power of F, is directly related to 9,71. The larger 9;1 the greater the power of Fp.
2
When 9;1 =1 (wpp = 0) the power of F;, depends on a,;gh which increases if the number
hh
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of unit n and/or the magnitude of 3 increases. The lower 9;1 (wpp — 00) the smaller the

power of Fp.

The last two columns of Tab.: 4 can be taken as marginal probabilities and tell us the percentage
the significance (yes/no) of the two individual test statistics occurs on 10000 replications. Tab.: 5
((a) — (h)) shows the empirical percentage the pairs (1,1), (1,0), (0,1), (0,0) occur on 10000
replications for different values of 9;1.

Tab.: 4 shows that with a low value of 9;1 (large power of T and low power of Fp) likely we
observe the pair (1,0). In this situation wpy, is large compared to the "residual” variance o2Vpy,
and the fixed effect is dominated by the "randomness”. In this case the significance of the fixed
effect plays a minor role in a selection approach. Tab.: 5 (subtable (a) — (d)) shows the empirical
"joint probability” of selecting the term Bj; = dp;. This "probability” decreases from 0.934 when
9/71 ~ 0.16 to 0.6087 when 9;1 ~ 0.208. Of course other factors such as n or the magnitude of
Bn which influence the power of F; could address towards the selection of 3, = B + dp; instead
of Bhi = dhi.

When 9,71 is large (low power of T, and large power of Fp) presumably we observe the pair
(0,1). In this case the random component is dominated by the fixed effect and the selection of
the h — th terms is based on the significance of Fj, ignoring the possible presence of ("irrelevant”)
randomness. Tab.: 5 (subtable (f)—(h)) shows the "joint probability” of selecting the term Bp; = Bp,.
It is greater than 0.70 when 9;1 > 0.8.

(a) 8, = 0.016, ncpy, = 0.15 (b) 6, = 0.028, ncpy = 0.26 (c) 6,1 = 0.1047, ncpy = 0.97
Fn Fn Fn
Th Yes=1| No=0 Th Yes=1| No=0 Th Yes=1| No=0
Yes = 1 0.066 0.934 Yes = 1 0.07 0.93 Yes = 1 0.128 0.8356
No=0 0 0 No =0 0 0 No=0| 0.0166 | 0.0198
(d) 6, = 0.208, ncpy = 1.93 (e) 8, = 0.32, ncpy = 2.958 (f) 8, = 0.5138, ncpy = 4.7618
Fn Fn Fn
Th Yes=1||No=0 Th Yes=1||No=0 Th Yes=1||No=0
Yes = 1| 0.1374 | 0.6087 Yes = 1| 0.0898 | 0.3537 Yes=1| 0.032 | 0.1231
No =0 | 0.1103 | 0.1436 No =0 | 0.2674 | 0.2891 No =0 | 05123 | 0.3328

6. CONCLUSIONS

A hypothesis testing approach designed for selecting fixed and random coefficients to be included

in a linear mixed model brings up several complications. The two test statistics proposed in this
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(9) 6, = 0.81, ncpy = 7.51 (h) 6,1 = 1.00, ncpy = 9.26
Fp Fp
Th Yes=1||No=0 Th Yes=1||No=0
Yes =1 | 0.0201 | 0.0451 Yes = 1| 0.0170 | 0.0315
No=0| 0.7123 | 0.2225 No=0| 0.7943 | 0.1572

TABLE 5. Settings: 02 = 3.27, Vjp, = 2.9, B, = 3.05, n = 10. Each subtable
shows the empirical percentage the pairs (1, 1), (1,0), (0,1), (0, 0) occur on 10000
replications for different values of 9;1 and ncpp. For example, in subtable (a) in
6.6% of cases both T} and Fj, are significant, in 93.4% of cases T} is significant

and Fj is not.

paper are developed trying to solve the so called "boundary” and "confounding” problems which
are crucial for evaluating the significance of the tests.

In our opinion the approach based on a ratio between an "appropriatre” statistic which contains
the effect and another (or the same) that does not contain the same effect, may be a good method
to overcome the above problems. Since the statistics used in the work are based on ordinary
least squares, they are easy to compute, do not need any estimate of covariance matrices, allow to
investigate exact and approximate density function in small samples.

By using ordinary regression, the selection method based on the joint significance of the two
test statistics maintains great simplicity. However this approach must be taken as complementary,
point estimates and (approximate) confidence interval of randomness and noncentrality parameters

widen and enrich information needed to take a decision.

APPENDIX A. APPROXIMATION
Sh,

gt =
UZth h

According to the hypotheses of the linear mixed model, the ratio Qp =

X0 (bni — )

n—1

. .. 1 n 2 _ : 1 n _
. is distributed as =5 ) /., 7, x“(1) where 7; = ¢;/60p, with -=5 > 'L, 7, = 1.

The exact distribution of Qj, can be derived using the gamma-series representation of [13]. Fig.: 3.a
shows a simulated histogram of (n — 1)Qj and its exact density function.
Following [17] we develop the approximations (n—1) Qp ~ ax?(b) where a and b are determined

by matching the first two moments of (n— 1)Q}, with those of ax?(b). Straightforward calculation
M(47)
M(i)?
of Wy, (see subsection 4.1). Observe that a and b depend both on the unknown wpp, and can be can

n—1
leads to a = and b= — where M(.) is for arithmetic mean and ¢;’s are the eigenvalues

be computed only under the null hypothesis. Let consider the following approximation,

=% 2 v) ®
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FiGure 3. - Fig.: 3.(a) and Fig.: 3.(b) show simulated histogram and exact density
of (n—1)Qp and (n—1)Qy/a for the third element (h = 3). - Fig.: 3.(c) represents
the distribution functions (cdf) of x?(bg) (dotted line), x?(n — 1) (twodashed line)
and x?(b) (solid black line). Fig.: 3.(d) shows the diffferfences between the cdf of
the approximated x?(b) and the cdf of the exact distribution.

Fig.: 3.b shows a simulated histogram of (n—1)Qp/a and the chi-square approximation (8) which
depends on the relative sizes of the T;'s, on their variabilities and on the degrees of freedom. Let's

make some comments:

MKt =m=...=7Tp-1=7,thena=1 b=n—-1 7 =0, and the approximation (8) is
exact, (n—1)Qp ~ x(n—1). The equality of 7;'s occurs when given Vpp, wpp is (very) large
with respect to 02, that is, the parameter 6, is "much larger” than one. The greater wpy,
(with respect to 02) the farther 6, is from one, the less the variability of the eigenvalues.
From a practical point of view we may capture this "limit” situation through the pvalue of

the test statistic 7j. Our evidences show that if pvalue < 0.001 then the variability of


https://doi.org/10.28924/ada/stat.2.12

Eur. J. Stat.

eigenvalues is (approximately) zero, b=n—1 and (n — 1)Qp ~ x(n — 1). We can show
algebraically that when wp, — oo, b reaches the maximum value at n — 1 [17]. Therefore,
b is always less or equal to n —1

(2) The maximum variability of 7; is reached when wp, = 0. In this case we can compute the
minimum value of b, by, and the maximum value of a, ag. Therefore, as wpy, = 0 ranges
between zero and infinity, bp < b<n—-1and 1 < a < ap.

Starting from the zero variability of eigenvalues, as the T;'s depart from each other,

b decreases towards by and a increases towards ap. In Figure 3 the bottom left graph
(Fig. : 3.c), shows the distribution functions (cdf) of x?(bg), x2(n — 1) and the empirical
distribution function (ecdf) of (8) which collocates between the two curves. The ecdf of (8)
is "well” approximated by a x2?(b). Fig. : 3.c shows the difference between the two curves
which is less than 0.5%.

(3) The approximation depends on the number of unit, n. As n increases, according to the
central limit teorem, the exact distribution of (n—1)Qj may be approximately described by
a normal distribution, and so may be ax(b). Thus, we may expect that the approximation

will improve as n increases.
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