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Abstract. In linear mixed models the selection of fixed and random effects using a testing hypothesisapproach brings up several problems. We deal with the boundary point problem emerging when norandomness is hypotesized and the confounding impact of randomness on the coefficients arising whenfixed effects are tested. The test statistics are defined by a ratio of two quadratic forms derived fromordinary least squares, are simple, sufficiently general, easy to compute, with known finite sampleproperties. The test statistic on randomness has a known exact distribution, the density of the statisticon fixed effect is unknown and is approximated by a noncentral F−distribution. The goodness-of-approximation and the selection approach is examined in-depth by simulation. The method proposedin this paper must be seen as complementary to existing selection procedures widening and enrichingall information necessary for taking a decision.

1. Introduction
Linear mixed-effect models are widely used to analyze longitudinal and repeated measurementsdata because of their flexibility and relative simplicity. In particular, they are used in the form ofrandom coefficient regression model for analyzing the specification of the within-unit covariancestructure. In this context, deciding which random or fixed coefficient should be included in themodel becomes a fundamental problem.In order to address the issue of which model is more suitable, one might use standard modelselection measures based on information criteria. These approaches rely on the choice of modelsthat minimize (an estimate of) a specific criterion which usually involves a trade-off between thecloseness of the fit to the data and the complexity of the model; see [1] for a comprehensivereview of model selection in linear mixed models. All these methods deal with the problem ofselection working simultaneously with both fixed and random component resulting computationallyburdensome. To overcoming this computational problem the penalized likelihood methods (datingback to [2]) are proposed. These procedures treat the selection problem via a separate selectionapproach to avoid the impact of random or fixed effects from one set of coefficient in the other set.
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Eur. J. Stat. 10.28924/ada/stat.2.12 2Often the fixed effects are selected by first keeping all the random effects in the models, then therandom effects are selected by keeping selected fixed effects from the previous step. The two stepsare implemented iteratively until the parameters in the model no longer change. [3], [4] proposedseparate penalties for the fixed and random effects that are summed together. [5], [6], [7] proposedtwo-stage methods where the fixed and random effects selection are performed independently. Notethat to remove random effects from a model, entire rows and columns of the covariance matrix mustbe eliminated to form the final working model. Accounting for these issues, the unknown covariancematrix of the random effects is sometimes replaced with a suitable proxy matrix (see for examplean orthogonalization-based approach proposed by [8]).Although the penalized likelihood methods may avoid the need to search through the entiremodel space, it may remain computationally intensive. A further complication of these methods ishow to define a ”good” penalty function (for a discussione see [9]) and how to perform the shrinkageappropriately. Moreover, the results obtained can be interpreted only asymptotically, assigning tosimulations the analysis of the behaviour in small samples.Because the selection of terms is closely related to hypothesis testing, the choice of fixed andrandom coefficients to be included in the model could be conducted by assessing the significance ofappropriate test statistics. As known, this approach brings up several problems. Testing randomnessis associated to the so-called boundary point problem. Testing fixed parameters is related tothe ”confounding” impact of the random effect on the coefficients which can lead to a misleadinginterpretation of the significance of the statistic. This is the same problem encountered in penaltyfunction approaches. We agree with some authors [10] that none of the proposed procedures shouldbe used as the only procedure to select the fixed and random coefficients in linear mixed models.They should be taken as complementary and the decision should be based on all informationavailable.The goal of this work is to propose two additional (perhaps useful) tools for selecting termsdefining two simple statistics based on a ratio between a statistic which contains the effect and thesame statistic without the effect. The test statistic for randomness is constructed by comparing the
h−th diagonal element of the sample covariance matrix of ordinary least squares, ols , (see [11])with the same term under the hypothesis of zero random effect. The resulting statistic is simpleand has a known exact distribution for any sample size under the null and alternative hypothesis.The test statistic for fixed effects is a ratio between the square of the quadratic mean of h−thelement of the sample average of ols (which contains both fixed and random effects) and the h−thdiagonal element of the sample covariance matrix of ols (which captures random effect only). Theratio: (random eff ect + f ixed eff ects)/random eff ect defines a test statistic with randomeffect ”removed” by division. The distribution of this statistic is unknown ad is approximated by
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Eur. J. Stat. 10.28924/ada/stat.2.12 3a noncentral F−distribution. A selection procedure is conducted through a joint analysis on thesignificance of these two tests.The approach proposed in this paper is simple as it uses ols , allows to make inference throughpoint estimates and (approximate) confidence intervals and may be seen as an attempt to overcomethe ”boundary” and ”confounding” problems of testing procedures.The paper is structured as follows. Section 2 introduces the two stage linear mixed model.Section 3 defines the statistics for testing randomness (subsection 3.1) and fixed effects (subsec-tion 3.2). Section 4 discusses the exact ( subsection 4.1) and the approximate (subsection 4.2)density functions of the test statistics. Section 5 is divided into three subsections. Subsection5.1 defines the settings for simulations, subsection 5.2 analyzes the goodness-of-approximation ofthe noncentral F−distribution, subsection 5.3 deals with the selection of terms of the linear mixedmodel based on the significance of the two test statistics proposed. Appendix A discusses theapproximated distribution.
2. Two-Stage Random Effects: Model and notation

The linear mixed model for longitudinal data can be described as follows: yi = X∗i β
∗+Zid

∗
i +ui ,

i = 1, . . . , n where yi is a ti×1 vector of repeated measurements, X∗i is a ti× l matrix of explanatoryvariables, linked to the unknown l × 1 fixed effect β∗, Zi are the observed ti × q covariates linkedto the unknown q × 1 random effects d∗i ∼ N (0,Ωq), Ωq is a q × q positive semidefinite matrix,
Ωq � 0, ui ∼ N (0, σ2Iti

). The ui j ’s are i id so can be thought of as measurement error. We assumethat ui and d∗i are independent.Following [10] we re-express the linear mixed model as a two-stage random coefficients model[12],
yi = Xiβi + ui , i = 1, . . . , n (1)

where Xi is a matrix with k columns obtained from the elements of X∗i and Zi ; the columns of Xiare those common to X∗i and Zi plus those that are unique either to X∗i or Zi . The j−th elementof βi is given by β∗j + d∗j i if column j is common to X∗i and Zi , by β∗j if column j is unique to X∗ior by d∗j i if column j is unique to Zi . We can therefore write βi = β + di , where null elements maybe added to the original β∗ and d∗i vectors so that they have the same dimension.Regarding (1) as a two stage model, it follows that yi |d∗i ∼ N(Xiβi ;σ
2Iti ) is the first stagemodel and can be considered as a set of separate regression models for each unit. So in the firststage we may be be able to obtain estimates of βi and σ2 using just the data from the i−th subject,i.e., bi = (X ′iXi)

−1X
′
i yi and s2 = 1

df

∑n
i=1(ti − k)s2

i , with (ti − k)s2
i = y ′i

(
Iti −Xi(X ′iXi)−1X ′i

)
yiand df = Nt − nk =

∑n
i=1(ti − k). The estimated parameters, bi ’s, are independent and normallydistributed with mean βi and variance-covariance matrix σ2(X ′iXi)

−1.
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Eur. J. Stat. 10.28924/ada/stat.2.12 4The βi ’s are random variables; to specify population parameters, at Stage 2 we assume that
βi ∼ N(β,Ωk), where Ωk consists of Ωq augmented with null rows and/or columns correspondingto the null elements in the random vectors di . Let βhi = βh + dhi be the h-th component of the vector
βi where βh is the h-th component of β and dhi is the h-th element of di such that dhi ∼ N(0, ωhh),
ωhh the h-th diagonal element of Ωk . Setting ωhh = 0 is equivalent to setting all the elementsin the h−th column and h−th row of the matrix Ωk to zero. This means that a single parametercontrols the inclusion/exclusion of the random effects in the model.

3. Test statistics
The test statistics defined in this section are based on ols , bi ∼ (β, σ2(X ′iXi)

−1 + Ωk

). Letdenote with bhi the h-th component of the vector bi . The sample average of ols estimators, b =

1
n

∑n
i=1 bi , is normally distributed with expected value β and variance var(b) = σ2

n V + 1
nΩk where

V = n−1
∑n
i=1(X ′iXi)

−1. Let bh be the h-th component of b, and vhh the h-th main diagonalelement of V .According to the assumptions of the model, (bi − b) ∼ N( 0 , σ2Vi i + n−1
n Ωk) with

Vi i = 1
nV + n−2

n (X ′iXi)
−1, E(bi − b)(bj − b)′ = σ2Vi j + hi jΩk , Vi j = 1

nV −
1
n (X ′iXi)

−1 − 1
n (X

′
jXj)

−1

and hi j =
n − 1

n
if i = j , hi j = −1

n if i 6= j . Vi i and Vi j are k × k matrices. Let denote with Vthe nk × nk matrix with (i , j)-th block Vi j . V is a positive semidefinite and symmetric matrix withrank (n − 1)k . We define two statistics, one for testing randomness ”removing” the fixed effect bya difference, the other for testing the nullity of the fixed effect ”removing” randomness from βhi bya ratio.
3.1. Test statistic Th, H0 : ωhh = 0

⋂
βh ∈ R ; H1 : ωhh > 0

⋂
βh ∈ R. In this section wedefine a statistic for testing randomness of βhi = βh + dhi .Observe that ωhh = 0 implies dhi = 0 with probability 1. We develop a test statistic based on

Sbh = (n − 1)−1
∑n
i=1

(
bhi − bh

)2 which is the h-th diagonal element of the sample covariancematrix of ols proposed by [11], Sb = (n − 1)−1
∑n
i=1

(
bi − b

) (
bi − b

)′. We recall that E(Sb) =

σ2V + Ωk which implies that E (Sbh |H1

)
= σ2vhh + ωhh and E (Sbh |H0

)
= σ2vhh. The ratio ofthese two expected values is

E
[

1
n−1

∑n
i=1(bhi − bh)2|H1

]
E
[

1
n−1

∑n
i=1(bhi − bh)2|H0

] =
σ2vhh + ωhh
σ2vhh

= 1 +
ωhh
σ2vhh

= θh

Observe that the difference, bhi −bh allows us to ”remove” the fixed effect. The statistic we proposeis an estimate of θh, defined by a ratio between Sbh and s2vhh where s2 is the sample variance of
σ2. We have,

Th =
1

n − 1

∑n
i=1(bhi − bh)2

s2 vhh
(2)
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Eur. J. Stat. 10.28924/ada/stat.2.12 5The expected value of Th is given by
E(Th) = df E

(
Sbh
σ2vhh

)
E

(
σ2

df s2

)
=

df

df − 2
θh with df =

n∑
i=1

(ti − k)

Since E (Sbh |H1

)
= σ2vhh +ωhh, the difference ω̂hh = Sbh − s2vhh gives an unbiased estimate of

ωhh and θ̂h = 1 +
ω̂hh
s2vhh

= Th. df − 2

df
Th is an unbiased estimator of θh.The parameter θh can be interpreded as a measure of the relative change of the ”total” variability”of the h − th coefficient, σ2vhh + ωhh, with respect to the residual variance σ2vhh. Given finite

σ2 > 0 when ωhh = 0, θh = 1 and Th takes values around E(Th) = df
df−2 . If ωhh > 0 then

ωhh
σ2vhh

> 0, θh is greater than 1 and Th deviates from its expected value. The farther ωhh
σ2vhh

is fromzero, the greater θh and Th, everything else being equal. The greater Th the stronger the evidenceagainst H0. We call rph =
ωhh
σ2vhh

randomness parameter.The parameter, rph, plays the same role as the noncentrality parameter of an F -distribution. Aswe shall see, if rph increases, the shape of the distribution of Th shifts to the right and a largerpercentage of the curve moves to the right of the critical value. θh can be seen as the unknownparameter of the model to be tested and estimated. Testing randomness is equivalent to testing
θh. We can restate the null and alternative hypotheses as follows: H0 : θh = 1(H0 : θh ≤ 1) and
H1 : θh > 1. H0 is rejected if the test statistic Th is ”much” greater than one.
3.2. Test statistic Fh, H0 : βh = 0

⋂
ωhh ≥ 0, H1 : βh > 0

⋂
ωhh ≥ 0. For testing the fixedeffec, we develop a test statistic based on bh. The quadratic mean under H1, E(n b

2
h|H1), iscompared with E(n b

2
h|H0) = E

(
Sbh |H1

) by a ratio. We have,
E(n b

2
h | H1)

E(n b
2
h | H0)

=
σ2vhh + ωhh + n β2

h

σ2vhh + ωhh
= 1 +

n β2
h

σ2vhh + ωhh
= 1 +

n β2
h

σ2vhh
θ−1
h = 1 + ncph

where ncph is a noncentrality parameter, θ−1
h = σ2vhh

σ2vhh+ωhh
is the reciprocal of 1 + rph, ranges in theinterval [0, 1] and can be interpreted as the share of ”residual” variance on the ”total” variability.The numerator of 1+ncph incorporates both random and fixed effect, the ratio allows us to ”remove”the random effect. The statistic we propose is an estimate of the above ratio,

Fh =
n b

2
h

Sbh
=

n b
2
h

(n − 1)−1
∑n
i=1

(
bhi − bh

)2 (3)
When βh = 0 the test statistic Fh takes values around its expected value. If βh 6= 0 then Fhdeviates from its expected value. As we shall see, the greater β2

h the further away the peak of thedistribution from zero.The bigger the ncph, the more the alternative sampling distribution moves tothe right and the more power we have. The null hypothesis is rejeted for large value of Fh. Thetest statistic (3) is similar to the one proposed in [10].
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Eur. J. Stat. 10.28924/ada/stat.2.12 64. Density functions of Th and Fh
In this section we develop and define the exact and approximate distributions respectively of Thand Fh both under the null and the alternative hypotheses.

4.1. Exact density function of Th. Let vhi , h = 1, . . . , k be the h-th diagonal element of the blockmatrix Vi i and denote V −1/2
D = diag(1/

√
(v11), . . . , 1/

√
(vhh), . . . , 1/

√
(v kk)) where vhh is the h-th main diagonal element of V . Let’s define W = R+G where R =

(
In ⊗ V

−1/2
D

)
V
(
In ⊗ V

−1/2
D

)
is the nk × nk covariance matrix when Ωk = 0, G =

(
In ⊗ V

−1/2
D

)(
Hn ⊗ Ωh

σ2

) (
In ⊗ V

−1/2
D

) the
nk × nk covariance matrix of random components and Hn = [hi j ].Let Wh = Rh + Gh be the n × n matrix of rank n − 1 obtained from W dropping the rowsand columns that do not refer to the h-th element. According to the hypotheses of the model
(bhi − bh)/(σ

√
vhh), is N (0, θhi) where θhi = vhi

vhh
+
(
n−1
n

)
ωhh
σ2vhh

is the i-th diagonal elementof Wh and θh = 1
n−1

∑n
i=1 θhi . The square (bhi − bh)2

/(σ2vhh), is a gamma with shape parameter
1/2 and scale parameter 2θhi . For i = 1, . . . , n we have a set of correlated gamma with sameshape parameter and different scale parameter. The density function of Sbh/(σ2vhh) is definedwith the gamma-series representation of [13] (see also [14]). The statistic Th obtained by replacing
σ2 with s2, can be seen as the ratio of two random variables where the numerator is a sum ofgamma, ∑n−1

i=1 G( 1
2 , βi) with βi = 2 df φi/(n − 1) where φi ’s are the eigenvalues of Wh and thedenominator is a G(df2 , 2) (si veda [15]). It can be shown that θh = 1

n−1

∑n−1
i=1 φi and when H0 istrue ∑n−1

i=1

φi
n − 1

= 1.The ratio of these two gamma is a generalized F-distribution denoted with GF . By expressingthe numerator as a single gamma-series representation [13], the density function of Th can bewritten as
fTh(x) =

∞∑
k=0

pk GF

(
ρ+ k,

df

2
,
β1

2

) (4)
where pk = Cδk , β1 = mini{βi}, C =

∏n−1
i=1

(
β1

βi

)αi , ρ =
∑n−1
j=1 αj , αj = 1/2 ∀j and the coefficients

δk are obtained recursively by the formula
δ0 = 1

δk+1 = 1
k+1

∑k+1
i=1

[∑(n−1)
j=1 αj

(
1− β1

βj

)i]
δk+1−i , k = 0, 1, 2, . . .

(k, pk)k=0,1,2... is a discrete probability distribution. Since the gamma-series representation of[13] is CPU-time intensive when the shape parameters are small and the scale parameters havelarge variation, [16] proposed to approximate the probability distribution (k, pk)k=0,1,2... with ageneralized negative binomial distribution.The function (4) is uniform convergent [13]. This property justifies the interchange of the inte-gration and summation and allows us to compute the distribution function and quantiles.
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Eur. J. Stat. 10.28924/ada/stat.2.12 74.2. Approximate density function of Fh. Let divide and multiply expression Fh (formula (3) ) by
σ2vhh + ωhh and, individually, discuss numerator and denominator. According to the assumptionsof the model,

n b
2
h

σ2vhh + ωhh
∼ χ2

(
1, ncph =

n β2
h

σ2vhh + ωhh

)
f or any ωhh ≥ 0 (5)

and
Qh =

Sbh
σ2vhh + ωhh

=
1

n − 1

∑n
i=1

(
bhi − bh

)2

σ2vhh + ωhh
∼

1

n − 1

n−1∑
i=1

τi χ
2(1) (6)

where τi = φi/θh. Qh is distributed as a linear combination of χ2(1) the exact distribution ofwhich can be obtained, for example, through the gamma-series representation of [13]. However,the knowledge of the exact distribution of Qh is not useful for defining a ”simple” distribution ofthe statistic Fh, so following [17] we approximate the distribution of Qh by an adjusted chi-squaredistribution as in Qh ≈ a χ2(b) where a and b are determined by matching the first two momentsof Qh with those of aχ2(b) (see Appendix A).The ratio between the exact chi-square distribution (expression (5) ) and the approximate chi-square distribution of Qh each divided by their degrees of freedom gives the following approximation
Fh =

n b
2
h

(n − 1)−1
∑n
i=1

(
bhi − bh

)2 ≈ F (1, b, ncph) (7)
We recall (see (Appendix A) that b depends on the random component and ranges between b0 when
ωhh = 0 and (n − 1) when ωhh is large (with respect to σ2), then (7) defines a family of densityfunctions. According to the critical discussion of Appendix A, we propose setting b = n− 1 for any
ωhh ≥ 0.

5. Simulation
This section is divided into three subsections. The first defines the settings for simulationswhich are valid unless otherwise specified (settings by default). The second subsection analyzesthe goodness-of-approximation of the statistic Fh. The test statistic Th is based on the works of [16]and [18] where the power function and consistency of the test is partly analyzed and discussed. Theresults are not reproposed here but are available in a supplementary material. The third subsectiondiscusses the selection of terms of the linear mixed model based on the significativity of the teststatistics Th and Fh.

5.1. ”Base” Scenario for simulations. To allow the maximum of generality and flexibility, we definethe following scenario for all simulations unless otherwise specified.(i) The number of parameters and units are respectively k = 6 and n = 10. The number of obser-vations per units, ti , i = 1, . . . n, are drawn randomly from a uniform distribution, U(k + 4, 3 k).(ii) The vector of regression coefficients, β, is generated randomly from a N(0, 2).
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Eur. J. Stat. 10.28924/ada/stat.2.12 8(iii) For each units, the columns of Xi are drawn from an N(mean, sqrt) where the mean is randomfrom a uniform distribution, U(10, 20) and sqrt is random from U(2, 10). All the elements inthe first column are 1.(iv) We define first a positive definite matrix, Ψ, by extracting elements from a standard normaldistribution then the covariance matrix Ωk is obtained by selecting q columns and rows from
Ψ and zero elsewhere. This allows us to define (indirectly) the random and fixed parametersof the model.(v) The index of the tested parameter is drawn randomly from a uniform distribution, U(1, k).(vi) The variance, σ2, is fixed proportionally to the maximum entry of the main diagonal of Ωk .

5.2. Goodness-of-approximation. This study is based on a set of matrices, M1, . . . ,Ml , . . . ,Mkdefined as follows.Let ncpl , l = 1, . . . , h, . . . k be one specific value of the noncentrality parameter in the arbitraryset A = {0, 1, 2, 3, 5, 8} and consider nrepl = 100 different values of θh, θhj , j = 1, . . . , nrepl drawnrandomly from a uniform distribution on the interval [1, 10]. Given ncpl , for each different parametercombination (ncpl , θhj), we compute the test statistic Fh on N = 1000 simulated samples of size
n = 10. This yields an N×nrepl matrix, Ml , of statistics Fh computed with the same noncentralityparameter but different parameter θhj . The matrix Ml is defined for each value of ncpl ∈ A. Theset of Ml matrices, l = 1, . . . , k is the basis for our analysis on the goodness-of-approximation ofthe test statistic Fh.We proceed following two steps. First we extract one column from the matrix Ml . We have
N = 1000 simulated samples, replicated by a model defined by the pair (ncpl , θhj). With these datawe compute different goodness-of-fit statistics and estimate the parameters of the approximating
F−distribution by maximizing the likelihood function. Subsequently we extend the analysis to allthe column of the matrix Ml so that we can evaluate the impact of the randomness parameter onthe test statistic.Given the pair (ncpl = 3, θhj = 3.85), the empirical distribution function of the N simulatedvalue of the statistic Fh is shown in Fig.: 1.a where the solid line is the noncentral F−distributionand the dotted line is the central F−distribution. The deviation between the two curves is theeffect of the noncentrality parameter. Fig.: 1.b shows the empirical cdf of Fh with the 95%Kolmogorov-Smirnov (K.S.) confidence bands for the unknown cumulative distribution function.Fig.: 1.c shows the Q-Q plot between the quantiles of the noncentral distribution, F (1, n−1, ncp)and the empirical quantiles. The points of both sets of quantiles form a line that’s roughlystraight. Fig.: 1.d is a P-P plot computed as follows: on the abscissa there is the set of proba-bilities: p = {0.025, 0.05, 0.075, . . . , 0.975} on the vertical axis there is the empirical probability,
P̂p = 1

N

∑N
i=1 δ(Fh < qp) where δ(true) = 1, δ(f alse) = 0 and qp is the quantile of the non central

F− distribution. The points close to the 0− 1 line highlights goodness of the approximation.
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Fig.: 1.a

solid: F(1,n-1,ncp) 
dotted: F(1,n-1)

Fig.: 1.b

Fig.: 1.c Fig.: 1.d

Figure 1. - Fig.: 1.a shows simulated histogram of Fh, the central F (dotted line)and noncentral F (solid line). The displacement of the solid line from the dottedline is due to the ncp with θh ≥ 1. The parameters are: h = 3, ncp = 3 θh = 3.85.- Fig.: 1.b show the graph of the empirical cdf of Fh with K.S. confidence bandsat 95%. - Fig.: 1.c represents Q-Q plot plot between empirical quantiles andquantiles of noncentral F−distribution functions. . Fig.: 1.d shows the empiricalprobabilities plottted against theoretical quantiles of F (1, n − 1, ncp).

The Kolmogorov-Smirnov method is used to test the null hypothesis that the hypotesized dis-tribution is F (1, 9, ncp = 3) against the alternative that the ”exact” cdf does not equal the
F (1, 9, ncp = 3). The result is a statistic ks = 0.02130233 with a pvalue = 0.75. (The chi-square goodness of fit test gives similar results).The method of maximum likelihood is used to estimate the parameters of a noncentral
F−distribution. We expect that the estimates are "close" to the parameters (1, 9, ncp = 3). The
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Eur. J. Stat. 10.28924/ada/stat.2.12 10fitdistrplus package of R produces the result of Tab.: 1. Tab.: 2 shows the confidence intervalsobtained with the basic bootstrap procedure. All the results are quite satisfactory.
Table 1. Maximum likelihood estimation

Parameters Estimate. Std. Error
df 1 = 1 1.018527 0.05633942

df 2 = 9 8.633183: 1.27773298

ncp = 3 2.951871: 0.14260946Loglik: -2567.894 AIC: 5141.787 BIC: 5156.51
Table 2. Parametric bootstrap medians and 95% percentile CI

Median 2.5% 97.5%

df 1 = 1 0.9613134 0.8688267 1.074114

df 2 = 9 8.7609549 6.8027519 11.999008

ncp = 3 3.0368 2.69518 3.08946

The above analysis is carried out on N = 1000 simulated samples. To evaluate the ”stability”of the results we keep fixed the noncentrality parameter and repeat (nrepl = 100) the simulationsdrawing randomly θhj from a uniform distribution on the interval [0, 10]. This means that we workon the whole matrix Ml .For each column of the matrix Ml we compute the empirical vigintiles of Fh. Fig.: 2.a shows thebundle of lines ”close” to each others which envelop the vigintiles (black points) of the approximatingnoncentral distribution. Fig.: 2.b shows the boxplots of vigintiles and the points of the approximatingdistribution. The approximation which collocates points of the replicated simulation inside the boxor within the whiskers of the boxplot can be defined ”good” (”excellent”). Fig.: 2.c reproposes partof Fig.: 2.b focusing on the first and third quartiles.Some other results concerning the ”goodness-of-approximation” of the Fh test statistic can befound in [15].
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Figure 2. - Fig.:2.a shows the bundle of lines of empirical vigintiles and the pointsof the approximating noncentral distribution. - Fig.: Fig.:2.b shows the boxplots ofempirical vigintiles and the points of the approximating distribution. - Fig.: Fig.:2.cshows the graph of Fig.:2.b limited to the quartiles.
5.3. The selection procedure. In this section we discuss a selection procedure of the h−th termbased on the significance of the test statistics Th and Fh and following the decision-making schemeof Tab.: 3.

Table 3. Selection of terms in a linear mixed model
Significance of Fh

Significance of Th Yes = 1 No=0
Yes = 1 βhi = βh + dhi βhi = dhi

No=0 βhi = βh βhi = 0
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Eur. J. Stat. 10.28924/ada/stat.2.12 12The Table can be read by column and/or by row. Let consider the pair (yes = 1, yes = 1). Byrow, yes = 1 means that Th is statistically significant, θh >> 1 ∀ βh. Likely, the term βhi has arandom component. By column, yes = 1 implies that presumably βh 6= 0 for any θh ≥ 1. The jointsignificance (yes = 1, yes = 1) leads us to claim that βhi could be composed of both a fixed anda random component, βhi = βh + dhi . The ”goodness” of the selection is evaluated by simulating atable of marginal and joint empirical significance measured by the power of Th and Fh. That is wecalculate the percentage of (1, 1) that occur on 10000 replications under different settings.We recall that the noncentrality parameter, ncph, and the randomness parameter, rph, are ameasure of the degree to which the null hypothesis is false and then, they tell us something aboutthe significance of the two test statistics. We saw that ncph =
n β2

h

σ2vhh
θ−1
h then, n, βh, σ2, vhhand ωhh are all factors that influence the ”goodness” of the selection approach. In this section weassume that n, βh, σ2 and vhh are given and we discuss the power of Th and Fh by varying theparameter 0 ≤ θ−1

h ≤ 1. This means that the analysis is restricted to the discussion of the pairs
(1, 0) (0, 1) of Tab.: 3. Simulations based on different settings of the ratio n β2

h

σ2vhh
and on θ−1

h arenot considered in this paper.
Table 4. Simulated power of Th and Fh for differentvalues of the randomness parameter

σ2 = 3.27, vhh = 2.9, βh = 3.05, n = 10

Share: θ−1
h ncph power of Fh power of Th

0 0 0.057 1

0.016 0.15 0.0647 1

0.028 0.26 0.0689 0.996

0.1047 0.97 0.1446 0.9636

0.208 1.93 0.2477 0.7461

0.32 2.958 0.3572 0.4435

0.5138 4.762 0.5443 0.1551

0.81 7.51 0.7324 0.0652

1 9.26 0.8113 0.0545

Table 4 shows simulated power of Th and Fh for different value of θ−1
h .(1) The power of Th depends inversely on θ−1

h . The larger θ−1
h (ωhh −→ 0) the lower the powerof Th. When θ−1

h = 1 (ωhh = 0) the power of Th is equal to the level of significance. Thesmaller θ−1
h (ωhh −→ ∞) the greater the power of Th. As θ−1

h → 0 the power of Th tendsto one.(2) The power of Fh is directly related to θ−1
h . The larger θ−1

h the greater the power of Fh.When θ−1
h = 1 (ωhh = 0) the power of Fh depends on n β2

h

σ2vhh
which increases if the number
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Eur. J. Stat. 10.28924/ada/stat.2.12 13of unit n and/or the magnitude of βh increases. The lower θ−1
h (ωhh −→∞) the smaller thepower of Fh.The last two columns of Tab.: 4 can be taken as marginal probabilities and tell us the percentagethe significance (yes/no) of the two individual test statistics occurs on 10000 replications. Tab.: 5

((a) − (h)) shows the empirical percentage the pairs (1, 1), (1, 0), (0, 1), (0, 0) occur on 10000replications for different values of θ−1
h .Tab.: 4 shows that with a low value of θ−1

h (large power of Th and low power of Fh) likely weobserve the pair (1, 0). In this situation ωhh is large compared to the ”residual” variance σ2vhhand the fixed effect is dominated by the ”randomness”. In this case the significance of the fixedeffect plays a minor role in a selection approach. Tab.: 5 (subtable (a)− (d)) shows the empirical”joint probability” of selecting the term βhi = dhi . This ”probability” decreases from 0.934 when
θ−1
h ' 0.16 to 0.6087 when θ−1

h ' 0.208. Of course other factors such as n or the magnitude of
βh which influence the power of Fh could address towards the selection of βhi = βh + dhi insteadof βhi = dhi .When θ−1

h is large (low power of Th and large power of Fh) presumably we observe the pair
(0, 1). In this case the random component is dominated by the fixed effect and the selection ofthe h− th terms is based on the significance of Fh ignoring the possible presence of (”irrelevant”)randomness. Tab.: 5 (subtable (f )−(h)) shows the ”joint probability” of selecting the term βhi = βh.It is greater than 0.70 when θ−1

h > 0.8.
(a) θ−1

h u 0.016, ncph u 0.15
Fh

Th Yes = 1 No = 0
Yes = 1 0.066 0.934

No = 0 0 0

(b) θ−1
h u 0.028, ncph u 0.26

Fh

Th Yes = 1 No = 0
Yes = 1 0.07 0.93

No = 0 0 0

(c) θ−1
h u 0.1047, ncph u 0.97

Fh

Th Yes = 1 No = 0
Yes = 1 0.128 0.8356

No = 0 0.0166 0.0198

(d) θ−1
h u 0.208, ncph u 1.93

Fh

Th Yes = 1 No = 0
Yes = 1 0.1374 0.6087

No = 0 0.1103 0.1436

(e) θ−1
h u 0.32, ncph u 2.958

Fh

Th Yes = 1 No = 0
Yes = 1 0.0898 0.3537

No = 0 0.2674 0.2891

(f ) θ−1
h u 0.5138, ncph u 4.7618

Fh

Th Yes = 1 No = 0
Yes = 1 0.032 0.1231

No = 0 0.5123 0.3328

6. Conclusions
A hypothesis testing approach designed for selecting fixed and random coefficients to be includedin a linear mixed model brings up several complications. The two test statistics proposed in this
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(g) θ−1
h u 0.81, ncph u 7.51

Fh

Th Yes = 1 No = 0
Yes = 1 0.0201 0.0451

No = 0 0.7123 0.2225

(h) θ−1
h u 1.00, ncph u 9.26

Fh

Th Yes = 1 No = 0
Yes = 1 0.0170 0.0315

No = 0 0.7943 0.1572

Table 5. Settings: σ2 = 3.27, vhh = 2.9, βh = 3.05, n = 10. Each subtableshows the empirical percentage the pairs (1, 1), (1, 0), (0, 1), (0, 0) occur on 10000replications for different values of θ−1
h and ncph. For example, in subtable (a) in

6.6% of cases both Th and Fh are significant, in 93.4% of cases Th is significantand Fh is not.
paper are developed trying to solve the so called ”boundary” and ”confounding” problems whichare crucial for evaluating the significance of the tests.In our opinion the approach based on a ratio between an ”appropriatre” statistic which containsthe effect and another (or the same) that does not contain the same effect, may be a good methodto overcome the above problems. Since the statistics used in the work are based on ordinaryleast squares, they are easy to compute, do not need any estimate of covariance matrices, allow toinvestigate exact and approximate density function in small samples.By using ordinary regression, the selection method based on the joint significance of the twotest statistics maintains great simplicity. However this approach must be taken as complementary,point estimates and (approximate) confidence interval of randomness and noncentrality parameterswiden and enrich information needed to take a decision.

Appendix A. Approximation
According to the hypotheses of the linear mixed model, the ratio Qh =

Sbh
σ2vhh

θ−1
h =

1
n−1

∑n
i=1

(
bhi − bh

)2

σ2vhh + ωhh
is distributed as 1

n−1

∑n
i=1 τi χ

2(1) where τi = φi/θh, with 1
n−1

∑n
i=1 τi = 1.The exact distribution ofQh can be derived using the gamma-series representation of [13]. F ig. : 3.ashows a simulated histogram of (n − 1)Qh and its exact density function.Following [17] we develop the approximations (n−1)Qh ≈ a χ2(b) where a and b are determinedby matching the first two moments of (n− 1)Qh with those of aχ2(b). Straightforward calculationleads to a =

M(φ2
i )

M(φi)2
and b =

n − 1

a
where M(.) is for arithmetic mean and φi ’s are the eigenvaluesof Wh (see subsection 4.1). Observe that a and b depend both on the unknown ωhh and can be canbe computed only under the null hypothesis. Let consider the following approximation,

(n − 1)Qh
a

≈ χ2 (b) (8)
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Figure 3. - Fig.: 3.(a) and Fig.: 3.(b) show simulated histogram and exact densityof (n−1)Qh and (n−1)Qh/a for the third element (h = 3). - Fig.: 3.(c) representsthe distribution functions (cdf) of χ2(b0) (dotted line), χ2(n − 1) (twodashed line)and χ2(b) (solid black line). Fig.: 3.(d) shows the diffferfences between the cdf ofthe approximated χ2(b) and the cdf of the exact distribution.
F ig. : 3.b shows a simulated histogram of (n−1)Qh/a and the chi-square approximation (8) whichdepends on the relative sizes of the τi ’s, on their variabilities and on the degrees of freedom. Let’smake some comments:

(1) If τ1 = τ2 = . . . = τn−1 = τ , then a = 1, b = n − 1, τ = θh and the approximation (8) isexact, (n−1)Qh ∼ χ(n−1). The equality of τi ’s occurs when given vhh, ωhh is (very) largewith respect to σ2, that is, the parameter θh is ”much larger” than one. The greater ωhh(with respect to σ2) the farther θh is from one, the less the variability of the eigenvalues.From a practical point of view we may capture this ”limit” situation through the pvalue ofthe test statistic Th. Our evidences show that if pvalue < 0.001 then the variability of

https://doi.org/10.28924/ada/stat.2.12


Eur. J. Stat. 10.28924/ada/stat.2.12 16eigenvalues is (approximately) zero, b = n − 1 and (n − 1)Qh ∼ χ(n − 1). We can showalgebraically that when ωhh → ∞, b reaches the maximum value at n − 1 [17]. Therefore,
b is always less or equal to n − 1(2) The maximum variability of τi is reached when ωhh = 0. In this case we can compute theminimum value of b, b0, and the maximum value of a, a0. Therefore, as ωhh = 0 rangesbetween zero and infinity, b0 ≤ b ≤ n − 1 and 1 ≤ a ≤ a0.Starting from the zero variability of eigenvalues, as the τi ’s depart from each other,
b decreases towards b0 and a increases towards a0. In Figure 3 the bottom left graph(F ig. : 3.c), shows the distribution functions (cdf) of χ2(b0), χ2(n − 1) and the empiricaldistribution function (ecdf) of (8) which collocates between the two curves. The ecdf of (8)is ”well” approximated by a χ2(b). F ig. : 3.c shows the difference between the two curveswhich is less than 0.5%.(3) The approximation depends on the number of unit, n. As n increases, according to thecentral limit teorem, the exact distribution of (n−1)Qh may be approximately described bya normal distribution, and so may be aχ(b). Thus, we may expect that the approximationwill improve as n increases.
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