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Hypotheses Testing in Nonergodic Fractional Ornstein-Uhlenbeck Models
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Abstract. We obtain explicit form of fine large deviation theorems for the log-likelihood ratio intesting models with fractional nonergodic Ornstein-Uhlenbeck processes with Hurst parameter morethan half and get explicit rates of decrease of the error probabilities of Neyman-Pearson, Bayes andminimax tests.
1. Introduction and Preliminaries

Parameter estimation for directly observed stochastic differential equations is studied in Bishwal(2008). Parameter estimation in partially observed stochastic volatility models is studied in Bish-wal (2022a). Hypothesis testing for stochastic differential equations is studied in Linkov (1993).Parameter estimation and hypotheses testing in ergodic diffusion processes is studied in Kutoy-ants (1984). Parameter estimation for SPDEs driven by cylindrical stable processes is studied inBishwal (2023).Long memory or long range dependent processes have received recent attention in finance, engi-neering and physics. The simplest continuous time long memory process is the fractional Brownianmotion discovered by Kolmogorov (1940) and later on studied by Levy (1948) and Mandelbrot andvan Ness (1968).A normalized fractional Brownian motion {WH
t , t ≥ 0} with Hurst parameter H ∈ (0, 1) is acentered Gaussian process with continuous sample paths whose covariance kernel is given by

E(WH
t W

H
s ) =

1

2
(s2H + t2H − |t − s|2H), s, t ≥ 0.

The process is self similar (scale invariant) and it can be represented as a stochastic integralwith respect to standard Brownian motion. For H = 1
2 , the process is a standard Brownian motion.For H 6= 1

2 , the fBm is not a semimartingale and not a Markov process, but a Dirichlet process. Theincrements of the fBm are negatively correlated for H < 1
2 and positively correlated for H > 1

2 and
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Eur. J. Stat. 10.28924/ada/stat.3.6 2in this case they display long-range dependence. The parameter H which is also called the selfsimilarity parameter, measures the intensity of the long range dependence. The ARIMA(p,d,q) withautoregressive part of order p, moving average part of order q and fractional difference parameter
d ∈ (0, 0.5) process converge in Donsker sense to fBm.As a generalization of fractional Brownian motion we get the Hermite process of order k withHurst parameter H ∈ ( 1

2 , 1) which is defined as a multiple Wiener-Itô integral of order k withrespect to standard Brownian motion (B(t))t∈R

ZH,kt := c(H, k)

∫
R

∫ t

0

Πkj=1(s − yi)
−( 1

2
+H−1

2
)

+ ds dB(y1)dB(y2) · · · dB(yk)where x+ = max(x, 0).For k = 1 the process is fractional Brownian motion WH
t with Hurst parameter H ∈ (0, 1). For

k = 2 the process is Rosenblatt process. For k ≥ 2, the process is non-Gaussian.The Rosenblatt process is not a semimartingale and for H > 1/2, the quadratic variation is0. The distribution of the process is infinitely divisible. It is unknown yet whether the process isMarkov or not.The covariance kernel R(t, s) is given by
R(t, s) := E[ZH,kt ZH,ks ] = c(H, k)2

∫ t

0

∫ s

0

[
(u − s)

−( 1
2

+H−1
2

)
+ ds(v − y)

−( 1
2

+H−1
2

)
+ dy

]k
dudv.

Let
β(p, q) :=

∫ 1

0

zp−1(1− z)q−1dz, p, q > 0be the beta function.Using the identity∫ 1

0

∫
R

(u − s)a−1
+ ds(v − y)a−1

+ dy = β(a, 2a − 1)|u − v |2a−1,

we have
R(t, s) = c(H, k)2β

(
1

2
−

1−H
k

,
2H − 2

k

)k ∫ t

0

∫ s

0

(
|u − v |

2H−2
k

)k
dvdu

= c(H, k)2β( 1
2 −

1−H
k , 2H−2

k )k

H(2H − 1)

1

2
(t2H + s2H − |t − s|2H).

In order to obtain E(Z
(H,k)
t )2 = 1, choose

c(H, k)2 =

(
β( 1

2 −
1−H
k , 2H−2

k )k

H(2H − 1)

)−1

and we have
R(t, s) =

1

2
(t2H + s2H − |t − s|2H).Thus the covariance structure of the Hermite process and fractional Brownian motion are the same.The process Z(H,k)

t is H-self similar with stationary increments and all moments are finite.

https://doi.org/10.28924/ada/stat.3.6


Eur. J. Stat. 10.28924/ada/stat.3.6 3For any p ≥ 1,
E|Z(H,k)

t − Z(H,k)
s |p ≤ c(p,H, k)|t − s|pH.Thus the Hermite process has Hölder continuous paths of order δ < H.A weighted fBm (wfBm) ξt has the covariance function

Q(s, t) =

∫ s∧t

0

ua[(t − u)b + (s − u)b]du, s, t ≥ 0

where a > −1,−1 < b ≤ 1, |b| ≤ 1 + a. When a = 0, it is the usual fBm with Hurst parameter
(b + 1)/2 up to a multiplicative constant. For b = 0 it is a time-inhomogeneous Bm.The function ua is called the weight function of wfBm. For a = 0, this process is usual fBm withHurst parameter (b + 1)/2. For the case b = 1, this process has the covariance of the process∫ t

0 Wradr where W is standard Brownian motion. For b = 0, this process is time-inhomogeneousBm. The finite dimensional distributions of the process (T−a/2(ξt+T − ξT )), t ≥ 0 converge as
T →∞ to those of fBm with Hurst parameter (1 +b)/2 multiplied by (2/(1 +b)))1/2. The processhas asymptotically stationary increments for long time intervals, but not for short time intervals.For b 6= 0, the process is neither a semimartingale nor a Markov process.This process occurs as the limit of occupation time fluctuations of a particle system of indepen-dent particles moving in Rd with symmetric α-stable Levy process, 0 < α ≤ 2, started from aninhomogeneous Poisson configuration with intensity measure dx/(1 + |x |γ), 0 < γ ≤ d = 1 <

α, a = −γ/α, b = 1− 1/α,−1 < a < 0, 0 < b ≤ 1 + a. The homogeneous case γ = 0 gives fBm.A bi-fractional Brownian motion (bfBm) has covariance
1

2
(s2H + t2H)k − |t − s|2Hk), s, t ≥ 0, 0 < k ≤ 1.

For k = 1, it reduces to fBm. For H = 1/2, bfBm can be extended for 1 < k < 2.Consider the Gaussian process with the covariance function
KH(s, t) = (2− 2H)

(
s2H + t2H −

1

2

[
(s + t)2H + |s − t|2H

])
, s, t > 0

for 1 < H ≤ 2. The case H = 1/2 corresponds to Bm.This process occurs as the limit of occupation time fluctuations of a particle system undergoinga critical branching, i.e., each particle independently, at an exponentially distributed lifetime,disappears with probability 1/2 or is replaced with two particles at the same site with probability
1/2. For α = 2, one reaches superprocesses.Recently, sub-fractional Brownian (sub-FBM) motion which is a centered Gaussian process withcovariance function

CH(s, t) = s2H + t2H −
1

2

[
(s + t)2H + |s − t|2H

]
, s, t > 0

for 0 < H < 1 introduced by Bojdecki, Gorostiza and Talarczyk (2004) has received some attentionin finite dimensional models. The interesting feature of this process is that this process hassome of the main properties of fBm, but the increments of the process are nonstationarity, moreweakly correlated on non-overlapping time intervals than that of FBM, and its covariance decays
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Eur. J. Stat. 10.28924/ada/stat.3.6 4polynomially at a higher rate as the distance between the intervals tends to infinity. However, inthis paper we will focus only on the fractional noise.Sub-fBm is intermediate between Bm and fBm in the sense that its increments over non-overlapping time intervals are more weakly correlated and their covariance decays faster thanfBm, see Bojdecki et al. (2007).A negative sub-fBm (nsfBm) has the covariance function
KH(s, t) = (2− 2H)

(
s2H + t2H −

1

2

[
(s + t)2H + |s − t|2H

])
, s, t > 0

for 1 < H < 2. The nsfBm is a semimartingale where as sfbM is not. The nsfBm is not a Markovprocess so as the sfBm.High-density occupation time fluctuation limits of the branching particle system for the case
d = α leads to the centered Gaussian process with covariance function

R(s, t) = −
(
s2 log s + t2 log t −

1

2

[
(s + t)2 log(s + t) + (s − t)2 log |s − t|

])
, s, t > 0.

Though it has similar interpretation to that of nsfBm, this process is not a semimartingale.Sub-fBm can be embedded into a larger family of long range dependent self similar process withcovariance function
CH(s, t) = (s2H + t2H)k −

1

2k
[
(s + t)2H + |s − t|2H

]k
, s, t > 0, 0 < k ≤ 1.

The case k = 1 corresponds to sub-fBm. For H = 1/2, this yields a family of such processeswith covariance function
(s + t)k − (s ∧ t)k , k ≥ 1which corresponds to Bm for k = 1.Another family of such processes has covariance function

CH(s, t) = (s2H + t2H)k −
1

2

[
(s + t)2Hk + |s − t|2Hk

]
, s, t > 0, 0 < k ≤ 1.

This corresponds to the process {1
2 (ηt +η−t), t ≥ 0} where η is a bi-fBm. Using the kernel for thesfBm, one can define sub-Rosenblatt process, a non-Gaussian process, see Bojdecki et al. (2006).The fractional Ornstein-Uhlenbeck (fOU) process, is an extension of Ornstein-Uhlenbeck processwith fractional Brownian motion (fBm) driving term, see Bishwal (2011). In finance, it is known asfractional Vasicek model and has been as one-factor short-term interest rate model which takes intoaccount the long memory effect of the interest rate, see Bishwal (2022b). This process has beenmodeled as a telecom process by Wolpert and Taqqu (2005). Using suitable transformation of theprocess, one can obtain a nonlinear stationary process satisfying a fractional SDE, see Buchmannand Kluppelberg (2006). Benth (2003) used the process as temperature and obtained weatherderivative arbitrage free pricing formulas for European and average type options. Cheridito et al.(2003) obtained the fOU process as a Lamperti transformation of the fBM. The model parameter isusually unknown and must be tested from data.
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Eur. J. Stat. 10.28924/ada/stat.3.6 5Let (Ω,F , {Ft}t≥0, P ) be a stochastic basis on which is defined the Ornstein-Uhlenbeck process
Xt satisfying the Itô stochastic differential equation

dXt = θXtdt + dWH
t , t ≥ 0, X0 = 0 (1.1)

where {WH
t } is a fractional Brownian motion with H > 1/2 with the filtration {Ft}t≥0 and θ > 0is the unknown parameter to be tested on the basis of continuous observation of the process {Xt}on the time interval [0, T ].In the stationary case θ < 0 one can construct fOU process in another way by time change.Lamperti transform provided one-to-one correspondence between a stationary process and a H-selfsimilar process. Recall that an ordinary OU process is a Lamperti transform of Brownian motion. If

(Bt) is a standard Brownian motion, then e−θt√
2θ
Be2θt is an OU process. Similarly one can representfOU process as a time changed fBM:

Xt =
e−2Hθt

√
4Hθ

WH
e2θt .

It is a zero mean Gaussian process with covariance kernel
Ct = E(XsXt+s) =

1

8Hθ

[
e2Hθt + e−2Hθt − |eθt − e−θt |2H

]
=

1

8Hθ

[
cosh 2Hθt − 22H−1(sinh θt)2H

]
.

For H = 1/2, this reduces to the covariance of the ordinary OU process 1
2θe
−θt . The covariancestructure shows that the fOU process is locally asymptotically stationary for small time lag and isa sum of mutually independent Gaussian Markov processes for large time lag.We study the problem of testing hypotheses

H0 : θ = θ0 against the alternative H1 : θ = θ1. (1.2)

Bishwal (2008b) studied hypothesis testing in the ergodic case θ < 0. We study the nonergodiccase θ > 0 in this paper. Define
κH := 2HΓ(3/2−H)Γ(H + 1/2),

kH(t, s) := κ−1
H (s(t − s))

1
2
−H, λH =

2HΓ(3− 2H)Γ(H + 1
2 )

Γ(3/2−H)

vt ≡ vHt := λ−1
H t2−2H, MH

t =

∫ t

0

kH(t, s)dWH
s .

From Norros et al. (1999) it is well known that MH
t is a Gaussian martingale, called the funda-

mental martingale whose variance function 〈MH〉t is vHt . The natural filtration of the martingale
MH coincides with the natural filtration of the fBm WH since

WH
t :=

∫ t

0

K(t, s)dMH
s
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Eur. J. Stat. 10.28924/ada/stat.3.6 6holds for H ∈ (1/2, 1) where
KH(t, s) := H(2H − 1)

∫ t

s

rh−
1
2 (r − s)H−

3
2 , 0 ≤ s ≤ t

and for H = 1/2, the convention K1/2 ≡ 1 is used.Define
Qt :=

d

dvt

∫ t

0

kH(t, s)Xsds.It is easy to see that
Qt =

λH
2(2− 2H)

{
t2H−1Zt +

∫ t

0

r2H−1dZs

}
.

X admits the representation
Xt =

∫ t

0

KH(t, s)dZs .The natural filtration generated by the fundamental semimartingale process
Zt = θ

∫ t

0

Qsdvs +MH
tand the process X coincide, see Kleptsyna and Le Breton (2002). The available information for Xand Z are strictly equivalent.Let the realization {Xt , 0 ≤ t ≤ T} or equivalently {Zt , 0 ≤ t ≤ T} be denoted by ZT0 . Let

P Tθ be the measure generated on the space (CT , BT ) of continuous functions on [0, T ] with theassociated Borel σ-algebra BT generated under the supremum norm by the process XT0 and P T0be the standard Wiener measure. Applying fractional Girsanov formula, when θ is the true value ofthe parameter, P Tθ is absolutely continuous with respect to P T0 and the Radon-Nikodym derivative(likelihood) of P Tθ with respect to P T0 based on ZT0 is given by
LT (θ) :=

dP Tθ
dP T0

(ZT0 ) = exp

{
θ

∫ T

0

QtdZt −
θ2

2

∫ T

0

Q2
t dvt

}
. (1.3)

Consider the score function, the derivative of the log-likelihood function, which is given by
YT (θ) :=

∫ T

0

QtdZt − θ
∫ T

0

Q2
t dvt . (1.4)

Under the hypothesis H0, the log-likelihood ratio process admits the representation
ΛT := log

dP Tθ1

dP Tθ0

(ZT0 ) =

{
(θ1 − θ0)

∫ T

0

QtdMt −
(θ1 − θ0)2

2

∫ T

0

Q2
t dvt

}
. (1.5)

The Hellinger integral of order ε ∈ (−∞, ∞) is defined as
hT (ε) = Eθ0

[exp(εΛt)].

Note that hT (ε) := hT (ε;P Tθ1
, P Tθ0

) = hT (1− ε;P Tθ0
, P Tθ1

).Under H0 we have ∫ T

0

QtdMt =
1

2

(
UT + 2θ0

∫ T

0

Q2
sdvs − T

)
. (1.6)

where UT := λH
2−2HZT

∫ T
0 t2H−1dZs .
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Eur. J. Stat. 10.28924/ada/stat.3.6 7Recall that if X ∼ N (m1, σ1) and Y ∼ N (m2, σ2) are two independent random variables, then
X/Y follows Cauchy distribution. The pdf of the standard Cauchy distribution is given by

g(x) =
1

π(1 + x2)
, x ∈ R.

The cdf of standard Cauchy distribution is denoted by G(x) which is given by
G(x) =

1

2
+

1

π
arctan x, x ∈ R

and whose characteristic function is given by∫ ∞
−∞

e iλxdG(x) = e−|λ|, λ ∈ R.

The least squares estimator θ̂T =
∫ T

0 XtdXt/
∫ T

0 X2
t dt of the parameter θ is strongly consistentand has the limiting Cauchy distribution with rate eθT as T → ∞, see Belfadli et al. (2011), ElMachkouri et al. (2016), Belfadli et al. (2020) and Es-Sebaiy et al. (2021). More specifically,

θ̂T → θ almost surely as T →∞ and eθT (θ̂T − θ)→D 2θG(1) as T →∞.Now we introduce the hypothesis testing method. Luschgy (1993, 1994a, 1994b, 1994c, 1995)and Linkov (1993) studied hypothesis testing for semimartingales. Let (Ω,F , {Ft}, P0, P1), t ≥ 0be the family of statistical experiments generated by the observations Xt0 = (Xs , 0 ≤ s ≤ t).Let H0 and H1 be the statistical hypotheses consisting of the distributions of the observations
Xt defined by the measures P0 and P1 respectively. Denote δt = (δt(x))x∈Ω measurable mapof the space (Ω,F) to the space ([0, 1],B[0, 1]). The map δt is called the test for distinguishingbetween H0 and H1 from the observations Xt , δt(x) being the conditional probability to rejectthe hypothesis H0 under the condition that Xo = x . Denote by Σt the totality of all the tests δtfor distinguishing between the hypotheses H0 and H1. The probability of error of the first kind(Type I Error) is defined as α(δt) = E0(δt) and probability of the error of the second kind (Type IIError) is defined as β(δt) = E1(1−δt) where E0 is expectation under the P0 and E1 is expectationunder P1. The probability of error of the first kind α(δt) is the probability to accept the hypothesis
H1 with the help of the test δt under the condition that the hypothesis H0 is true. The quantity
1− β(δt) is called the power of a test δt . For any α ∈ [0, 1], we denote by Σα

t the totality of alltests in δt in Σt that satisfy the condition α(δt) ≤ α.A family of hypotheses (Ht1) is said to be contiguous to a family of hypotheses (Ht0) if for anytest δt ∈ Σt such that α(δt)→ 0, t →∞, we have β(δt)→ 1, t →∞.To test the hypotheses H0 and H1, introduce the test
δc,εt = I(Xt > c) + εI(Xt = c)

where c ∈ (0,∞) and ε ∈ [0, 1] are parameters of the test.The Kakutani-Hellinger distance between the measures P0 and P1 is defined as
ρ2(P0, P1) =

1

2
EQ|Λ1/2

t,1 − Λ
1/2
t,0 |

2
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where Q = (P0 + P1)/2 and Λt,0 = dP0
dQ (Xt0) and Λt,1 = dP1

dQ (Xt0).The Hellinger integral h(ε;P1, P0) of order ε of P1 and P0 is defined as
h(ε;P1, P0) = EQΛεt,1Λ1−ε

t,0 .The quantity h( 1
2 ;P1, P0) simply called the Hellinger integral for measures P1 and P0.Note that

ρ2(P0, P1) = 1− h(
1

2
;P1, P0).The distance in variation between measures P0 and P1 is the total variation of the measures,namely

‖P1 − P0‖ = EQ|Λt,1 − Λt,0|.

‖P0 ∧ P1‖ = 1−
1

2
‖P1 − P0‖ = EQ((Λt,0 ∧ Λt,1).The quantity

I(P0|P1) = EQΛt,0 log(Λt,0/Λt,1).is called the entropy of the measure P0 with respect to P1. The relative entropy I(P0|P1) calledthe Kullback-Leibler divergence or Kullback-Liibler information. Observe that EΛt = −I(P0|P1).The Neyman-Pearson fundamental lemma is the following:For any α ∈ [0, 1], there exists a test δc(α),ε(α)
t of level α, where (c(α), ε(α)) is some solutionto the equation δc(α),ε(α)

t = α with respect to (c, α). For any α ∈ [0, 1], the test δc(α),ε(α)
t with

ε(0) = 1 is the most powerful test.A test δc(α),ε(α)
t with ε(0) = 1 is called the Neyman-Pearson test.Next let us introduce Bayes test. Consider the nonrandomized test

δ∗,ct = δc,1t = I(Xt ≥ c), c ≥ 0.

For any c ∈ [0,∞),
inf{cα(δt) + βt(δt) : δt ∈ Σt} = cα(δ̄t) + βt(δ̄t)

for any δ̄t ∈ Σt coinciding with the test δ∗,ct on the set {Xt 6= c} and arbitrarily defined on theset {Xt = c}. From this it follows that for every c ∈ [0,∞) and ε ∈ [0, 1],
inf{cα(δt) + βt(δt) : δt ∈ Σt} = cα(δ∗,ct ) + βt(δ

∗,c
t ) = cα(δc,εt ) + βt(δ

c,ε
t ).

This test is called Bayes test with respect to an a priori distribution (c/(c + 1), 1/(c + 1)).For c = 1, in the Bayes risk,
‖P0 ∧ P1‖ = inf{α(δt) + βt(δt) : δt ∈ Σt}.

Thus ‖P0∧P1‖/2 is the probability of error of the Bayes test in the case of equiprobable hypotheses
H0 and H1.For the definitions of Neyman-Pearson test and Bayes test, see Linkov (1993); Chapter II,Section 2.1. For the definition of minimax test, see Borovkov (1984), Chapter III, Section 41.3.
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Eur. J. Stat. 10.28924/ada/stat.3.6 9No single decision rule minimizes the weighted average, i.e., Bayes risk for every prior distri-bution. The conservative approach is to minimize the worst case risk over all possible prior statedistributions. Intuitively, the minimax decision rule is the Bayesian decision rule with constantBayesian risk over the priors. The minimax rule allows one to guarantee a worst-case (maximum)risk over all priors. Minimax test is a Bayes test with respect to a least favorable prior distribution.We assume the following regularity conditions: if for some function ψT such that ψT → ∞ as
T →∞, the (possibly infinite) limit:

lim
T→∞

ψ−1
T log hT (ε) = χ(ε) (1.7)

exists for all ε ∈ (−∞,∞), and χ(ε) is a convex differentiable function on (ε−, ε+) with
γ− := lim

ε↓ε−
χ′(ε) ≤ γ+ := lim

ε↑ε+

χ′(ε), ε− := inf{ε : χ(ε) <∞} < ε+ := sup{ε : χ(ε) <∞}.

Obviously, ε− ≤ 0 and ε+ ≥ 1. If ε− < 0, then the derivative χ′(0) =: γ0 is well defined. If
ε+ > 1, then the derivative χ′(1) =: γ1 is well defined too.Let us introduce the Legendre-Fenchel transform of the function χ(ε), i.e.,

F (γ) := sup
ε

(εγ − χ(ε))

and the quantities
Γ0 := γ0I(ε− < 0) + γ−I(ε− = 0), Γ1 := γ1I(ε− > 1) + γ+I(ε− = 1)

where I(·) is the indicator function.Substituting (1.6) into (1.5), we obtain the Hellinger integral

hT (ε) = exp

(
ε(θ1 − θ0)

2
T

)
Eθ0

[
exp

(
ε(θ1 − θ0)

2
Z2
T −

ε(θ2
1 − θ2

0)

2

∫ T

0

Q2
sdvs

)]
. (1.8)

Kleptsyna and Le Breton (2002) obtained the following Cameron-Martin type formula:Denote VT :=
∫ T

0 Q2
sdvs . Let φHT (u) := E exp(−uVT ), u > 0. Then φHT (u) is given by

φHT (u) =

{
4 sinπH

√
θ2 + 2ue−θT

πTDHT (θ;
√
θ2 + 2u)

}1/2

(1.9)

where
DHT (θ;α) := [α cosh(

α

2
T )− θ sinh(

α

2
T )]2J−H(

α

2
T )JH−1(

α

2
T )

−[α sinh(
α

2
T )− θ cosh(

α

2
T )]2J1−H(

α

2
T )JH(

α

2
T )

for α > 0 and Jν is the modified Bessel function of first kind of order ν.
Bishwal (2008b) generalized the above Cameron-Martin type formula to obtain joint generatingfunction of UT and VT .
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Lemma 1.1 Let ΨH
T (z1, z2) := E exp(z1VT +z2UT ), z1, z2 ∈ C. Then ΨH

T (z1, z2) exists for |zi | ≤ δ,1 = 1,2 for some δ > 0 and is given by
ΨH
T (z1, z2) = exp

(
−θT

2

)[
4(sinπH)γ

πTDHT (γ; z2)

]1/2

(1.10)

where γ := (θ2 + 2z1)1/2 and we choose the principal branch of the square root and
DHT (γ; z2) := [γ cosh(

γ

2
T )− (θ − 2z2) sinh(

γ

2
T )]2J−H(

γ

2
T )JH−1(

γ

2
T )

−[γ sinh(
γ

2
T )− (θ − 2z2) cosh(

γ

2
T )]2J1−H(

γ

2
T )JH(

γ

2
T )

and Jν is the modified Bessel function of first kind of order ν.
2. Main Results

Let ψt be a nonrandom positive function such that ψt → ∞ as t → ∞. Then the following is thelaw of large numbers for the log-likelihood ratio process Λt :
(LLN) limt→∞ P0[|ψ−1

t Λt + 1| > a] = 0 for any a > 0.(L1) limt→∞ P0[ψ−1
t Λt > γ] = 0 for any γ > −1.(L2) limt→∞ P0[ψ−1
t Λt < γ] = 0 for any γ < −1.

Note that (L1) and L2) hold if and only if (LLN) holds.The following assertion is a large deviation theorem of Chernoff type for the log-likelihood ratioprocess ΛT . The assertion was proved by means of large deviations theorems for extended randomvariables, see Linkov (1999).
Proposition 2.1 Let the regularity condition (1.7) be satisfied. Then the following conclusions hold:(i) if Γ0 < γ+, then for all γ ∈ (Γ0, γ+), we have

lim
t→∞

ψ−1
t logP0[ψ−1

t Λt > γ] = lim
t→∞

ψ−1
t logP0[ψ−1

t Λt ≥ γ] = −F (γ) ∈ (−∞, 0);

(ii) if ε− < 0 and γ− < γ0, then for all γ ∈ (Γ−, γ0), we have
lim
t→∞

ψ−1
t logP0[ψ−1

t Λt < γ] = lim
t→∞

ψ−1
t logP0[ψ−1

t Λt ≤ γ] = −F (γ) ∈ (−∞, 0);

(iii) if γ− < Γ1, then for all γ ∈ (γ−,Γ1), we have
lim
t→∞

ψ−1
t logP1[ψ−1

t Λt < γ] = lim
t→∞

ψ−1
t logP1[ψ−1

t Λt ≤ γ] = γ − F (γ) ∈ (−∞, 0);

(iv) if ε+ > 1 and γ1 < γ+, then for all γ ∈ (Γ1, γ+), we have
lim
t→∞

ψ−1
t logP1[ψ−1

t Λt > γ] = lim
t→∞

ψ−1
t logP1[ψ−1

t Λt ≥ γ] = γ − F (γ) ∈ (−∞, 0).
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H1 under the observations {Zs , 0 ≤ s ≤ t}. The following proposition gives the rate of decreaseof the error probabilities of the first kind αt and second kind β(αt) for the test δt(αt).
Proposition 2.2

(i) lim
t→∞

ψ−1
t logα(δt) = −a if and only if lim

t→∞
ψ−1
t logβ(δt) = −b(a)

where
b(a) := a − γ(a) ∈ [F (Γ1)− Γ1, F (Γ0)− Γ0]and γ(a) is the unique solution of the equation F (γ) = a with respect to γ ∈ [Γ0, Γ1].

(ii) for all a ∈ [0, F (γ0)],

lim
t→∞

ψ−1
t logα(δt) = −a implies lim sup

t→∞
ψ−1
t logβ(δt) ≤ Γ0 − F (Γ0)

and for all a ∈ [F (γ1),∞],

lim
t→∞

ψ−1
t logα(δt) = −a implies lim inf

t→∞
ψ−1
t logβ(δt) ≥ Γ1 − F (Γ1).

(iii) for all b ∈ [0, F (Γ1)− Γ1],

lim
t→∞

ψ−1
t logβ(δt) = −b implies lim sup

t→∞
ψ−1
t logα(δt) ≤ −F (Γ1)

and for all b ∈ [F (Γ0)− Γ0,∞],

lim
t→∞

ψ−1
t logβ(δt) = −b implies lim inf

t→∞
ψ−1
t logα(δt) ≥ −F (Γ0).

These results under more restrictive conditions were proved in Linkov (1993). The only of part of(i) for the sequence of i.i.d. random variables was proved in Birge (1981).Let δπt be a Bayes test for testing hypothesesH0 andH1 under the observations {Xs , 0 ≤ s ≤ t},where π and 1− π, π ∈ (0, 1) are the a priori probabilities of testing H0 and H1, respectively.The following assertion gives the rate of decrease of the error probabilities of the first kind andsecond kind α(δπt ) and β(δπt ), and the risk e(δπt ) under the regularity condition (1.7).
Proposition 2.3

lim
t→∞

ψ−1
t logα(δπt ) = lim

t→∞
ψ−1
t logβ(δπt ) = lim

t→∞
ψ−1
t log e(δπt ) = −F (0).

This assertion was proved by Chernoff (1952) for the i.i.d. case.Let δ∗t (αt) be a minimax test. The following theorem gives the rate of decrease of the errorprobabilities of the first kind and second kind α(δ∗t ) and β(δ∗t ), and the minimax risk e(δ∗t ) of thetest δ∗t under the regularity condition (1.7).
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Proposition 2.4

lim
t→∞

ψ−1
t logα(δ∗t ) = lim

t→∞
ψ−1
t logβ(δ∗t ) = lim

t→∞
ψ−1
t log e(δ∗t ) = −F (0).

The following two theorems are the main results of the paper.
Theorem 2.5 In the model (1.1) for testing (1.2) with θ1 > θ0 = 0, the following conclusions hold:

(a) In Proposition 2.1: (i) holds for all γ ∈ (∞, 1/2), (iii) holds for all γ ∈ (∞, 1/4) and (iv)
holds for all γ ∈ (1/4, 1/2).

(b) In Proposition 2.2: (i) holds for all a ∈ (0, 1/4) with b(a) = (4a − 1)2/16a, F (0) = 1/2.

First part of (ii) holds with a = 0. Second part of (ii) holds for all a ∈ (1/4,∞). First part of (iii)
holds with b = 0. Second part of (iii) holds with b =∞.

(c) Proposition 2.3 and Proposition 2.4 hold with F (0) = 1/2.

Proof. We consider θ1 > θ0 = 0. We have
log hT (ε) =

εθ1T

2
+ logEθ0

[
exp

(
εθ1

2
UT −

εθ2
1

2

∫ T

0

Q2
sdvs

)]
.

Then assuming that ε > 0 and denoting ϕ := εθ1
2 and ξ := ±

√
εθ1, by means of Lemma 1.1, weobtain that the logarithm of the Hellinger integral admits the representation

log hT (ε) = ϕT + logEθ0

[
exp

(
ϕUT − ϕθ1

∫ T

0

Q2
sdvs

)]
= ϕT + log

{
4(sinπH)%e−θ0T

πTDHT (%, ϕ)

}1/2

where % := (θ2
0 + 2ϕθ1)1/2.For ε < 0 and sufficiently large T > 0, we have hT (ε) = ∞. Hence taking ψT = 2(1 −

H)C2
0B

2
1(θ1 − θ0)2e2θ1T , where B1 = B(3/2 − H, 3/2 − H), B3 = B(H − 1/2, 3/2 − H), C0 =

1
2 (H − 1/2)H(1 − H)B1B3)−1/2 with B(m, n) is the beta-function and letting T go to ∞ andapplying asymptotic properties of the modified Bessel functions, we obtain χ(ε) = −1

2 for all
ε ∈ (0, 1), χ(0) = χ(1) = 0 and χ(ε) =∞ for all ε /∈ [0, 1].The function χ(ε) satisfies the condition in (1.7) with,

χ′(ε) = 0, γ− = 0, γ+ = 0, ε− = −
1

2
, ε+ = −

1

2
,

γ0 = 0, γ1 = 0, Γ0 = 0, Γ1 = 0, F (Γ0) =
1

2
, F (Γ1) =

1

2
.

Since Γ0 = 0 = Γ1, we obtain Theorem 2.5.
Next suppose that θ1 > θ0 > 0. Assuming that ε > −θ0/[2(θ2

1 − θ2
0)] and ϕ := ε(θ1− θ0)/2 and

ξ := ±
√

2ε(θ2
1 − θ2

0)/θ0 + 1 which implies that (ξ2 − 1)θ0/4 = ε(θ2
1 − θ2

0)/2, by means of Lemma
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Eur. J. Stat. 10.28924/ada/stat.3.6 131.1, we obtain that the logarithm of the Hellinger integral admits the representation:
log hT (ε) =

ε(θ1 − θ0)T

2
+ logEθ0

[
exp

ε(θ1 − θ0)

2
UT −

ε(θ2
1 − θ2

0)

2

∫ T

0

Q2
sdvs

]
= ϕT + logEθ0

[
exp

(
ϕUT −

(ξ2 − 1)θ0

4

∫ T

0

Q2
sdvs

)]
= ϕT + log

{
4(sinπH)ζe−θT

πTDHT (ζ, φ)

}1/2

where ζ :=
(
θ2

0 −
(ξ2−1)θ0

2

)1/2
.For ε < −θ0/[2(θ2

1 − θ2
0)] and sufficiently large T > 0, we have hT (ε) =∞. Hence substitutingthe above expression into (1.7), taking ψT := 2(1 − H)C2

0B
2
1(θ1 − θ0)2e2θ1T by applying theasymptotic properties of the modified Bessel functions, and letting T go to ∞, we have

χ(ε) =
ε

2
−

√
2εθ0(θ2

1 − θ2
0) + θ2

0

2(θ1 − θ0)
+

θ0

2(θ1 − θ0)which is a strictly convex function on (ε−, ε+) with:
ε− = inf{ε : χ(ε) <∞} = −

θ0

2(θ2
1 − θ2

0)
, ε+ = sup{ε : χ(ε) <∞} =∞,

χ′(ε) =
1

2
−

θ0(θ1 + θ0)

2
√

2εθ0(θ2
1 − θ2

0) + θ2
0

, γ− = −∞, γ+ =
1

2
, γ0 := χ′(0) =

1− θ0 − θ1

2

γ1 := χ′(1) =
1

2
−

θ0(θ1 + θ0)

2
√

2θ0(θ2
1 − θ2

0) + θ2
0

, F (γ) := sup
ε>ε−

(εγ − χ(ε)) =
θ0(1− 2γ − θ0 − θ1)2

4(θ2
1 − θ2

0)(1− 2γ)

Γ0 = γ0 =
1− θ0 − θ1

2
, Γ1 = γ1 =

1

2
−

θ0(θ1 + θ0)

2
√

2θ0(θ2
1 − θ2

0) + θ2
0

F (Γ0) = 0, F (Γ1) =
(θ0 −

√
2θ0(θ2

1 − θ2
0) + θ2

0)2

4(θ1 − θ0)
√
θ0(θ2

1 − θ2
0) + θ2

0Since Γ0 < Γ1, from Propositions 2.1-2.4, we obtain the following theorem.
Theorem 2.6 In the model (1.1) for testing (1.2) with θ1 > θ0 > 0, the following conclusions hold:

(a) In Proposition 2.1: (i) holds for all γ ∈ (Γ0, γ+). (ii) holds for all γ ∈ (γ−, γ0). (iii) holds for
all γ ∈ (γ−,Γ1). (iv) holds for all γ ∈ (γ1, γ+).

(b) In Proposition 2.2: (i) holds for all a ∈ (0, F (Γ1)) with

b(a) =
1− θ0 − θ1

2
−
θ0 + θ1

θ0

(
a(θ1 − θ0)−

√
aθ0(θ1 − θ0) + a2(θ1 − θ0)2

)
.

First part of (ii) holds with a = 0. Second part of (ii) holds for all a ∈ (F (Γ1),∞]. First part of
(iii) holds with b ∈ [0, F (Γ1)− Γ1]. Second part of (iii) holds with b ∈ [F (Γ0)− Γ0,∞].

https://doi.org/10.28924/ada/stat.3.6


Eur. J. Stat. 10.28924/ada/stat.3.6 14

(c) Proposition 2.3 and Proposition 2.4 hold with

F (0) =
θ0(1− θ0 − θ1)2

4(θ2
1 − θ2

0)
.
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