©2023 Ada Academica https://adac.ee
Eur. J. Stat. 3 (2023) 4
doi: 10.28924/ada/stat.3.4

A Variable Step Size Multi-Block Backward Differentiation Formula for Solving Stiff

Initial Value Problem of Ordinary Differential Equations

Abdu Masanawa Sagir, Muhammad Abdullahi”
Department of Mathematical Sciences, Federal University Dutsin-Ma, Katsina. Nigeria
amsagir@yahoo.com, maunwala@gmail.com

*Correspondence: maunwala@gmail.com

Abstract. A variable step size multi-block backward differentiation formula for solving stiff initial value
problems of ordinary differential equations with a variable step size strateqy was derived. The proposed
method (VSSMBBDF) computes two approximate solution values at a time per integration step. The stability
properties are achieved by varying the step size ratio in the formula to generate more zero stable schemes.
The proposed method is also found to be an A-Stable scheme across different choices of the step size. The
method is capable of solving stiff IVPs of ODEs. Approximates result from the system of stiff ODE problems
considered are found to favorably validate the performance of the new method in terms of accuracy of the
scale error and less executional time in respect to the two methods compared in the study. Hence, the

proposed method can be an alternative solver for stiff IVPs of ODEs.

Introduction

Backward differentiation formula came to existence from the work of (Cutis & Hirschfield,
1952), then extended backward differentiation formulae by (Cash, 1980); Implicit r-point
block backward differentiation formula for solving first- order stiff ODEs by (Ibrahim et
al.,2007); Super class aspect of block backward differentiation formula by (Sulaimanet al,
2013a); diagonally implicit super class of block backward differentiation formula for solving
Stiff IVPs by (Musa et al, 2016) and the work of Sagir (2012, 2014, 2013) possesses good
error when compared with some existing methods. Due to the preferences of seeking
numerical approximate solutions to most of the modern problems, numerical methods are
been developed with various capacities to handle current realities of initial vaue problem of
ODEs and stiff ODEs, some of the recent method with very good stability properties, at

one point or the other are found with following, an A-stable block integrator scheme for the
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solution of first order system of IVPs of ordinary differential equations by (Abdullahi et al,
2022); Enhanced 3-Point fully implicit super class of block backward differentiation
formula for solving first order stiff initial value problems; Order and Convergence of the
enhanced 3 point fully implicit super class of block backward differentiation formula for
solving first order stiff initial value problems by (Abdullahi & Musa, 2021a; Abdullahi &
Musa, 2021b); An Order Five Implicit 3-StepBlock Method for Solving Ordinary
Differential Equations by (Yahaya & Sagir, 2013); Diagonally Implicit Super Class of
Block Backward Differentiation Formula with Off-Step Points for Solving Stiff Initial Value
Problems by (Babangida & Musa, 2016); Development of an improved numerical
integration method via the transcendental function of exponential form by (Fadugba, 2020);
Implicit five-step block method with generalized equidistant points for solving fourth order
linear and non-linear initial value problems by (Adeyeye & Omar, 2019); Variable step
block backward differentiation formula for solving first order stiff odes by (Zarina et al,
2007); Predictor-Corrector Block Iteration Method for Solving Ordinary Differential
Equations by (Majid & Suleiman, 2011); An Accurate Block Solver for Stiff Initial Value
Problems and A new fifth order implicit block method for solving first order stiff ordinary
differential equations by (Musa et al, 2014a, 2014b). Suleiman et al, (2013b) developed
the super class form of variable step size block backward differentiation formula formally
known as a new variable step size block backward differentiation formula for solving stiff
initial value problems. Most of the methods stated are zero stable, A- stable or both, and
displays different degree of accuracy of the scale error and executional time.

This study considers deriving a non — super class aspect of the variable step size

block backward differentiation developed by Sulaiman et al (2013b) of the form

?:0 AjirVn+j-—2 = hﬁk,i,r(fn+k = Pfr+k-1) k=123 (1)

The propose scheme is archive by reducing the order of (1) by one and consider the back
value of y,_; and y,. The feature point, f,,,x_1 replaced —pf1x—1 in (1), to came-up with
the new non—super class formula of the form

0@ irYntj-1 = WBiir(Frake + frsr—1) k=1,2 (2)
The proposed formula (2) is A variable step size multi-block backward differentiation

formula for solving stiff initial value problems of ordinary differential equations of the form
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y'=f(x 7), (@) = g, a<x<bh (3)
where ¥ = (y1,¥2, V3 oo or on Vo), NP = (@N1, PNz, PN3, ..., P1y)
The system of ordinary differential equations (1) and can be solves by analytical or
numerical methods. However, when the system is stiff, the analytical solution seems
difficult in most cases, the preferences is geared toward obtaining the numerical aspect of
solutions, that is what makes the block backward differentiation formulae more suitable in
handling any sort of stiff IVPs of ODEs.
Methodology
Formulation of the Proposed Method (VSSMBBDF)
In this section, two approximate solution values y,,; and y,,, with step size h, are
formulated in a block simultaneously. The formula is computed using two back values y,
and y,_; with step size h. The linear difference operator L; associated with (2) defined by
L{y (), h} = X¥_o[ajy(x + jh) — hB;y' (x + jh)].
(3)
wherey(x)is an arbitrary test function and it is continuously differential on [a, b].
The method (2) is constructed using a linear operator L;. To derive the first and second
points, define the linear operator L; and L, associated with (2) as
Li[y(en), W] @i Yno14@1i Yn + @2 Ynsr + @30 Yniz — hBrilfnsk + fasr-11 =0 (4)
Loly(xn), M]: @0, Yn-14@1,i Yn + @2 Yn+1 + @33 Ynez — ABrilfnsr + fasr-11 =0 (5)
Case 1&2:k=i=1Gk=i=2
The associated relationship for (4) and (5) are
@o,1Y(Xn = Th) + @11y(Xp) + @21 Y(Xn + h) + @31y (X + 2h) = hB14[f (xn + h) + f(xn)] = 0 (6)
002y (Xn = Th) + @12y (%n) + 227 (Xn + B) + a3,y (X + 20)) = hBo[f (X + 20) + f(xn + )] =0 (7)
Expanding y(xn, —7h), y(xn), y(xn + h) , ¥(xn + 2h) , f (X + h), f(x +2h) and f(xy,)
from (6) and (7) using Taylor’s series expansion about x,,. We obtained the following

coefficients for the two cases respectively
Cop = o1 tayst+az;+az; =0
Ci1= —Tao1 + 11+ 201 =211 =0

1 1
Cz,1 = 5“0,1 + 5“1,1 + 20‘2,1 - 3,31,1 =0 (8)

1 1 4 5
Cs,1 = _ga0,1 + ga1,1 + §a2,1 - 531,1 =0
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Coz= ot ajptaz,+az, =0
Cio= —Tagy+az; +2a3, —2p,,=0

1 1
Cyp = 5 @o0,2 + 5 %22 +2a31 - 311 =0 (9)
1 1 4 5
(3, = — 3 %o,2 + 2 %22 + 3%32 ;;81,1 =0
In deriving the first pointy,+; and second point y,., the coefficient a,; and a3, are
normalized to 1 solving the simultaneous equation (8) and (9) for the values of @; ;s , B iss-

Re-arranging and substituting the values in (4) and (5), to get the first and second points

as
_ 1 57’;13 __r+1 2(r+2) 2(r+2)
Yn+1 = 57557 Yn-1 2(2r+7) In 202r+7) | 2r+7 W1 + 505 2r+7 hfn (10)
3(r+1) 6(2r+3) 4(r+2) 4(r+2)
Yniz = 57 Yn-1 7 57 In T o0y Yl T 50 hfnez + 507 9r+17 hfn+1 (11)

Hence, (10) - (11) is called a variable step size multi-block backward differentiation
formula (VSSMBBDF) for solving stiff initial value problems of ordinary differential
equations.

From the proposed scheme different stable methods can be obtain by carefully varying the
value of the step size ratio r.

Table 1: Variable step size ratios with the stable methods obtained

Step Size Ratio Approximate Formulae (VSSMBBDF)
(r) Points
1 1 2 2
Y1 Yne1 = gyn—l + Y — §yn+2 + ghfn+1 + ghfn
B 1 3 15 6 6
r=1 In+2 Y2 = Eyn—l - Eyn + Eyn+1 + Ehfn+2 + Ehfn+1

1 22 3 8 8
Yn+1 = Hyn—l + ZYn - Zyn+2 +thn+1 +thn

Yn+1
r=2 2 9 6 16
V2 Yn+2 = 3 ¥n-1 = 3eVn £ Vna + hfn+2 t3c hfn+1
Yn+1 = yn 1 :;y 33_2}’n+2 + ghfn+1 + ghfn
Yn+1
— _ 4 9 48 20 20
2 Yn+2 Yni2 = EYn—l - EYn + Eyrwl + Ehfnﬂ + Ehfn+1
Vn+1 3 103 11 17 17
5 Yn+1 = %3’71—1 + 10_43711 - 10_43’n+2 + hfn+1 t+5= 26 hfa
"% Yn+2
4 11 8 68
Yn42 = Eyn—l 9yn +- yn+1 + fn+2 147 hfn+1
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Analysis of the Method
Zero Stability of the proposed formula (VSSMBBDF)

In this section, we analyze the stability property of the formula (10-11) for different step

size ratio 7.

Definition 1: A linear multistep method is said to be zero stable if no root of the first

characteristics polynomial has modulus greater than one and that any root with modulus

one is simple (Sulaiman et al., 2013b)

Definition 2: A linear multistep Method is said to be an A-stable method if its stability

region covers the entire negative half-plane (Sulaiman et al., 2013b)

The stability of the method (10-11) can be obtains by applying the standard test

equation of the form

y' =Ky Ais a complex number, Re(£) <0

r=1
1 1 2 2
Yn+1 = gyn—l +Vn — gyn+2 + ghfn+1 + ghfn
1 3 15 6 6
Yn+2 = E:Vn—l - Eyn + Eyn+1 + Ehfn+2 + Ehfn+1
Putting (12) into (13-14)
1 1 2 2
Yn+1 = gyn—l +Yn— gyn+2 + ghl{yn+1 + ;hl{yn
1 3 15 6 6
Yn+2 = Eyn—l - Eyn + Eyn+1 + Ehl{yn+2 + Ehl(yn+1

(15) and (16) can be written in a matrix form as

1-2h2 1 1442
3 9 yn+1]= 9 3 yn—l]
_E_Ehl 1—£h/1 In+2 1 3 In
13 13 13 13 13
where
1—§h;t % % 1+§m
A= B =
56 1 80, 1 3
13 13 13 13 13

To find the first characteristic polynomial for (15) & (16), we use
det [At — B] = 0. To get the polynomial for r = 1 as follows
Ri(ht) =2¢2 —Zpzpg By 2 e2rg)2 - Lenh— 2 — 2 t(hh)2 — 2 k4
39 13 39 13 13 39 13 39

(12)

(13)
(14)

(15)

(16)

(18)

(19)
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. - : . 1 5 .
Using similar procedure as in above for the step sizesr =2,r = > and r = s obtain

the following polynomial respectlvelg

_ 64,2 432 7y o 1282 z_ﬂ _ 32 2 _ 16
R,(h,t) = ot gt h& Yo -t (hA) thA 205 360 t(hA) Zoe h& (21)
_ﬁ 2__ _85 25 2 2 _ 105 _5_2325 2__
Rl(h, t) =—t t2h4 86t+ t*(hK) oo thE — —~ — —t(hf) Shh (22)
Rs(h,t) = 22— SD2RA - o+ 2 (hA)? — SR thh — = — 2 t(hK)? — = hA
6 637 1911 1911 637 1911 637
(23)
Put h& = H in (20-23), we have
Ry(H,t) == t? = Zt2H — 2t +—t?H? = —tH — —— —tH? = —H (24)
39 13 39 13 39
Ry(ht) = Zt2 — =t H—ﬁt+128t2H2 Ay G Ly (25)
55 385 385 38 385 385 385 385
Rs(h,0) =§t2 S - t+ tZHZ -2 Bz _2p (26)
43 86 43 86 86
Rs(h t) =2t @tZH— St - B2y - g2ty (27)
637 63 1911 1911 637 1911 637

Set H = 0 in (24-27) and solve for t in all the Polynomials. The following table is
obtained with the respective roots (t) of the polynomials.

Table 2: Zero stability of the proposed formulae

Step Size Ratio Roots of the proposed
(r) methods

r=1 t =1,-0.0909090909

r=2 t =1,-0.0714285714

I t =1,-0.1052631579
2

L2 t =1,—0.0952380952
6

From table 2, it has been shown that the formula (10-11) with the step size ratios tested
(r=1,r=2r= % and r = g) are Zero stable methods in accordance with definition 1.
A - Stability of the proposed formulae

The region for the stability of the proposed method is plotted, by considering the stability
polynomials in (20), (21), (22) & (23). The set of point defined by t =¢®, 0 < 6 < 2m
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describes the boundary of the stability region. The following stability region was the

complex plot of the proposed method with the aid of Maple Software.

Figure 1: A-Stability region of the method with the step size ratio r =1

R

Figure 2: A-Stability region of the method with the step size ratio r = 2

5]

Figure 3: A-Stability region of the method with the step size ratio r =%
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[£%)

Figure 4: A-Stability region of the method with the step size ratio r =§

The region of the stability covered the entire negative left half plane in figure 1 - 4.
Hence, the proposed formulae (VSSMBBDF) by definition 2 is an A-Stable method.
Implementation of the method

In this section Newton's iteration is considered for the implementation of the method (10)-
(11) across different choice of the step size ratio. The method (10)—(11) can be written in

the following form:

Yn+1 = 01¥n12 + Vihfnia + V20 + 4 } (28)
Yn+z = 02¥nt1 + V3hfnir + Vahfniz + 02
Where v; and v, are the back values. (28) will be transforming to the following form
R e e | g 3 R A R B
(29) can also be written as
(I = B)Y = h(C,G; + C,G,) + € (30)

where

I R A e P G P g K PR G

Let

Therefore, the Newton's iteration for the proposed method (VSSMBBDF) is going to be
+1 i -1
Yrﬁ-lr)wl - Yrg-ll-)l,n+1 = [G (ergl n+1)] [G (er:-)l n+1)] (33)

Equation (33) is represented as
(i+1) ® oG ) 8G ) _
Ynfl-l n+1 Yni1 a1 = [ —B) — hCl - (Ynil n+1) hCZ 2 (Ynilnﬂ)] Ix [ -

B)(Y,f_‘ﬁ1 n+1) — hC,Gy — hC,Gy— €] (34)
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To compute the maximum error from the proposed algorithm, let y; and y(x;) be the
approximate and the exact solution of (3), respectively. The absolute error is given by
(error)e = [(Vi)e — ((x:)o) (35)
The maximum error (MAXE) is given by

MAXE = qu (max (errory)¢). (36)
1=isT 1<isN

where T is the total number of steps and N is the number of equations.

Let erifll) denote the (i + 1)th iteration and El(‘izﬂ) = Y1‘E-i|-+1,17)1+1 - Y,f_?l‘nﬂ (37)
From (34) we have
BOD — Bt ¢ (38)
which is equivalent to
BE(1” = C
(39)
where
= oG i oG i -
B=[(1 = B) = hC, T (G en) = G 2 (e )17 (10)
And
C=—[(U = B)(Y,Y1ns1) = hC1Gy — hCyG,— €] (41)
Newton's iteration would therefore be used to solve the system (39) for the different values
of r,
[ 1- ylh% —0, | i i i i
B = 0yn+1 C = [ “Vn+1 + 613"n+2 + Y1hf?1+1 + Vzhf'n + vy
—0, —ysh Lt 1y, p ez —Vn+2 + 02Vni1 + Vahfun + Vahfuso + 12
L OYn+1 oYn+2
when r =1
2 bf +1 1 T . 1 2 . 2 .
- 1_§h¢,y:+1 Py v _3’111+1_g3’111+2 +§hfnl+1+§hfnl +v
| 15 6, bfus 6 5 Ofnsz |’ | _.i 15 6 5 ci 6 5 ci
_E_Ehbynﬂ 1 _Ehbyn.'.z_ Yn+2 +13yn+1 +13 hfn+1 +13 hfn+2 +172
When r = 2
8 ; Ofn+1 3 ; 3 8 . 8 .
5= _Hhaynﬂ 22 co —Yn+1 ~ 5 Vn+2 g hfue F T 11
o 6 16, bfnt1 16, dfnsz |’ | _. i 5. 164 i 16, »i
_E_Ehm 1—Ehm yn+2+6yn+1+35hfn+1+35hfn+2+v2

When r =1

2
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5= 1_§h:fﬁ 33_2 c = _Yri1+1_%3’ri1+2 +§hfni+1 +§hfni T
—m-Bnd g Bt oyl DY+ b+ e v
When r =2
6
5 _ihZ;nT: % C= _¥£+1_%y;1+2+£hfri+1 +%hf?1i + vy
~io S pthn g St ~Vhaz ¥ Vi F o bl 2R, + vy

Results and Discussion

Numerical Examples

In this section the proposed method a variable step size multi-block backward
differentiation formula for solving stiff initial value problem of ordinary differential
equations developed in (10-11) will be adopted to solve some |VPs and the results are
compared with some existing scheme in the literature to evaluate the performance of the

new method. Below are some of the numerical problems that were considered.

Problem 1: (Ibrahim et al, 2007)

y' = —10xy y(0) =1 0<x<10
Exact Solution
y(x) =e %

Problem 2: (Ibrahim et al, 2007)
y1 = 198y; + 199y,y,(0) =10 <x < 10
Y2 = —=398y1 —399y,y,(0) = —1

Exact Solution

X

i(x) =e”
y2(x) = —e”

Below are symbols and notations used in the research with results of the problems

X

solved as tabulated to depict the comparative differences among the methods considered.
h = step-size

MAXE = Maximum Error

NS = Number of Steps

TIME =Time in microseconds
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VSSMBBDF = Variable Step Size Multi-Block Backward Differentiation Formula
3ESBBDF = Extended 3 Point Super Class of Block Backward Differentiation Formula
2BBDF = 2 Point Block Backward Differentiation Formula.

Table 3: Numerical results for problem 1 (with different step size ratio )
h Method NS MAXE TIME
1072 | VSSMBBDF (r = 1) 333 2.41547e-05 | 7.35331e-005
VSSMBBDF (r = 2) 333 4.42218e-04 | 7.36289e-002
VSSMBBDF (r = 1/2) | 100 5.72116e-05 | 8.23891e-003
VSSMBBDF (r =5/6) | 100 3.74336e-04 | 4.31415e-003
1073 | VSSMBBDF (r=1) 3,333 3.80282e-07 | 7.77357e-004
VSSMBBDF (r = 2) 3,333 5.27560e-06 | 5.81512e-002
VSSMBBDF (r =1/2) | 1,000 3.16238e-07 | 6.52651e-002
VSSMBBDF (r =5/6) | 1,000 2.06882e-06 | 3.24902e-002
107 | VSSMBBDF (r = 1) 33,333 4.10508e-09 | 7.60323e-003
VSSMBBDF (r = 2) 33,333 5.27691e-08 | 5.81491e-001
VSSMBBDF (r =1/2) | 10,000 3.16292e-09 | 6.52624e-001
VSSMBBDF (r =5/6) | 10,000 2.08874e-08 | 1.94953e-001
10™° | VSSMBBDF (r=1)  |333333 |4.15121e-11 | 7.70577e-002
VSSMBBDF (r = 2) 333,333 5.27942e-10 | 5.81122e+-000
VSSMBBDF (r =1/2) | 100,000 3.16631e-11 6.62791e+001
VSSMBBDF (r =5/6) | 100,000 2.08146e-10 | 1.52607e+001
107° | VSSMBBDF(r = 1) 3,333,333 | 415739e-13 | 7.65324e-001
VSSMBBDF(r = 2) 3,333,333 | 5.28009e-12 | 5.79987e+001
VSSMBBDF(r =1/2) | 1,000,000 | 3.21089-13 | 6.52197e+000
VSSMBBDF(r =5/6) | 1,000,000 | 210218e-12 | 1.42317e+000
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Table 4: Numerical results for problem 2 (with different step size ratio 7)

h Method NS MAXE TIME

1072 | VSSMBBDF (r=1) |333 3.26548e-05 | 6.25231e-005
VSSMBBDF (r =2) |333 7.83217e-04 | 5.23172e-003
VSSMBBDF (r = 100 2.18419e-05 | 1.66324e-004
1/2) 100 6.59871e-03 | 7.86022e-004
VSSMBBDF (r =
5/6)

1073 | VSSMBBDF (r=1) |3,333 3.65283e-07 | 5.67257e-004
VSSMBBDF (r =2) |3,333 5.05338e-06 | 4.23012e-002
VSSMBBDF (r = 1,000 2.20071e-07 | 5.40174e-003
1/2) 1,000 4.43161e-05 | 8.55109e-003
VSSMBBDF (r =
5/6)

107*| VSSMBBDF (r=1) |33333 4.70027e-09 | 3.50223e-003
VSSMBBDF (r =2) | 33,333 5.26692e-08 | 4.22943e-001
VSSMBBDF (r = 10,000 2.20445e-09 | 3.73910e-002
1/2) 10,000 4.43208e-07 | 4.82591e-002
VSSMBBDF (r =
5/6)

1073 | VSSMBBDF (r =1) |[333,333 | 4.10002e-11 | 6.60477e-002
VSSMBBDF (r =2) |333333 |5.32740e-10 | 4.22582e+000
VSSMBBDF (r = 100,000 | 2.20472e-11 | 5.29043e-001
1/2) 100,000 | 4.44001e-09 | 6.75021e-001
VSSMBBDF (r =
5/6)

107% | VSSMBBDF (r=1) | 3,333,333 | 4.14240e-13 | 2.55224e-001
VSSMBBDF (r =2) | 3,333,333 | 5.33362e-12 | 4.22172e+001
VSSMBBDF (r = 1,000,000 | 2.20493e-13 | 2.64921e+000
1/2) 1,000,000 | 4.44108e-11 | 5.73214e+000
VSSMBBDF (r =
5/6)
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logError

VSSMBBDF(1=5/6)
VSSMBBDF(1=2)
(
(

VSSMBBDF(r=1/2)
VSSMBBDF(r=1)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
h

Figure 5: Comparison ofLog,o(MAXE) against h for problem 1 (from table 3)

logError

-10

VSSMBBDF(1=5/6)
VSSMBBDF(1=2)
VSSMBBDF(1=1/2)
+ VSSMBBDF(r=1)
4 [ [ [ [ [ [ [ [
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
h

Figure 6: Comparison for Log,1o(MAXE) against h for problem 2 (from table 4)
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From figures 5 & 6, the proposed Formula (VSSMBBDF) possessed different degree of
accuracy across different chosen step size ratio. However, the result indicated that the
methods with r = 1 &r = 1/2 have least scale error compared to the methods r =2 &r =5/6 in
all the problems considered in the research. The executional time also favors the schemes with r =
1 in problem 1 & 2. However, the methods with r =1/2 & r = 5/6 are closely competing in the

execution time. All the schemes have advantages over the scheme with r =2 in all the problems

solved.

Table 5: Comparison of results for problem 1 (with r = 1)

h Method NS MAXE TIME

107* | VSSMBBDF (r=1) | 333 2.41547e-05 | 7.35331e-005
3ESBBDF 333 3.73308e-03 | 6.64306e-004
2BBDF 500 2.47600e-02 | 15,328

1073 | VSSMBBDF (r=1)|3333 3.80282e-07 | 7.77357e-004
3ESBBDF 3,333 4.85429e-05 | 5.62257e-003
2BBDF 5,000 2.86614e-03 | 127,105

107 | VSSMBBDF (r=1) | 33333 4.10508e-09 | 7.60323e-003
3ESBBDF 33,333 4.85783e-07 | 5.48808e-002
2BBDF 55,555 2.90520e-04 | 125,5816

107 | VSSMBBDF (r=1) | 333,333 415121e-11 | 7.70577e-002
3ESBBDF 333,333 4.85873e-09 | 5.46692e-001
2BBDF 555,555 2.90911e-05 | 12,571,049

107® | VSSMBBDF (r = 1) | 3,333,333 | 4.15739e-12 | 7.65324e-001
3ESBBDF 3,333,333 | 5.08727e-11 | 5.47681e+000
2BBDF 5,555,555 | 2.90951e-06 | 125,811,893
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Table 6: Comparison of results for problem 2 (with r = 1)

h | Method NS MAXE TIME

1072 | VSSMBBDF (r =1) | 333 3.26548e-05 6.25231e-005
3ESBBDF 333 034.58309e-04 | 5.54206e-004
2BBDF 500 7.18323e-03 28,413

107 | VSSMBBDF (r =1) | 3,333 3.65283e-07 5.67257e-004
3ESBBDF 3,333 044.70430e-05 | 8.52157e-003
2BBDF 5,000 7.34012e-04 256,695

10™* | VSSMBBDF (r = 1) | 33,333 4.70027e-09 3.50223e-003
3ESBBDF 33,333 054.90784e-07 | 4.38708e-002
2BBDF 55,000 7.35584e-05 2,554,368

107° | VSSMBBDF (r = 1) | 333,333 4.10002e-11 6.60477e-002
3ESBBDF 333,333 065.70874e-09 | 5.36592e-001
2BBDF 555,555 7.35741e-06 25,625,785

107® | VSSMBBDF (r = 1) | 3,333,333 | 4.14240e-12 2.55224e-001
3ESBBDF 3,333,333 | 075.77228e-11 | 4.37581e+000
2BBDF 5,555,555 | 7.35747e-07 256,394,582

To visibly highlight the performance of the proposed method VSSMBBDF in relation
to the other methods 3ESBBDF and 2BBDF. The graphs of Log10(MAXE) against h for the

problems tested are plotted below.

logError

2BBDF
3ESBBDF
VSSMBBDF(=1) |

~o 0.001 0.002 0.003

0.004

0.006 0.007

0.008 0.009

Figure 7: Graph of Log,o(MAXE) against h for problem 1

0.01
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logError

3ESBBDF
VSSMBBDF(1=1)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Figure 8: Graph of Logo(MAXE) against h for problem 2

Considering the results in tables 5 and 6 of problems 1 and 2 have shown
that the new method VSSMBBDF (r = 1) outperformed the 3ESBBDF and 2BBDF in terms
of accuracy, computational time in all problems tested, while the accuracy of the
approximated solution increases as the step size decreases. However, 3ESBBDF
outperformed the 2BBDF in terms of accuracy. But 3ESBBDF and 2BBDF competes closely
in computational time with 2BBDF having advantage in problem 2. Similarly, the graphs in
Figure 7 and 8 also shows clearly that the scaled errors for the VSSMBBDF(r =1) is
smaller when compared with that in 3ESBBDF and 2BBDF Method based on the tested
problems. However, the 3ESBBDF has advantage over 2BBDF in terms of accuracy.
Conclusion
A variable step size multi-block backward differentiation formula (VSSMBBDF) for
solving stiff initial value problem of ordinary differential equations was derived. The
proposed methods adopted a variable step size technique and possessed a very good
stability property; the method is zero stable and A- stable across different chosen values of

the step size ratio of r=1,r=2, r=§ andr=§ . The proposed methods solved

samples of first order stiff IVPs of ODEs, the results are tabulated and the graphs are
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plotted, both have clearly highlighted the performance of the proposed methods in terms of
accuracy of the scaled error and executional time compared to two other methods
considered in the work. Hence, the proposed method can be used in solving a system of

first order stiff initial value problem of ordinary differential equations.
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